File size: 54,893 Bytes
5070096
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
standard library package ISQSpaceTime {
    doc
    /*
     * International System of Quantities and Units
     * Generated on 2022-08-07T14:44:27Z from standard ISO-80000-3:2019 "Space and Time"
     * see also https://www.iso.org/obp/ui/#iso:std:iso:80000:-3:ed-2:v1:en
     *
     * Note 1: In documentation comments, AsciiMath notation (see http://asciimath.org/) is used for mathematical concepts,
     * with Greek letters in Unicode encoding. In running text, AsciiMath is placed between backticks.
     * Note 2: For vector and tensor quantities currently the unit and quantity value type for their (scalar) magnitude is
     * defined, as well as their typical Cartesian 3d VectorMeasurementReference (i.e. coordinate system)
     * or TensorMeasurementReference.
     */

    private import ScalarValues::Real;
    private import ScalarValues::String;
    private import Quantities::*;
    private import MeasurementReferences::*;
    private import ISQBase::*;

    /* ISO-80000-3 item 3-1.1 length */
    /* See package ISQBase for the declarations of LengthValue and LengthUnit */

    /* ISO-80000-3 item 3-1.2 width, breadth */
    attribute width: LengthValue :> scalarQuantities {
        doc
        /*
         * source: item 3-1.2 width, breadth
         * symbol(s): `b`, `B`
         * application domain: generic
         * name: Width (specializes Length)
         * quantity dimension: L^1
         * measurement unit(s): m
         * tensor order: 0
         * definition: minimum length of a straight line segment between two parallel straight lines (in two dimensions) or planes (in three dimensions) that enclose a given geometrical shape
         * remarks: This quantity is non-negative.
         */
    }

    alias breadth for width;

    /* ISO-80000-3 item 3-1.3 height, depth, altitude */
    attribute height: LengthValue :> scalarQuantities {
        doc
        /*
         * source: item 3-1.3 height, depth, altitude
         * symbol(s): `h`, `H`
         * application domain: generic
         * name: Height (specializes Length)
         * quantity dimension: L^1
         * measurement unit(s): m
         * tensor order: 0
         * definition: minimum length of a straight line segment between a point and a reference line or reference surface
         * remarks: This quantity is usually signed. The sign expresses the position of the particular point with respect to the reference line or surface and is chosen by convention. The symbol `H` is often used to denote altitude, i.e. height above sea level.
         */
    }

    alias depth for height;

    alias altitude for height;

    /* ISO-80000-3 item 3-1.4 thickness */
    attribute thickness: LengthValue :> scalarQuantities {
        doc
        /*
         * source: item 3-1.4 thickness
         * symbol(s): `d`, `δ`
         * application domain: generic
         * name: Thickness (specializes Length)
         * quantity dimension: L^1
         * measurement unit(s): m
         * tensor order: 0
         * definition: width (item 3-1.2)
         * remarks: This quantity is non-negative.
         */
    }

    /* ISO-80000-3 item 3-1.5 diameter */
    attribute diameter: LengthValue :> scalarQuantities {
        doc
        /*
         * source: item 3-1.5 diameter
         * symbol(s): `d`, `D`
         * application domain: generic
         * name: Diameter (specializes Length)
         * quantity dimension: L^1
         * measurement unit(s): m
         * tensor order: 0
         * definition: width (item 3-1.2) of a circle, cylinder or sphere
         * remarks: This quantity is non-negative.
         */
    }

    /* ISO-80000-3 item 3-1.6 radius */
    attribute radius: LengthValue :> scalarQuantities {
        doc
        /*
         * source: item 3-1.6 radius
         * symbol(s): `r`, `R`
         * application domain: generic
         * name: Radius (specializes Length)
         * quantity dimension: L^1
         * measurement unit(s): m
         * tensor order: 0
         * definition: half of a diameter (item 3-1.5)
         * remarks: This quantity is non-negative.
         */
    }

    /* ISO-80000-3 item 3-1.7 path length, arc length */
    attribute pathLength: LengthValue :> scalarQuantities {
        doc
        /*
         * source: item 3-1.7 path length, arc length
         * symbol(s): `s`
         * application domain: generic
         * name: PathLength (specializes Length)
         * quantity dimension: L^1
         * measurement unit(s): m
         * tensor order: 0
         * definition: length of a rectifiable curve between two of its points
         * remarks: The differential path length at a given point of a curve is: `ds = sqrt(dx^2 + dy^2 + dz^2)` where `x`, `y`, and `z` denote the Cartesian coordinates (ISO 80000-2) of the particular point. There are curves which are not rectifiable, for example fractal curves.
         */
    }

    alias arcLength for pathLength;

    /* ISO-80000-3 item 3-1.8 distance */
    attribute distance: LengthValue :> scalarQuantities {
        doc
        /*
         * source: item 3-1.8 distance
         * symbol(s): `d`, `r`
         * application domain: generic
         * name: Distance (specializes Length)
         * quantity dimension: L^1
         * measurement unit(s): m
         * tensor order: 0
         * definition: shortest path length (item 3-1.7) between two points in a metric space
         * remarks: A metric space might be curved. An example of a curved metric space is the surface of the Earth. In this case, distances are measured along great circles. A metric is not necessarily Euclidean.
         */
    }

    /* ISO-80000-3 item 3-1.9 radial distance */
    attribute radialDistance: LengthValue :> scalarQuantities {
        doc
        /*
         * source: item 3-1.9 radial distance
         * symbol(s): `r_Q`, `ρ`
         * application domain: generic
         * name: RadialDistance (specializes Length)
         * quantity dimension: L^1
         * measurement unit(s): m
         * tensor order: 0
         * definition: distance (item 3-1.8), where one point is located on an axis or within a closed non self-intersecting curve or surface
         * remarks: The subscript Q denotes the point from which the radial distance is measured. Examples of closed non self-intersecting curves are circles or ellipses. Examples of closed non self-intersecting surfaces are surfaces of spheres or egg-shaped objects.
         */
    }

    attribute def Spatial3dCoordinateFrame :> '3dCoordinateFrame' {
        doc
        /*
         * Most general spatial 3D coordinate frame
         */
        attribute :>> isBound = true;
    }

    attribute def CartesianSpatial3dCoordinateFrame :> Spatial3dCoordinateFrame {
        doc
        /*
         * Cartesian spatial 3D coordinate frame
         *
         * source: ISO 80000-2 item 2-17.1 Cartesian coordinates
         *
         * The components of a vector expressed on a Cartesian spatial coordinate frame are all LengthValues, and denoted with symbols `x`, `y`, `z`.
         *
         * Note 1: The Cartesian basis vectors `vec(e_x)`, `vec(e_y)` and `vec(e_z)` form an orthonormal right-handed coordinate frame.
         * Note 2: The measurement units for the 3 dimensions are typically the same, but may be different.
         */
        attribute xUnit : LengthUnit = mRefs#(1);
        attribute yUnit : LengthUnit = mRefs#(2);
        attribute zUnit : LengthUnit = mRefs#(3);
        attribute :>> mRefs : LengthUnit[3];
        attribute :>> isOrthogonal = true;
    }

    readonly attribute universalCartesianSpatial3dCoordinateFrame : CartesianSpatial3dCoordinateFrame[1] {
        doc
        /*
         * A singleton CartesianSpatial3dCoordinateFrame that can be used as a default universal Cartesian 3D coordinate frame.
         */
         
        attribute :>> mRefs default (SI::m, SI::m, SI::m) {
            doc /*
             * By default, the universalCartesianSpatial3dCoordinateFrame uses meters as the units on all three axes.
             */
        }
        
        attribute :>> transformation[0..0] {
            doc /*
             * The universalCartesianSpatial3dCoordinateFrame is the "top-level" coordinate frame, not nested in any other frame.
             */
        }
        
    }

    attribute def CylindricalSpatial3dCoordinateFrame :> Spatial3dCoordinateFrame {
        doc
        /*
         * Cylindrical spatial 3D coordinate frame
         *
         * source: ISO 80000-2 item 2-17.2 cylindrical coordinates
         *
         * The components of a (position) vector to a point P in a cylindrical coordinate frame are:
         * - radialDistance (symbol `ρ`) defined by LengthValue, that is the radial distance from the cylinder axis to P
         * - azimuth (symbol `φ`) defined by AngularMeasure, that is the angle between the azimuth reference direction and the line segment
         * from the cylinder axis, in the plane that is orthogonal to the cylinder axis and intersects P
         * - z coordinate (symbol `z`) defined by LengthValue, the coordinate along the clyinder axis.
         *
         * Note 1: The basis vectors `vec(e_ρ)(φ)`, `vec(e_φ)(φ)` and `vec(e_z)` form an orthonormal right-handed coordinate frame, where
         * `vec(e_φ)` is tangent to the circular arc in the `φ` direction.
         * Note 2: In order to enable transformation to and from a CartesianSpatial3dCoordinateFrame the `vec(e_x)` Cartesian basis vector is aligned
         * with the `φ=0` direction in the cylindrical frame, and the `vec(e_z)` Cartesian basis vector is aligned with
         * the `vec(e_z)` cylindrical basis vector.
         * Note 3: If `z = 0`, then `ρ` and `φ` are polar coordinates in the XY-plane.
         * Note 4: See also https://en.wikipedia.org/wiki/Cylindrical_coordinate_system .
         */
        attribute radialDistanceUnit : LengthUnit;
        attribute azimuthUnit : AngularMeasureUnit;
        attribute zUnit : LengthUnit;
        attribute :>> mRefs = (radialDistanceUnit, azimuthUnit, zUnit);
        attribute :>> isOrthogonal = true;
    }

    attribute def SphericalSpatial3dCoordinateFrame :> Spatial3dCoordinateFrame {
        doc
        /*
         * Spherical spatial 3D coordinate frame
         *
         * source: ISO 80000-2 item 2-17.3 spherical coordinates
         *
         * The components of a (position) vector to a point P specified in a spherical coordinate frame are:
         * - radialDistance (symbol `r`) defined by LengthValue, that is the distance from the origin to P
         * - inclination (symbol `θ`) defined by AngularMeasure, that is the angle between the zenith direction and the line segment from origin to P
         * - azimuth (symbol `φ`) defined by AngularMeasure, that is the angle between the azimuth reference direction and the line segment
         * from the origin to the orthogonal projection of P on the reference plane, normal to the zenith direction.
         *
         * Note 1: The basis vectors `vec(e_r)(θ,φ)`, `vec(e_θ)(θ,φ)` and `vec(e_φ)(φ)` form an orthonormal right-handed frame, where
         * `vec(e_θ)` and `vec(e_φ)` are tangent to the respective circular arcs in the `θ` and `φ` directions.
         * Note 2: In order to transform to and from a CartesianSpatial3dCoordinateFrame the `vec(e_x)` Cartesian basis vector is aligned
         * with the `θ=π/4` and `φ=0` direction in the spherical frame, and the `vec(e_z)` Cartesian basis vector is aligned
         * with the `θ=0` zenith direction in the spherical frame.
         * Note 3: If `θ = π/4`, then `ρ` and `φ` are polar coordinates in the XY-plane.
         * Note 4: See also https://en.wikipedia.org/wiki/Spherical_coordinate_system .
         */
        attribute radialDistanceUnit : LengthUnit;
        attribute inclinationUnit : AngularMeasureUnit;
        attribute azimuthUnit : AngularMeasureUnit;
        attribute :>> mRefs = (radialDistanceUnit, inclinationUnit, azimuthUnit);
        attribute :>> isOrthogonal = true;
    }

     attribute def PlanetarySpatial3dCoordinateFrame :> Spatial3dCoordinateFrame {
        doc
        /*
         * Planetary spatial 3D coordinate frame
         *
         * A planetary spatial 3D coordinate frame is a generalization for any planet of the geographic coordinate frame and geocentric coordinate
         * for Earth. In such coordinate frames, typically the origin is located at the planet's centre of gravity, and the surface of the planet
         * is approximated by a reference ellipsoid centred on the origin, with its major axes oriented along the south to north pole vector and
         * the equatorial plane.
         *
         * The components of a (position) vector to a point P specified in a planetary coordinate frame are:
         * - latitude (symbol `lat` or `φ`) defined by AngularMeasure, that is the angle between the equatorial plane and the vector from
         *   the origin to P, similar to the inclination in a spherical spatial coordinate frame. Typically, the zero reference latitude is chosen
         *   for positions in the equatorial plane, with positive latitude for positions in the northern hemisphere and negative latitude for positions
         *   in the southern hemisphere.
         * - longitude (symbol `long` or `λ`) defined by AngularMeasure, that is the angle between a reference meridian and the meridian
         *   passing through P, similar to the azimuth of a spherical spatial coordinate frame. The convention is to connotate positive longitude
         *   with eastward direction and negative longitude with westward direction. The reference meridian for `long=0` is chosen to pass
         *   through a particular feature of the planet, e.g., for Earth typically the position of the British Royal Observatory in Greenwich, UK.
         * - altitude (symbol `h`) defined by LengthValue, that is the distance between P and the reference ellipsoid
         *   in the normal direction to the ellipsoid. Positive altitude specifies a position above the reference ellipsoid surface,
         *   while a negative value specifies a position below.
         *
         * Note 1: The reference meridian is also called prime meridian.
         * Note 2: The basis vectors `vec(e_φ)(φ)`, `vec(e_λ)(λ)` and `vec(e_h)(φ,λ)` form an orthonormal right-handed frame, where
         * `vec(e_φ)` and `vec(e_λ)` are tangent to the reference ellipsoid in the respective latitude and longitude directions,
         * and `vec(e_h)` is normal to the reference ellipsoid.
         * Note 3: In order to transform to and from a CartesianSpatial3dCoordinateFrame the `vec(e_x)` Cartesian basis vector is aligned
         * with the `φ=0` and `λ=0` direction in the planetary frame, and the `vec(e_z)` Cartesian basis vector is aligned
         * with the `λ=π/2` (north pole) direction in the planetary frame.
         * Note 4: See also https://en.wikipedia.org/wiki/Planetary_coordinate_system .
         */
        attribute latitudeUnit : AngularMeasureUnit;
        attribute longitudeUnit : AngularMeasureUnit;
        attribute altitudeUnit : LengthUnit;
        attribute :>> mRefs = (longitudeUnit, latitudeUnit, altitudeUnit);
        attribute :>> isOrthogonal = true;
    }

	attribute def Position3dVector :> '3dVectorQuantityValue' {
	    doc
        /*
         * source: item 3-1.10 position vector
         * symbol(s): `vec(r)`
         * application domain: generic
         * name: PositionVector
         * quantity dimension: L^1
         * measurement unit(s): m
         * tensor order: 1
         * definition: vector (ISO 80000-2) quantity from the origin of a coordinate system to a point in space
         * remarks: Position vectors are so-called bounded vectors, i.e. their magnitude (ISO 80000-2) and direction depend on the particular coordinate system used.
         */
        attribute :>> isBound = true;
        attribute :>> mRef: Spatial3dCoordinateFrame[1];
	}
    attribute position3dVector: Position3dVector :> vectorQuantities;

    attribute def CartesianPosition3dVector :> Position3dVector {
        attribute x : LengthValue = num#(1) [mRef.mRefs#(1)];
        attribute y : LengthValue = num#(2) [mRef.mRefs#(2)];
        attribute z : LengthValue = num#(3) [mRef.mRefs#(3)];
        attribute :>> mRef : CartesianSpatial3dCoordinateFrame[1];
    }
    attribute cartesianPosition3dVector : CartesianPosition3dVector :> position3dVector;

    attribute def CylindricalPosition3dVector :> Position3dVector {
        attribute <'ρ'> radialDistance : LengthValue = num#(1) [mRef.mRefs#(1)];
        attribute <'φ'> azimuth : AngularMeasureUnit = num#(2) [mRef.mRefs#(2)];
        attribute <h> height : LengthValue = num#(3) [mRef.mRefs#(3)];
        attribute :>> mRef : CylindricalSpatial3dCoordinateFrame[1];
    }
    attribute cylindricalPosition3dVector : CylindricalPosition3dVector :> position3dVector;

    attribute def SphericalPosition3dVector :> Position3dVector {
        attribute <r> radialDistance : LengthValue = num#(1) [mRef.mRefs#(1)];
        attribute <'θ'> inclination : AngularMeasureUnit = num#(2) [mRef.mRefs#(2)];
        attribute <'φ'> azimuth : AngularMeasureUnit = num#(3) [mRef.mRefs#(3)];
        attribute :>> mRef : SphericalSpatial3dCoordinateFrame[1];
    }
    attribute sphericalPosition3dVector : SphericalPosition3dVector :> position3dVector;

    attribute def PlanetaryPosition3dVector :> Position3dVector {
        attribute <lat> latitude : AngularMeasureUnit = num#(1) [mRef.mRefs#(1)];
        attribute <long> longitude : AngularMeasureUnit = num#(2) [mRef.mRefs#(2)];
        attribute <h> altitude : LengthValue = num#(3) [mRef.mRefs#(3)];
        attribute :>> mRef : PlanetarySpatial3dCoordinateFrame[1];
    }
    attribute planetaryPosition3dVector : PlanetaryPosition3dVector :> position3dVector;

    /* ISO-80000-3 item 3-1.11 displacement */
	abstract attribute def Displacement3dVector :> '3dVectorQuantityValue' {
        doc
        /*
         * source: item 3-1.11 displacement
         * symbol(s): `vec(Δr)`
         * application domain: generic
         * name: Displacement
         * quantity dimension: L^1
         * measurement unit(s): m
         * tensor order: 1
         * definition: vector (ISO 80000-2) quantity between any two points in space
         * remarks: Displacement vectors are so-called free vectors, i.e. their magnitude (ISO 80000-2) and direction do not depend on a particular coordinate system. The magnitude of this vector is also called displacement.
         */
        attribute :>> isBound = false;
        attribute :>> mRef: Spatial3dCoordinateFrame[1];
	}
    attribute displacement3dVector: Displacement3dVector :> vectorQuantities;

    attribute def CartesianDisplacement3dVector :> Displacement3dVector {
        attribute x : LengthValue = num#(1) [mRef.mRefs#(1)];
        attribute y : LengthValue = num#(2) [mRef.mRefs#(2)];
        attribute z : LengthValue = num#(3) [mRef.mRefs#(3)];
        attribute :>> mRef: CartesianSpatial3dCoordinateFrame[1];
    }
    attribute cartesianDisplacement3dVector: CartesianDisplacement3dVector :> displacement3dVector;

    attribute def CylindricalDisplacement3dVector :> Displacement3dVector {
        attribute <'ρ'> radialDistance : LengthValue = num#(1) [mRef.mRefs#(1)];
        attribute <'φ'> azimuth : AngularMeasureUnit = num#(2) [mRef.mRefs#(2)];
        attribute <h> height : LengthValue = num#(3) [mRef.mRefs#(3)];
        attribute :>> mRef: CylindricalSpatial3dCoordinateFrame[1];
    }
    attribute cylindricalDisplacement3dVector: CylindricalDisplacement3dVector :> displacement3dVector;

    attribute def SphericalDisplacement3dVector :> Displacement3dVector {
        attribute <r> radialDistance : LengthValue = num#(1) [mRef.mRefs#(1)];
        attribute <'θ'> inclination : AngularMeasureUnit = num#(2) [mRef.mRefs#(2)];
        attribute <'φ'> azimuth : AngularMeasureUnit = num#(3) [mRef.mRefs#(3)];
        attribute :>> mRef: SphericalSpatial3dCoordinateFrame[1];
    }
    attribute sphericalDisplacement3dVector: SphericalDisplacement3dVector :> displacement3dVector;

    /* ISO-80000-3 item 3-1.12 radius of curvature */
    attribute radiusOfCurvature: LengthValue :> scalarQuantities {
        doc
        /*
         * source: item 3-1.12 radius of curvature
         * symbol(s): `ρ`
         * application domain: generic
         * name: RadiusOfCurvature (specializes Length)
         * quantity dimension: L^1
         * measurement unit(s): m
         * tensor order: 0
         * definition: radius (item 3-1.6) of the osculating circle of a planar curve at a particular point of the curve
         * remarks: The radius of curvature is only defined for curves which are at least twice continuously differentiable.
         */
    }

    /* ISO-80000-3 item 3-2 curvature */
    attribute def CurvatureValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 3-2 curvature
         * symbol(s): `κ`
         * application domain: generic
         * name: Curvature
         * quantity dimension: L^-1
         * measurement unit(s): m^-1
         * tensor order: 0
         * definition: inverse of the radius of curvature (item 3-1.12)
         * remarks: The curvature is given by: `κ = 1/ρ` where `ρ` denotes the radius of curvature (item 3-1.12).
         */
        attribute :>> num: Real;
        attribute :>> mRef: CurvatureUnit[1];
    }

    attribute curvature: CurvatureValue[*] nonunique :> scalarQuantities;

    attribute def CurvatureUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; }
    }

    /* ISO-80000-3 item 3-3 area */
    attribute def AreaValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 3-3 area
         * symbol(s): `A`, `S`
         * application domain: generic
         * name: Area
         * quantity dimension: L^2
         * measurement unit(s): m^2
         * tensor order: 0
         * definition: extent of a two-dimensional geometrical shape
         * remarks: The surface element at a given point of a surface is given by: `dA = g du dv` where `u` and `v` denote the Gaussian surface coordinates and `g` denotes the determinant of the metric tensor (ISO 80000-2) at the particular point. The symbol `dσ` is also used for the surface element.
         */
        attribute :>> num: Real;
        attribute :>> mRef: AreaUnit[1];
    }

    attribute area: AreaValue[*] nonunique :> scalarQuantities;

    attribute def AreaUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; }
    }

    /* ISO-80000-3 item 3-4 volume */
    attribute def VolumeValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 3-4 volume
         * symbol(s): `V`, `(S)`
         * application domain: generic
         * name: Volume
         * quantity dimension: L^3
         * measurement unit(s): m^3
         * tensor order: 0
         * definition: extent of a three-dimensional geometrical shape
         * remarks: The volume element in Euclidean space is given by: `dV = dx dy dz` where `dx`, `dy`, and `dz` denote the differentials of the Cartesian coordinates (ISO 80000-2). The symbol `dτ` is also used for the volume element.
         */
        attribute :>> num: Real;
        attribute :>> mRef: VolumeUnit[1];
    }

    attribute volume: VolumeValue[*] nonunique :> scalarQuantities;

    attribute def VolumeUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 3; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; }
    }

    /* ISO-80000-3 item 3-5 angular measure, plane angle */
    attribute def AngularMeasureValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 3-5 angular measure, plane angle
         * symbol(s): `α`, `β`, `γ`
         * application domain: generic
         * name: AngularMeasure
         * quantity dimension: 1
         * measurement unit(s): rad, 1
         * tensor order: 0
         * definition: measure of a geometric figure, called plane angle, formed by two rays, called the sides of the plane angle, emanating from a common point, called the vertex of the plane angle
         * remarks: The angular measure is given by: `α = s/r` where `s` denotes the arc length (item 3-1.7) of the included arc of a circle, centred at the vertex of the plane angle, and `r` the radius (item 3-1.6) of that circle. Other symbols are also used.
         */
        attribute :>> num: Real;
        attribute :>> mRef: AngularMeasureUnit[1];
    }

    attribute angularMeasure: AngularMeasureValue[*] nonunique :> scalarQuantities;

    attribute def AngularMeasureUnit :> DimensionOneUnit {
    }

    alias PlaneAngleUnit for AngularMeasureUnit;
    alias PlaneAngleValue for AngularMeasureValue;
    alias planeAngle for angularMeasure;

    /* ISO-80000-3 item 3-6 rotational displacement, angular displacement */
    attribute rotationalDisplacement: AngularMeasureValue :> scalarQuantities {
        doc
        /*
         * source: item 3-6 rotational displacement, angular displacement
         * symbol(s): `ϑ`, `φ`
         * application domain: generic
         * name: RotationalDisplacement (specializes AngularMeasure)
         * quantity dimension: 1
         * measurement unit(s): rad, 1
         * tensor order: 0
         * definition: quotient of the traversed circular path length (item 3-1.7) of a point in space during a rotation and its distance (item 3-1.8) from the axis or centre of rotation
         * remarks: The rotational displacement is given by: `φ = s/r` where `s` denotes the traversed path length (item 3-1.7) along the periphery of a circle, centred at the vertex of the plane angle, and `r` the radius (item 3-1.6) of that circle. The rotational displacement is signed. The sign denotes the direction of rotation and is chosen by convention. Other symbols are also used.
         */
    }

    alias angularDisplacement for rotationalDisplacement;

    /* ISO-80000-3 item 3-7 phase angle */
    attribute phaseAngle: AngularMeasureValue :> scalarQuantities {
        doc
        /*
         * source: item 3-7 phase angle
         * symbol(s): `φ`, `ϕ`
         * application domain: generic
         * name: PhaseAngle (specializes AngularMeasure)
         * quantity dimension: 1
         * measurement unit(s): rad, 1
         * tensor order: 0
         * definition: angular measure (item 3-5) between the positive real axis and the radius of the polar representation of the complex number in the complex plane
         * remarks: The phase angle (often imprecisely referred to as the "phase") is the argument of a complex number. Other symbols are also used.
         */
    }

    /* ISO-80000-3 item 3-8 solid angular measure */
    attribute def SolidAngularMeasureValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 3-8 solid angular measure
         * symbol(s): `Ω`
         * application domain: generic
         * name: SolidAngularMeasure
         * quantity dimension: 1
         * measurement unit(s): sr, 1
         * tensor order: 0
         * definition: measure of a conical geometric figure, called solid angle, formed by all rays, originating from a common point, called the vertex of the solid angle, and passing through the points of a closed, non-self-intersecting curve in space considered as the border of a surface
         * remarks: The differential solid angular measure expressed in spherical coordinates (ISO 80000-2) is given by: `dΩ = A/r^2 * sin(θ * dθ * dφ)` where `A` is area, `r` is radius, `θ` and `φ` are spherical coordinates.
         */
        attribute :>> num: Real;
        attribute :>> mRef: SolidAngularMeasureUnit[1];
    }

    attribute solidAngularMeasure: SolidAngularMeasureValue[*] nonunique :> scalarQuantities;

    attribute def SolidAngularMeasureUnit :> DimensionOneUnit {
    }

    /* ISO-80000-3 item 3-9 duration, time */
    /* See package ISQBase for the declarations of DurationValue and DurationUnit */

    alias TimeUnit for DurationUnit;
    alias TimeValue for DurationValue;
    alias time for duration;

    /* ISO-80000-3 item 3-10.1 velocity */
    attribute def CartesianVelocity3dVector :> '3dVectorQuantityValue' {
        doc
        /*
         * source: item 3-10.1 velocity
         * symbol(s): `vec(v)`, `u,v,w`
         * application domain: generic
         * name: Velocity
         * quantity dimension: L^1*T^-1
         * measurement unit(s): m/s, m*s^-1
         * tensor order: 1
         * definition: vector (ISO 80000-2) quantity giving the rate of change of a position vector (item 3-1.10)
         * remarks: The velocity vector is given by: `vec(v) = (d vec(r)) / (dt)` where `vec(r)` denotes the position vector (item 3-1.10) and `t` the duration (item 3-9). When the general symbol `vec(v)` is not used for the velocity, the symbols `u`, `v`, `w` may be used for the components (ISO 80000-2) of the velocity.
         */
        attribute :>> isBound = false;
        attribute :>> mRef: CartesianVelocity3dCoordinateFrame[1];
    }
    attribute cartesianVelocity3dVector: CartesianVelocity3dVector :> vectorQuantities;

    attribute def CartesianVelocity3dCoordinateFrame :> '3dCoordinateFrame' {
        attribute :>> isBound = false;
        attribute :>> isOrthogonal = true;
        attribute :>> mRefs: SpeedUnit[3];
    }

    /* ISO-80000-3 item 3-10.2 speed */
    attribute def SpeedValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 3-10.2 speed
         * symbol(s): `v`
         * application domain: generic
         * name: Speed
         * quantity dimension: L^1*T^-1
         * measurement unit(s): m/s, m*s^-1
         * tensor order: 0
         * definition: magnitude (ISO 80000-2) of the velocity (item 3-10.1)
         * remarks: None.
         */
        attribute :>> num: Real;
        attribute :>> mRef: SpeedUnit[1];
    }

    attribute speed: SpeedValue[*] nonunique :> scalarQuantities;

    attribute def SpeedUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF); }
    }

    /* ISO-80000-3 item 3-11 acceleration */
    attribute def AccelerationValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 3-11 acceleration (magnitude)
         * symbol(s): `a`
         * application domain: generic
         * name: Acceleration
         * quantity dimension: L^1*T^-2
         * measurement unit(s): m*s^-2
         * tensor order: 0
         * definition: vector (ISO 80000-2) quantity giving the rate of change of velocity (item 3-10)
         * remarks: The acceleration vector is given by: `vec(a) = (d vec(v))/(dt)` where `vec(v)` denotes the velocity (item 3-10.1) and `t` the duration (item 3-9). The magnitude (ISO 80000-2) of the acceleration of free fall is usually denoted by `g`.
         */
        attribute :>> num: Real;
        attribute :>> mRef: AccelerationUnit[1];
    }

    attribute acceleration: AccelerationValue[*] nonunique :> scalarQuantities;

    attribute def AccelerationUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF); }
    }

    attribute def CartesianAcceleration3dVector :> '3dVectorQuantityValue' {
        doc
        /*
         * source: item 3-11 acceleration (vector)
         * symbol(s): `vec(a)`
         * application domain: generic
         * name: Acceleration
         * quantity dimension: L^1*T^-2
         * measurement unit(s): m*s^-2
         * tensor order: 1
         * definition: vector (ISO 80000-2) quantity giving the rate of change of velocity (item 3-10)
         * remarks: The acceleration vector is given by: `vec(a) = (d vec(v))/(dt)` where `vec(v)` denotes the velocity (item 3-10.1) and `t` the duration (item 3-9). The magnitude (ISO 80000-2) of the acceleration of free fall is usually denoted by `g`.
         */
        attribute :>> isBound = false;
        attribute :>> mRef: CartesianAcceleration3dCoordinateFrame[1];
    }

    attribute cartesianAcceleration3dVector: CartesianAcceleration3dVector :> vectorQuantities;

    attribute def CartesianAcceleration3dCoordinateFrame :> VectorMeasurementReference {
        attribute :>> dimensions = 3;
        attribute :>> isBound = false;
        attribute :>> isOrthogonal = true;
        attribute :>> mRefs: AccelerationUnit[3];
    }

    /* ISO-80000-3 item 3-12 angular velocity */
    attribute def AngularVelocityValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 3-12 angular velocity (magnitude)
         * symbol(s): `ω`
         * application domain: generic
         * name: AngularVelocity
         * quantity dimension: T^-1
         * measurement unit(s): rad*s^-1, s^-1
         * tensor order: 0
         * definition: vector (ISO 80000-2) quantity giving the rate of change of the rotational displacement (item 3-6) as its magnitude (ISO 80000-2) and with a direction equal to the direction of the axis of rotation
         * remarks: The angular velocity vector is given by: `vec(ω) = (d φ) / (dt) vec(u)` where `φ` denotes the angular displacement (item 3-6), `t` the duration (item 3-9), and `vec(u)` the unit vector (ISO 80000-2) along the axis of rotation in the direction for which the rotation corresponds to a right-hand spiral.
         */
        attribute :>> num: Real;
        attribute :>> mRef: AngularVelocityUnit[1];
    }

    attribute angularVelocity: AngularVelocityValue[*] nonunique :> scalarQuantities;

    attribute def AngularVelocityUnit :> DerivedUnit {
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = durationPF; }
    }

    attribute def Cartesian3dAngularVelocityVector :> VectorQuantityValue {
        doc
        /*
         * source: item 3-12 angular velocity (vector)
         * symbol(s): `vec(ω)`
         * application domain: generic
         * name: AngularVelocity
         * quantity dimension: T^-1
         * measurement unit(s): rad*s^-1, s^-1
         * tensor order: 1
         * definition: vector (ISO 80000-2) quantity giving the rate of change of the rotational displacement (item 3-6) as its magnitude (ISO 80000-2) and with a direction equal to the direction of the axis of rotation
         * remarks: The angular velocity vector is given by: `vec(ω) = (d φ) / (dt) vec(u)` where `φ` denotes the angular displacement (item 3-6), `t` the duration (item 3-9), and `vec(u)` the unit vector (ISO 80000-2) along the axis of rotation in the direction for which the rotation corresponds to a right-hand spiral.
         */
        attribute :>> isBound = false;
        attribute :>> num: Real[3];
        attribute :>> mRef: Cartesian3dAngularVelocityCoordinateFrame[1];
    }

    attribute angularVelocityVector: Cartesian3dAngularVelocityVector :> vectorQuantities;

    attribute def Cartesian3dAngularVelocityCoordinateFrame :> VectorMeasurementReference {
        attribute :>> dimensions = 3;
        attribute :>> isBound = false;
        attribute :>> isOrthogonal = true;
        attribute :>> mRefs: AngularVelocityUnit[3];
    }

    /* ISO-80000-3 item 3-13 angular acceleration */
    attribute def AngularAccelerationValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 3-13 angular acceleration (magnitude)
         * symbol(s): `α`
         * application domain: generic
         * name: AngularAcceleration
         * quantity dimension: T^-2
         * measurement unit(s): rad*s^-2, s^-2
         * tensor order: 0
         * definition: vector (ISO 80000-2) quantity giving the rate of change of angular velocity (item 3-12)
         * remarks: The angular acceleration vector is given by: `vec α = (d vec(ω))/(dt)` Where `vec(ω)` denotes the angular velocity (item 3-12) and `t` the duration (item 3-9).
         */
        attribute :>> num: Real;
        attribute :>> mRef: AngularAccelerationUnit[1];
    }

    attribute angularAcceleration: AngularAccelerationValue[*] nonunique :> scalarQuantities;

    attribute def AngularAccelerationUnit :> DerivedUnit {
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = durationPF; }
    }

    attribute def Cartesian3dAngularAccelerationVector :> VectorQuantityValue {
        doc
        /*
         * source: item 3-13 angular acceleration (vector)
         * symbol(s): `vec(α)`
         * application domain: generic
         * name: AngularAcceleration
         * quantity dimension: T^-2
         * measurement unit(s): rad*s^-2, s^-2
         * tensor order: 1
         * definition: vector (ISO 80000-2) quantity giving the rate of change of angular velocity (item 3-12)
         * remarks: The angular acceleration vector is given by: `vec α = (d vec(ω))/(dt)` Where `vec(ω)` denotes the angular velocity (item 3-12) and `t` the duration (item 3-9).
         */
         attribute :>> isBound = false;
        attribute :>> num: Real[3];
        attribute :>> mRef: Cartesian3dAngularAccelerationCoordinateFrame[1];
    }

    attribute angularAccelerationVector: Cartesian3dAngularAccelerationVector :> vectorQuantities;

    attribute def Cartesian3dAngularAccelerationCoordinateFrame :> VectorMeasurementReference {
        attribute :>> dimensions = 3;
        attribute :>> isBound = false;
        attribute :>> isOrthogonal = true;
        attribute :>> mRefs: AngularAccelerationUnit[3];
    }

    /* ISO-80000-3 item 3-14 period duration, period */
    attribute periodDuration: DurationValue :> scalarQuantities {
        doc
        /*
         * source: item 3-14 period duration, period
         * symbol(s): `T`
         * application domain: generic
         * name: PeriodDuration (specializes Duration)
         * quantity dimension: T^1
         * measurement unit(s): s
         * tensor order: 0
         * definition: duration (item 3-9) of one cycle of a periodic event
         * remarks: A periodic event is an event that occurs regularly with a fixed time interval.
         */
    }

    alias period for periodDuration;

    /* ISO-80000-3 item 3-15 time constant */
    attribute timeConstant: DurationValue :> scalarQuantities {
        doc
        /*
         * source: item 3-15 time constant
         * symbol(s): `τ`, `T`
         * application domain: generic
         * name: TimeConstant (specializes Duration)
         * quantity dimension: T^1
         * measurement unit(s): s
         * tensor order: 0
         * definition: parameter characterizing the response to a step input of a first-order, linear time-invariant system
         * remarks: If a quantity is a function of the duration (item 3-9) expressed by: `F(t) prop e^(-t/τ)` where `t` denotes the duration (item 3-9), then `τ` denotes the time constant. Here the time constant `τ` applies to an exponentially decaying quantity.
         */
    }

    /* ISO-80000-3 item 3-16 rotation */
    attribute rotation: CountValue :> scalarQuantities {
        doc
        /*
         * source: item 3-16 rotation
         * symbol(s): `N`
         * application domain: generic
         * name: Rotation (specializes Count)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: number of revolutions
         * remarks: `N` is the number (not necessarily an integer) of revolutions, for example, of a rotating body about a given axis. Its value is given by: `N = φ/(2 π)` where `φ` denotes the measure of rotational displacement (item 3-6).
         */
    }

    /* ISO-80000-3 item 3-17.1 frequency */
    attribute def FrequencyValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 3-17.1 frequency
         * symbol(s): `f`, `ν`
         * application domain: generic
         * name: Frequency
         * quantity dimension: T^-1
         * measurement unit(s): Hz, s^-1
         * tensor order: 0
         * definition: inverse of period duration (item 3-14)
         * remarks: The frequency is given by: `f = 1/T` where `T` denotes the period duration (item 3-14).
         */
        attribute :>> num: Real;
        attribute :>> mRef: FrequencyUnit[1];
    }

    attribute frequency: FrequencyValue[*] nonunique :> scalarQuantities;

    attribute def FrequencyUnit :> DerivedUnit {
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = durationPF; }
    }

    /* ISO-80000-3 item 3-17.2 rotational frequency */
    attribute rotationalFrequency: FrequencyValue :> scalarQuantities {
        doc
        /*
         * source: item 3-17.2 rotational frequency
         * symbol(s): `n`
         * application domain: generic
         * name: RotationalFrequency (specializes Frequency)
         * quantity dimension: T^-1
         * measurement unit(s): s^-1
         * tensor order: 0
         * definition: duration (item 3-9) of one cycle of a periodic event
         * remarks: The rotational frequency is given by: `n = (dN) / (dt)` where `N` denotes the rotation (item 3-16) and `t` is the duration (item 3-9).
         */
    }

    /* ISO-80000-3 item 3-18 angular frequency */
    attribute def AngularFrequencyValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 3-18 angular frequency
         * symbol(s): `ω`
         * application domain: generic
         * name: AngularFrequency
         * quantity dimension: T^-1
         * measurement unit(s): rad*s^-1, s^-1
         * tensor order: 0
         * definition: rate of change of the phase angle (item 3-7)
         * remarks: The angular frequency is given by: `ω = 2 π f` where `f` denotes the frequency (item 3-17.1).
         */
        attribute :>> num: Real;
        attribute :>> mRef: AngularFrequencyUnit[1];
    }

    attribute angularFrequency: AngularFrequencyValue[*] nonunique :> scalarQuantities;

    attribute def AngularFrequencyUnit :> DerivedUnit {
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = durationPF; }
    }

    /* ISO-80000-3 item 3-19 wavelength */
    attribute wavelength: LengthValue :> scalarQuantities {
        doc
        /*
         * source: item 3-19 wavelength
         * symbol(s): `λ`
         * application domain: generic
         * name: Wavelength (specializes Length)
         * quantity dimension: L^1
         * measurement unit(s): m
         * tensor order: 0
         * definition: length (item 3-1.1) of the repetition interval of a wave
         * remarks: None.
         */
    }

    /* ISO-80000-3 item 3-20 repetency, wavenumber */
    attribute def RepetencyValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 3-20 repetency, wavenumber
         * symbol(s): `σ`, `ṽ`
         * application domain: generic
         * name: Repetency
         * quantity dimension: L^-1
         * measurement unit(s): m^-1
         * tensor order: 0
         * definition: inverse of the wavelength (item 3-19)
         * remarks: The repetency is given by: `σ = 1 / λ` where `λ` denotes the wavelength (item 3-19).
         */
        attribute :>> num: Real;
        attribute :>> mRef: RepetencyUnit[1];
    }

    attribute repetency: RepetencyValue[*] nonunique :> scalarQuantities;

    attribute def RepetencyUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; }
    }

    alias WavenumberUnit for RepetencyUnit;
    alias WavenumberValue for RepetencyValue;
    alias wavenumber for repetency;

    /* ISO-80000-3 item 3-21 wave vector */
    attribute def Cartesian3dWaveVector :> VectorQuantityValue {
        doc
        /*
         * source: item 3-21 wave vector
         * symbol(s): `vec(k)`
         * application domain: generic
         * name: WaveVector
         * quantity dimension: L^-1
         * measurement unit(s): m^-1
         * tensor order: 1
         * definition: vector normal to the surfaces of constant phase angle (item 3-7) of a wave, with the magnitude (ISO 80000-2) of repetency (item 3-20)
         * remarks: None.
         */
        attribute :>> isBound = false;
        attribute :>> num: Real[3];
        attribute :>> mRef: Cartesian3dWaveCoordinateFrame[1];
    }

    attribute waveVector: Cartesian3dWaveVector :> vectorQuantities;

    attribute def Cartesian3dWaveCoordinateFrame :> VectorMeasurementReference {
        attribute :>> dimensions = 3;
        attribute :>> isBound = false;
        attribute :>> isOrthogonal = true;
        attribute :>> mRefs: RepetencyUnit[3];
    }

    /* ISO-80000-3 item 3-22 angular repetency, angular wavenumber */
    attribute def AngularRepetencyValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 3-22 angular repetency, angular wavenumber
         * symbol(s): `k`
         * application domain: generic
         * name: AngularRepetency
         * quantity dimension: L^-1
         * measurement unit(s): m^-1
         * tensor order: 0
         * definition: magnitude (ISO 80000-2) of the wave vector (item 3-21)
         * remarks: The angular repetency is given by: `κ = (2 π)/λ` where `λ` denotes the wavelength (item 3-19).
         */
        attribute :>> num: Real;
        attribute :>> mRef: AngularRepetencyUnit[1];
    }

    attribute angularRepetency: AngularRepetencyValue[*] nonunique :> scalarQuantities;

    attribute def AngularRepetencyUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; }
    }

    alias AngularWavenumberUnit for AngularRepetencyUnit;
    alias AngularWavenumberValue for AngularRepetencyValue;
    alias angularWavenumber for angularRepetency;

    /* ISO-80000-3 item 3-23.1 phase velocity, phase speed */
    attribute def PhaseVelocityValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 3-23.1 phase velocity, phase speed
         * symbol(s): `c`, `v`, `(ν)`, `c_φ`, `v_φ`, `(ν_φ)`
         * application domain: generic
         * name: PhaseVelocity
         * quantity dimension: L^1*T^-1
         * measurement unit(s): m*s^-1
         * tensor order: 0
         * definition: speed with which the phase angle (item 3-7) of a wave propagates in space
         * remarks: The phase velocity is given by: `c = ω/κ` where `ω` denotes the angular frequency (item 3-18) and `k` the angular repetency (item 3-22). If phase velocities of electromagnetic waves and other phase velocities are both involved, then `c` should be used for the former and `υ` for the latter. Phase velocity can also be written as `c = λ f`.
         */
        attribute :>> num: Real;
        attribute :>> mRef: PhaseVelocityUnit[1];
    }

    attribute phaseVelocity: PhaseVelocityValue[*] nonunique :> scalarQuantities;

    attribute def PhaseVelocityUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF); }
    }

    alias PhaseSpeedUnit for PhaseVelocityUnit;
    alias PhaseSpeedValue for PhaseVelocityValue;
    alias phaseSpeed for phaseVelocity;

    /* ISO-80000-3 item 3-23.2 group velocity, group speed */
    attribute groupVelocity: SpeedValue :> scalarQuantities {
        doc
        /*
         * source: item 3-23.2 group velocity, group speed
         * symbol(s): `c_g`, `v_g`, `(ν_g)`
         * application domain: generic
         * name: GroupVelocity (specializes Speed)
         * quantity dimension: L^1*T^-1
         * measurement unit(s): m*s^-1
         * tensor order: 0
         * definition: speed with which the envelope of a wave propagates in space
         * remarks: The group velocity is given by: `c_g = (d ω)/ (dk)` where `ω` denotes the angular frequency (item 3-18) and `k` the angular repetency (item 3-22).
         */
    }

    alias groupSpeed for groupVelocity;

    /* ISO-80000-3 item 3-24 damping coefficient */
    attribute def DampingCoefficientValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 3-24 damping coefficient
         * symbol(s): `δ`
         * application domain: generic
         * name: DampingCoefficient
         * quantity dimension: T^-1
         * measurement unit(s): s^-1
         * tensor order: 0
         * definition: inverse of the time constant (item 3-15) of an exponentially varying quantity
         * remarks: None.
         */
        attribute :>> num: Real;
        attribute :>> mRef: DampingCoefficientUnit[1];
    }

    attribute dampingCoefficient: DampingCoefficientValue[*] nonunique :> scalarQuantities;

    attribute def DampingCoefficientUnit :> DerivedUnit {
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = durationPF; }
    }

    /* ISO-80000-3 item 3-25 logarithmic decrement */
    attribute def LogarithmicDecrementValue :> DimensionOneValue {
        doc
        /*
         * source: item 3-25 logarithmic decrement
         * symbol(s): `Λ`
         * application domain: generic
         * name: LogarithmicDecrement (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: product of damping coefficient (item 3-24) and period duration (item 3-14)
         * remarks: None.
         */
    }
    attribute logarithmicDecrement: LogarithmicDecrementValue :> scalarQuantities;

    /* ISO-80000-3 item 3-26.1 attenuation, extinction */
    attribute def AttenuationValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 3-26.1 attenuation, extinction
         * symbol(s): `α`
         * application domain: generic
         * name: Attenuation
         * quantity dimension: L^-1
         * measurement unit(s): m^-1
         * tensor order: 0
         * definition: gradual decrease in magnitude (ISO 80000-2) of any kind of flux through a medium
         * remarks: If a quantity is a function of distance (item 3-1.8) expressed by: `f(x) prop e^(-α x)` where `x` denotes distance (item 3-1.8), then `α` denotes attenuation. The inverse of attenuation is called attenuation length.
         */
        attribute :>> num: Real;
        attribute :>> mRef: AttenuationUnit[1];
    }

    attribute attenuation: AttenuationValue[*] nonunique :> scalarQuantities;

    attribute def AttenuationUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; }
    }

    alias ExtinctionUnit for AttenuationUnit;
    alias ExtinctionValue for AttenuationValue;
    alias extinction for attenuation;

    /* ISO-80000-3 item 3-26.2 phase coefficient */
    attribute def PhaseCoefficientValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 3-26.2 phase coefficient
         * symbol(s): `β`
         * application domain: generic
         * name: PhaseCoefficient
         * quantity dimension: L^-1
         * measurement unit(s): rad/m, m^-1
         * tensor order: 0
         * definition: change of phase angle (item 3-7) with the length (item 3-1.1) along the path travelled by a plane wave
         * remarks: If a quantity is a function of distance expressed by: `f(x) prop cos(β(x-x_0))` where `x` denotes distance (item 3-1.8), then `β` denotes the phase coefficient.
         */
        attribute :>> num: Real;
        attribute :>> mRef: PhaseCoefficientUnit[1];
    }

    attribute phaseCoefficient: PhaseCoefficientValue[*] nonunique :> scalarQuantities;

    attribute def PhaseCoefficientUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; }
    }

    /* ISO-80000-3 item 3-26.3 propagation coefficient */
    attribute def PropagationCoefficientValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 3-26.3 propagation coefficient
         * symbol(s): `γ`
         * application domain: generic
         * name: PropagationCoefficient
         * quantity dimension: L^-1
         * measurement unit(s): m^-1
         * tensor order: 0
         * definition: measure of the change of amplitude and phase angle (item 3-7) of a plane wave propagating in a given direction
         * remarks: The propagation coefficient is given by: `γ = α + iβ` where `α` denotes attenuation (item 3-26.1) and `β` the phase coefficient (item 3-26.2) of a plane wave.
         */
        attribute :>> num: Real;
        attribute :>> mRef: PropagationCoefficientUnit[1];
    }

    attribute propagationCoefficient: PropagationCoefficientValue[*] nonunique :> scalarQuantities;

    attribute def PropagationCoefficientUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; }
    }

}