File size: 54,893 Bytes
5070096 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 |
standard library package ISQSpaceTime {
doc
/*
* International System of Quantities and Units
* Generated on 2022-08-07T14:44:27Z from standard ISO-80000-3:2019 "Space and Time"
* see also https://www.iso.org/obp/ui/#iso:std:iso:80000:-3:ed-2:v1:en
*
* Note 1: In documentation comments, AsciiMath notation (see http://asciimath.org/) is used for mathematical concepts,
* with Greek letters in Unicode encoding. In running text, AsciiMath is placed between backticks.
* Note 2: For vector and tensor quantities currently the unit and quantity value type for their (scalar) magnitude is
* defined, as well as their typical Cartesian 3d VectorMeasurementReference (i.e. coordinate system)
* or TensorMeasurementReference.
*/
private import ScalarValues::Real;
private import ScalarValues::String;
private import Quantities::*;
private import MeasurementReferences::*;
private import ISQBase::*;
/* ISO-80000-3 item 3-1.1 length */
/* See package ISQBase for the declarations of LengthValue and LengthUnit */
/* ISO-80000-3 item 3-1.2 width, breadth */
attribute width: LengthValue :> scalarQuantities {
doc
/*
* source: item 3-1.2 width, breadth
* symbol(s): `b`, `B`
* application domain: generic
* name: Width (specializes Length)
* quantity dimension: L^1
* measurement unit(s): m
* tensor order: 0
* definition: minimum length of a straight line segment between two parallel straight lines (in two dimensions) or planes (in three dimensions) that enclose a given geometrical shape
* remarks: This quantity is non-negative.
*/
}
alias breadth for width;
/* ISO-80000-3 item 3-1.3 height, depth, altitude */
attribute height: LengthValue :> scalarQuantities {
doc
/*
* source: item 3-1.3 height, depth, altitude
* symbol(s): `h`, `H`
* application domain: generic
* name: Height (specializes Length)
* quantity dimension: L^1
* measurement unit(s): m
* tensor order: 0
* definition: minimum length of a straight line segment between a point and a reference line or reference surface
* remarks: This quantity is usually signed. The sign expresses the position of the particular point with respect to the reference line or surface and is chosen by convention. The symbol `H` is often used to denote altitude, i.e. height above sea level.
*/
}
alias depth for height;
alias altitude for height;
/* ISO-80000-3 item 3-1.4 thickness */
attribute thickness: LengthValue :> scalarQuantities {
doc
/*
* source: item 3-1.4 thickness
* symbol(s): `d`, `δ`
* application domain: generic
* name: Thickness (specializes Length)
* quantity dimension: L^1
* measurement unit(s): m
* tensor order: 0
* definition: width (item 3-1.2)
* remarks: This quantity is non-negative.
*/
}
/* ISO-80000-3 item 3-1.5 diameter */
attribute diameter: LengthValue :> scalarQuantities {
doc
/*
* source: item 3-1.5 diameter
* symbol(s): `d`, `D`
* application domain: generic
* name: Diameter (specializes Length)
* quantity dimension: L^1
* measurement unit(s): m
* tensor order: 0
* definition: width (item 3-1.2) of a circle, cylinder or sphere
* remarks: This quantity is non-negative.
*/
}
/* ISO-80000-3 item 3-1.6 radius */
attribute radius: LengthValue :> scalarQuantities {
doc
/*
* source: item 3-1.6 radius
* symbol(s): `r`, `R`
* application domain: generic
* name: Radius (specializes Length)
* quantity dimension: L^1
* measurement unit(s): m
* tensor order: 0
* definition: half of a diameter (item 3-1.5)
* remarks: This quantity is non-negative.
*/
}
/* ISO-80000-3 item 3-1.7 path length, arc length */
attribute pathLength: LengthValue :> scalarQuantities {
doc
/*
* source: item 3-1.7 path length, arc length
* symbol(s): `s`
* application domain: generic
* name: PathLength (specializes Length)
* quantity dimension: L^1
* measurement unit(s): m
* tensor order: 0
* definition: length of a rectifiable curve between two of its points
* remarks: The differential path length at a given point of a curve is: `ds = sqrt(dx^2 + dy^2 + dz^2)` where `x`, `y`, and `z` denote the Cartesian coordinates (ISO 80000-2) of the particular point. There are curves which are not rectifiable, for example fractal curves.
*/
}
alias arcLength for pathLength;
/* ISO-80000-3 item 3-1.8 distance */
attribute distance: LengthValue :> scalarQuantities {
doc
/*
* source: item 3-1.8 distance
* symbol(s): `d`, `r`
* application domain: generic
* name: Distance (specializes Length)
* quantity dimension: L^1
* measurement unit(s): m
* tensor order: 0
* definition: shortest path length (item 3-1.7) between two points in a metric space
* remarks: A metric space might be curved. An example of a curved metric space is the surface of the Earth. In this case, distances are measured along great circles. A metric is not necessarily Euclidean.
*/
}
/* ISO-80000-3 item 3-1.9 radial distance */
attribute radialDistance: LengthValue :> scalarQuantities {
doc
/*
* source: item 3-1.9 radial distance
* symbol(s): `r_Q`, `ρ`
* application domain: generic
* name: RadialDistance (specializes Length)
* quantity dimension: L^1
* measurement unit(s): m
* tensor order: 0
* definition: distance (item 3-1.8), where one point is located on an axis or within a closed non self-intersecting curve or surface
* remarks: The subscript Q denotes the point from which the radial distance is measured. Examples of closed non self-intersecting curves are circles or ellipses. Examples of closed non self-intersecting surfaces are surfaces of spheres or egg-shaped objects.
*/
}
attribute def Spatial3dCoordinateFrame :> '3dCoordinateFrame' {
doc
/*
* Most general spatial 3D coordinate frame
*/
attribute :>> isBound = true;
}
attribute def CartesianSpatial3dCoordinateFrame :> Spatial3dCoordinateFrame {
doc
/*
* Cartesian spatial 3D coordinate frame
*
* source: ISO 80000-2 item 2-17.1 Cartesian coordinates
*
* The components of a vector expressed on a Cartesian spatial coordinate frame are all LengthValues, and denoted with symbols `x`, `y`, `z`.
*
* Note 1: The Cartesian basis vectors `vec(e_x)`, `vec(e_y)` and `vec(e_z)` form an orthonormal right-handed coordinate frame.
* Note 2: The measurement units for the 3 dimensions are typically the same, but may be different.
*/
attribute xUnit : LengthUnit = mRefs#(1);
attribute yUnit : LengthUnit = mRefs#(2);
attribute zUnit : LengthUnit = mRefs#(3);
attribute :>> mRefs : LengthUnit[3];
attribute :>> isOrthogonal = true;
}
readonly attribute universalCartesianSpatial3dCoordinateFrame : CartesianSpatial3dCoordinateFrame[1] {
doc
/*
* A singleton CartesianSpatial3dCoordinateFrame that can be used as a default universal Cartesian 3D coordinate frame.
*/
attribute :>> mRefs default (SI::m, SI::m, SI::m) {
doc /*
* By default, the universalCartesianSpatial3dCoordinateFrame uses meters as the units on all three axes.
*/
}
attribute :>> transformation[0..0] {
doc /*
* The universalCartesianSpatial3dCoordinateFrame is the "top-level" coordinate frame, not nested in any other frame.
*/
}
}
attribute def CylindricalSpatial3dCoordinateFrame :> Spatial3dCoordinateFrame {
doc
/*
* Cylindrical spatial 3D coordinate frame
*
* source: ISO 80000-2 item 2-17.2 cylindrical coordinates
*
* The components of a (position) vector to a point P in a cylindrical coordinate frame are:
* - radialDistance (symbol `ρ`) defined by LengthValue, that is the radial distance from the cylinder axis to P
* - azimuth (symbol `φ`) defined by AngularMeasure, that is the angle between the azimuth reference direction and the line segment
* from the cylinder axis, in the plane that is orthogonal to the cylinder axis and intersects P
* - z coordinate (symbol `z`) defined by LengthValue, the coordinate along the clyinder axis.
*
* Note 1: The basis vectors `vec(e_ρ)(φ)`, `vec(e_φ)(φ)` and `vec(e_z)` form an orthonormal right-handed coordinate frame, where
* `vec(e_φ)` is tangent to the circular arc in the `φ` direction.
* Note 2: In order to enable transformation to and from a CartesianSpatial3dCoordinateFrame the `vec(e_x)` Cartesian basis vector is aligned
* with the `φ=0` direction in the cylindrical frame, and the `vec(e_z)` Cartesian basis vector is aligned with
* the `vec(e_z)` cylindrical basis vector.
* Note 3: If `z = 0`, then `ρ` and `φ` are polar coordinates in the XY-plane.
* Note 4: See also https://en.wikipedia.org/wiki/Cylindrical_coordinate_system .
*/
attribute radialDistanceUnit : LengthUnit;
attribute azimuthUnit : AngularMeasureUnit;
attribute zUnit : LengthUnit;
attribute :>> mRefs = (radialDistanceUnit, azimuthUnit, zUnit);
attribute :>> isOrthogonal = true;
}
attribute def SphericalSpatial3dCoordinateFrame :> Spatial3dCoordinateFrame {
doc
/*
* Spherical spatial 3D coordinate frame
*
* source: ISO 80000-2 item 2-17.3 spherical coordinates
*
* The components of a (position) vector to a point P specified in a spherical coordinate frame are:
* - radialDistance (symbol `r`) defined by LengthValue, that is the distance from the origin to P
* - inclination (symbol `θ`) defined by AngularMeasure, that is the angle between the zenith direction and the line segment from origin to P
* - azimuth (symbol `φ`) defined by AngularMeasure, that is the angle between the azimuth reference direction and the line segment
* from the origin to the orthogonal projection of P on the reference plane, normal to the zenith direction.
*
* Note 1: The basis vectors `vec(e_r)(θ,φ)`, `vec(e_θ)(θ,φ)` and `vec(e_φ)(φ)` form an orthonormal right-handed frame, where
* `vec(e_θ)` and `vec(e_φ)` are tangent to the respective circular arcs in the `θ` and `φ` directions.
* Note 2: In order to transform to and from a CartesianSpatial3dCoordinateFrame the `vec(e_x)` Cartesian basis vector is aligned
* with the `θ=π/4` and `φ=0` direction in the spherical frame, and the `vec(e_z)` Cartesian basis vector is aligned
* with the `θ=0` zenith direction in the spherical frame.
* Note 3: If `θ = π/4`, then `ρ` and `φ` are polar coordinates in the XY-plane.
* Note 4: See also https://en.wikipedia.org/wiki/Spherical_coordinate_system .
*/
attribute radialDistanceUnit : LengthUnit;
attribute inclinationUnit : AngularMeasureUnit;
attribute azimuthUnit : AngularMeasureUnit;
attribute :>> mRefs = (radialDistanceUnit, inclinationUnit, azimuthUnit);
attribute :>> isOrthogonal = true;
}
attribute def PlanetarySpatial3dCoordinateFrame :> Spatial3dCoordinateFrame {
doc
/*
* Planetary spatial 3D coordinate frame
*
* A planetary spatial 3D coordinate frame is a generalization for any planet of the geographic coordinate frame and geocentric coordinate
* for Earth. In such coordinate frames, typically the origin is located at the planet's centre of gravity, and the surface of the planet
* is approximated by a reference ellipsoid centred on the origin, with its major axes oriented along the south to north pole vector and
* the equatorial plane.
*
* The components of a (position) vector to a point P specified in a planetary coordinate frame are:
* - latitude (symbol `lat` or `φ`) defined by AngularMeasure, that is the angle between the equatorial plane and the vector from
* the origin to P, similar to the inclination in a spherical spatial coordinate frame. Typically, the zero reference latitude is chosen
* for positions in the equatorial plane, with positive latitude for positions in the northern hemisphere and negative latitude for positions
* in the southern hemisphere.
* - longitude (symbol `long` or `λ`) defined by AngularMeasure, that is the angle between a reference meridian and the meridian
* passing through P, similar to the azimuth of a spherical spatial coordinate frame. The convention is to connotate positive longitude
* with eastward direction and negative longitude with westward direction. The reference meridian for `long=0` is chosen to pass
* through a particular feature of the planet, e.g., for Earth typically the position of the British Royal Observatory in Greenwich, UK.
* - altitude (symbol `h`) defined by LengthValue, that is the distance between P and the reference ellipsoid
* in the normal direction to the ellipsoid. Positive altitude specifies a position above the reference ellipsoid surface,
* while a negative value specifies a position below.
*
* Note 1: The reference meridian is also called prime meridian.
* Note 2: The basis vectors `vec(e_φ)(φ)`, `vec(e_λ)(λ)` and `vec(e_h)(φ,λ)` form an orthonormal right-handed frame, where
* `vec(e_φ)` and `vec(e_λ)` are tangent to the reference ellipsoid in the respective latitude and longitude directions,
* and `vec(e_h)` is normal to the reference ellipsoid.
* Note 3: In order to transform to and from a CartesianSpatial3dCoordinateFrame the `vec(e_x)` Cartesian basis vector is aligned
* with the `φ=0` and `λ=0` direction in the planetary frame, and the `vec(e_z)` Cartesian basis vector is aligned
* with the `λ=π/2` (north pole) direction in the planetary frame.
* Note 4: See also https://en.wikipedia.org/wiki/Planetary_coordinate_system .
*/
attribute latitudeUnit : AngularMeasureUnit;
attribute longitudeUnit : AngularMeasureUnit;
attribute altitudeUnit : LengthUnit;
attribute :>> mRefs = (longitudeUnit, latitudeUnit, altitudeUnit);
attribute :>> isOrthogonal = true;
}
attribute def Position3dVector :> '3dVectorQuantityValue' {
doc
/*
* source: item 3-1.10 position vector
* symbol(s): `vec(r)`
* application domain: generic
* name: PositionVector
* quantity dimension: L^1
* measurement unit(s): m
* tensor order: 1
* definition: vector (ISO 80000-2) quantity from the origin of a coordinate system to a point in space
* remarks: Position vectors are so-called bounded vectors, i.e. their magnitude (ISO 80000-2) and direction depend on the particular coordinate system used.
*/
attribute :>> isBound = true;
attribute :>> mRef: Spatial3dCoordinateFrame[1];
}
attribute position3dVector: Position3dVector :> vectorQuantities;
attribute def CartesianPosition3dVector :> Position3dVector {
attribute x : LengthValue = num#(1) [mRef.mRefs#(1)];
attribute y : LengthValue = num#(2) [mRef.mRefs#(2)];
attribute z : LengthValue = num#(3) [mRef.mRefs#(3)];
attribute :>> mRef : CartesianSpatial3dCoordinateFrame[1];
}
attribute cartesianPosition3dVector : CartesianPosition3dVector :> position3dVector;
attribute def CylindricalPosition3dVector :> Position3dVector {
attribute <'ρ'> radialDistance : LengthValue = num#(1) [mRef.mRefs#(1)];
attribute <'φ'> azimuth : AngularMeasureUnit = num#(2) [mRef.mRefs#(2)];
attribute <h> height : LengthValue = num#(3) [mRef.mRefs#(3)];
attribute :>> mRef : CylindricalSpatial3dCoordinateFrame[1];
}
attribute cylindricalPosition3dVector : CylindricalPosition3dVector :> position3dVector;
attribute def SphericalPosition3dVector :> Position3dVector {
attribute <r> radialDistance : LengthValue = num#(1) [mRef.mRefs#(1)];
attribute <'θ'> inclination : AngularMeasureUnit = num#(2) [mRef.mRefs#(2)];
attribute <'φ'> azimuth : AngularMeasureUnit = num#(3) [mRef.mRefs#(3)];
attribute :>> mRef : SphericalSpatial3dCoordinateFrame[1];
}
attribute sphericalPosition3dVector : SphericalPosition3dVector :> position3dVector;
attribute def PlanetaryPosition3dVector :> Position3dVector {
attribute <lat> latitude : AngularMeasureUnit = num#(1) [mRef.mRefs#(1)];
attribute <long> longitude : AngularMeasureUnit = num#(2) [mRef.mRefs#(2)];
attribute <h> altitude : LengthValue = num#(3) [mRef.mRefs#(3)];
attribute :>> mRef : PlanetarySpatial3dCoordinateFrame[1];
}
attribute planetaryPosition3dVector : PlanetaryPosition3dVector :> position3dVector;
/* ISO-80000-3 item 3-1.11 displacement */
abstract attribute def Displacement3dVector :> '3dVectorQuantityValue' {
doc
/*
* source: item 3-1.11 displacement
* symbol(s): `vec(Δr)`
* application domain: generic
* name: Displacement
* quantity dimension: L^1
* measurement unit(s): m
* tensor order: 1
* definition: vector (ISO 80000-2) quantity between any two points in space
* remarks: Displacement vectors are so-called free vectors, i.e. their magnitude (ISO 80000-2) and direction do not depend on a particular coordinate system. The magnitude of this vector is also called displacement.
*/
attribute :>> isBound = false;
attribute :>> mRef: Spatial3dCoordinateFrame[1];
}
attribute displacement3dVector: Displacement3dVector :> vectorQuantities;
attribute def CartesianDisplacement3dVector :> Displacement3dVector {
attribute x : LengthValue = num#(1) [mRef.mRefs#(1)];
attribute y : LengthValue = num#(2) [mRef.mRefs#(2)];
attribute z : LengthValue = num#(3) [mRef.mRefs#(3)];
attribute :>> mRef: CartesianSpatial3dCoordinateFrame[1];
}
attribute cartesianDisplacement3dVector: CartesianDisplacement3dVector :> displacement3dVector;
attribute def CylindricalDisplacement3dVector :> Displacement3dVector {
attribute <'ρ'> radialDistance : LengthValue = num#(1) [mRef.mRefs#(1)];
attribute <'φ'> azimuth : AngularMeasureUnit = num#(2) [mRef.mRefs#(2)];
attribute <h> height : LengthValue = num#(3) [mRef.mRefs#(3)];
attribute :>> mRef: CylindricalSpatial3dCoordinateFrame[1];
}
attribute cylindricalDisplacement3dVector: CylindricalDisplacement3dVector :> displacement3dVector;
attribute def SphericalDisplacement3dVector :> Displacement3dVector {
attribute <r> radialDistance : LengthValue = num#(1) [mRef.mRefs#(1)];
attribute <'θ'> inclination : AngularMeasureUnit = num#(2) [mRef.mRefs#(2)];
attribute <'φ'> azimuth : AngularMeasureUnit = num#(3) [mRef.mRefs#(3)];
attribute :>> mRef: SphericalSpatial3dCoordinateFrame[1];
}
attribute sphericalDisplacement3dVector: SphericalDisplacement3dVector :> displacement3dVector;
/* ISO-80000-3 item 3-1.12 radius of curvature */
attribute radiusOfCurvature: LengthValue :> scalarQuantities {
doc
/*
* source: item 3-1.12 radius of curvature
* symbol(s): `ρ`
* application domain: generic
* name: RadiusOfCurvature (specializes Length)
* quantity dimension: L^1
* measurement unit(s): m
* tensor order: 0
* definition: radius (item 3-1.6) of the osculating circle of a planar curve at a particular point of the curve
* remarks: The radius of curvature is only defined for curves which are at least twice continuously differentiable.
*/
}
/* ISO-80000-3 item 3-2 curvature */
attribute def CurvatureValue :> ScalarQuantityValue {
doc
/*
* source: item 3-2 curvature
* symbol(s): `κ`
* application domain: generic
* name: Curvature
* quantity dimension: L^-1
* measurement unit(s): m^-1
* tensor order: 0
* definition: inverse of the radius of curvature (item 3-1.12)
* remarks: The curvature is given by: `κ = 1/ρ` where `ρ` denotes the radius of curvature (item 3-1.12).
*/
attribute :>> num: Real;
attribute :>> mRef: CurvatureUnit[1];
}
attribute curvature: CurvatureValue[*] nonunique :> scalarQuantities;
attribute def CurvatureUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; }
}
/* ISO-80000-3 item 3-3 area */
attribute def AreaValue :> ScalarQuantityValue {
doc
/*
* source: item 3-3 area
* symbol(s): `A`, `S`
* application domain: generic
* name: Area
* quantity dimension: L^2
* measurement unit(s): m^2
* tensor order: 0
* definition: extent of a two-dimensional geometrical shape
* remarks: The surface element at a given point of a surface is given by: `dA = g du dv` where `u` and `v` denote the Gaussian surface coordinates and `g` denotes the determinant of the metric tensor (ISO 80000-2) at the particular point. The symbol `dσ` is also used for the surface element.
*/
attribute :>> num: Real;
attribute :>> mRef: AreaUnit[1];
}
attribute area: AreaValue[*] nonunique :> scalarQuantities;
attribute def AreaUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; }
}
/* ISO-80000-3 item 3-4 volume */
attribute def VolumeValue :> ScalarQuantityValue {
doc
/*
* source: item 3-4 volume
* symbol(s): `V`, `(S)`
* application domain: generic
* name: Volume
* quantity dimension: L^3
* measurement unit(s): m^3
* tensor order: 0
* definition: extent of a three-dimensional geometrical shape
* remarks: The volume element in Euclidean space is given by: `dV = dx dy dz` where `dx`, `dy`, and `dz` denote the differentials of the Cartesian coordinates (ISO 80000-2). The symbol `dτ` is also used for the volume element.
*/
attribute :>> num: Real;
attribute :>> mRef: VolumeUnit[1];
}
attribute volume: VolumeValue[*] nonunique :> scalarQuantities;
attribute def VolumeUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 3; }
attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; }
}
/* ISO-80000-3 item 3-5 angular measure, plane angle */
attribute def AngularMeasureValue :> ScalarQuantityValue {
doc
/*
* source: item 3-5 angular measure, plane angle
* symbol(s): `α`, `β`, `γ`
* application domain: generic
* name: AngularMeasure
* quantity dimension: 1
* measurement unit(s): rad, 1
* tensor order: 0
* definition: measure of a geometric figure, called plane angle, formed by two rays, called the sides of the plane angle, emanating from a common point, called the vertex of the plane angle
* remarks: The angular measure is given by: `α = s/r` where `s` denotes the arc length (item 3-1.7) of the included arc of a circle, centred at the vertex of the plane angle, and `r` the radius (item 3-1.6) of that circle. Other symbols are also used.
*/
attribute :>> num: Real;
attribute :>> mRef: AngularMeasureUnit[1];
}
attribute angularMeasure: AngularMeasureValue[*] nonunique :> scalarQuantities;
attribute def AngularMeasureUnit :> DimensionOneUnit {
}
alias PlaneAngleUnit for AngularMeasureUnit;
alias PlaneAngleValue for AngularMeasureValue;
alias planeAngle for angularMeasure;
/* ISO-80000-3 item 3-6 rotational displacement, angular displacement */
attribute rotationalDisplacement: AngularMeasureValue :> scalarQuantities {
doc
/*
* source: item 3-6 rotational displacement, angular displacement
* symbol(s): `ϑ`, `φ`
* application domain: generic
* name: RotationalDisplacement (specializes AngularMeasure)
* quantity dimension: 1
* measurement unit(s): rad, 1
* tensor order: 0
* definition: quotient of the traversed circular path length (item 3-1.7) of a point in space during a rotation and its distance (item 3-1.8) from the axis or centre of rotation
* remarks: The rotational displacement is given by: `φ = s/r` where `s` denotes the traversed path length (item 3-1.7) along the periphery of a circle, centred at the vertex of the plane angle, and `r` the radius (item 3-1.6) of that circle. The rotational displacement is signed. The sign denotes the direction of rotation and is chosen by convention. Other symbols are also used.
*/
}
alias angularDisplacement for rotationalDisplacement;
/* ISO-80000-3 item 3-7 phase angle */
attribute phaseAngle: AngularMeasureValue :> scalarQuantities {
doc
/*
* source: item 3-7 phase angle
* symbol(s): `φ`, `ϕ`
* application domain: generic
* name: PhaseAngle (specializes AngularMeasure)
* quantity dimension: 1
* measurement unit(s): rad, 1
* tensor order: 0
* definition: angular measure (item 3-5) between the positive real axis and the radius of the polar representation of the complex number in the complex plane
* remarks: The phase angle (often imprecisely referred to as the "phase") is the argument of a complex number. Other symbols are also used.
*/
}
/* ISO-80000-3 item 3-8 solid angular measure */
attribute def SolidAngularMeasureValue :> ScalarQuantityValue {
doc
/*
* source: item 3-8 solid angular measure
* symbol(s): `Ω`
* application domain: generic
* name: SolidAngularMeasure
* quantity dimension: 1
* measurement unit(s): sr, 1
* tensor order: 0
* definition: measure of a conical geometric figure, called solid angle, formed by all rays, originating from a common point, called the vertex of the solid angle, and passing through the points of a closed, non-self-intersecting curve in space considered as the border of a surface
* remarks: The differential solid angular measure expressed in spherical coordinates (ISO 80000-2) is given by: `dΩ = A/r^2 * sin(θ * dθ * dφ)` where `A` is area, `r` is radius, `θ` and `φ` are spherical coordinates.
*/
attribute :>> num: Real;
attribute :>> mRef: SolidAngularMeasureUnit[1];
}
attribute solidAngularMeasure: SolidAngularMeasureValue[*] nonunique :> scalarQuantities;
attribute def SolidAngularMeasureUnit :> DimensionOneUnit {
}
/* ISO-80000-3 item 3-9 duration, time */
/* See package ISQBase for the declarations of DurationValue and DurationUnit */
alias TimeUnit for DurationUnit;
alias TimeValue for DurationValue;
alias time for duration;
/* ISO-80000-3 item 3-10.1 velocity */
attribute def CartesianVelocity3dVector :> '3dVectorQuantityValue' {
doc
/*
* source: item 3-10.1 velocity
* symbol(s): `vec(v)`, `u,v,w`
* application domain: generic
* name: Velocity
* quantity dimension: L^1*T^-1
* measurement unit(s): m/s, m*s^-1
* tensor order: 1
* definition: vector (ISO 80000-2) quantity giving the rate of change of a position vector (item 3-1.10)
* remarks: The velocity vector is given by: `vec(v) = (d vec(r)) / (dt)` where `vec(r)` denotes the position vector (item 3-1.10) and `t` the duration (item 3-9). When the general symbol `vec(v)` is not used for the velocity, the symbols `u`, `v`, `w` may be used for the components (ISO 80000-2) of the velocity.
*/
attribute :>> isBound = false;
attribute :>> mRef: CartesianVelocity3dCoordinateFrame[1];
}
attribute cartesianVelocity3dVector: CartesianVelocity3dVector :> vectorQuantities;
attribute def CartesianVelocity3dCoordinateFrame :> '3dCoordinateFrame' {
attribute :>> isBound = false;
attribute :>> isOrthogonal = true;
attribute :>> mRefs: SpeedUnit[3];
}
/* ISO-80000-3 item 3-10.2 speed */
attribute def SpeedValue :> ScalarQuantityValue {
doc
/*
* source: item 3-10.2 speed
* symbol(s): `v`
* application domain: generic
* name: Speed
* quantity dimension: L^1*T^-1
* measurement unit(s): m/s, m*s^-1
* tensor order: 0
* definition: magnitude (ISO 80000-2) of the velocity (item 3-10.1)
* remarks: None.
*/
attribute :>> num: Real;
attribute :>> mRef: SpeedUnit[1];
}
attribute speed: SpeedValue[*] nonunique :> scalarQuantities;
attribute def SpeedUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF); }
}
/* ISO-80000-3 item 3-11 acceleration */
attribute def AccelerationValue :> ScalarQuantityValue {
doc
/*
* source: item 3-11 acceleration (magnitude)
* symbol(s): `a`
* application domain: generic
* name: Acceleration
* quantity dimension: L^1*T^-2
* measurement unit(s): m*s^-2
* tensor order: 0
* definition: vector (ISO 80000-2) quantity giving the rate of change of velocity (item 3-10)
* remarks: The acceleration vector is given by: `vec(a) = (d vec(v))/(dt)` where `vec(v)` denotes the velocity (item 3-10.1) and `t` the duration (item 3-9). The magnitude (ISO 80000-2) of the acceleration of free fall is usually denoted by `g`.
*/
attribute :>> num: Real;
attribute :>> mRef: AccelerationUnit[1];
}
attribute acceleration: AccelerationValue[*] nonunique :> scalarQuantities;
attribute def AccelerationUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF); }
}
attribute def CartesianAcceleration3dVector :> '3dVectorQuantityValue' {
doc
/*
* source: item 3-11 acceleration (vector)
* symbol(s): `vec(a)`
* application domain: generic
* name: Acceleration
* quantity dimension: L^1*T^-2
* measurement unit(s): m*s^-2
* tensor order: 1
* definition: vector (ISO 80000-2) quantity giving the rate of change of velocity (item 3-10)
* remarks: The acceleration vector is given by: `vec(a) = (d vec(v))/(dt)` where `vec(v)` denotes the velocity (item 3-10.1) and `t` the duration (item 3-9). The magnitude (ISO 80000-2) of the acceleration of free fall is usually denoted by `g`.
*/
attribute :>> isBound = false;
attribute :>> mRef: CartesianAcceleration3dCoordinateFrame[1];
}
attribute cartesianAcceleration3dVector: CartesianAcceleration3dVector :> vectorQuantities;
attribute def CartesianAcceleration3dCoordinateFrame :> VectorMeasurementReference {
attribute :>> dimensions = 3;
attribute :>> isBound = false;
attribute :>> isOrthogonal = true;
attribute :>> mRefs: AccelerationUnit[3];
}
/* ISO-80000-3 item 3-12 angular velocity */
attribute def AngularVelocityValue :> ScalarQuantityValue {
doc
/*
* source: item 3-12 angular velocity (magnitude)
* symbol(s): `ω`
* application domain: generic
* name: AngularVelocity
* quantity dimension: T^-1
* measurement unit(s): rad*s^-1, s^-1
* tensor order: 0
* definition: vector (ISO 80000-2) quantity giving the rate of change of the rotational displacement (item 3-6) as its magnitude (ISO 80000-2) and with a direction equal to the direction of the axis of rotation
* remarks: The angular velocity vector is given by: `vec(ω) = (d φ) / (dt) vec(u)` where `φ` denotes the angular displacement (item 3-6), `t` the duration (item 3-9), and `vec(u)` the unit vector (ISO 80000-2) along the axis of rotation in the direction for which the rotation corresponds to a right-hand spiral.
*/
attribute :>> num: Real;
attribute :>> mRef: AngularVelocityUnit[1];
}
attribute angularVelocity: AngularVelocityValue[*] nonunique :> scalarQuantities;
attribute def AngularVelocityUnit :> DerivedUnit {
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = durationPF; }
}
attribute def Cartesian3dAngularVelocityVector :> VectorQuantityValue {
doc
/*
* source: item 3-12 angular velocity (vector)
* symbol(s): `vec(ω)`
* application domain: generic
* name: AngularVelocity
* quantity dimension: T^-1
* measurement unit(s): rad*s^-1, s^-1
* tensor order: 1
* definition: vector (ISO 80000-2) quantity giving the rate of change of the rotational displacement (item 3-6) as its magnitude (ISO 80000-2) and with a direction equal to the direction of the axis of rotation
* remarks: The angular velocity vector is given by: `vec(ω) = (d φ) / (dt) vec(u)` where `φ` denotes the angular displacement (item 3-6), `t` the duration (item 3-9), and `vec(u)` the unit vector (ISO 80000-2) along the axis of rotation in the direction for which the rotation corresponds to a right-hand spiral.
*/
attribute :>> isBound = false;
attribute :>> num: Real[3];
attribute :>> mRef: Cartesian3dAngularVelocityCoordinateFrame[1];
}
attribute angularVelocityVector: Cartesian3dAngularVelocityVector :> vectorQuantities;
attribute def Cartesian3dAngularVelocityCoordinateFrame :> VectorMeasurementReference {
attribute :>> dimensions = 3;
attribute :>> isBound = false;
attribute :>> isOrthogonal = true;
attribute :>> mRefs: AngularVelocityUnit[3];
}
/* ISO-80000-3 item 3-13 angular acceleration */
attribute def AngularAccelerationValue :> ScalarQuantityValue {
doc
/*
* source: item 3-13 angular acceleration (magnitude)
* symbol(s): `α`
* application domain: generic
* name: AngularAcceleration
* quantity dimension: T^-2
* measurement unit(s): rad*s^-2, s^-2
* tensor order: 0
* definition: vector (ISO 80000-2) quantity giving the rate of change of angular velocity (item 3-12)
* remarks: The angular acceleration vector is given by: `vec α = (d vec(ω))/(dt)` Where `vec(ω)` denotes the angular velocity (item 3-12) and `t` the duration (item 3-9).
*/
attribute :>> num: Real;
attribute :>> mRef: AngularAccelerationUnit[1];
}
attribute angularAcceleration: AngularAccelerationValue[*] nonunique :> scalarQuantities;
attribute def AngularAccelerationUnit :> DerivedUnit {
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
attribute :>> quantityDimension { :>> quantityPowerFactors = durationPF; }
}
attribute def Cartesian3dAngularAccelerationVector :> VectorQuantityValue {
doc
/*
* source: item 3-13 angular acceleration (vector)
* symbol(s): `vec(α)`
* application domain: generic
* name: AngularAcceleration
* quantity dimension: T^-2
* measurement unit(s): rad*s^-2, s^-2
* tensor order: 1
* definition: vector (ISO 80000-2) quantity giving the rate of change of angular velocity (item 3-12)
* remarks: The angular acceleration vector is given by: `vec α = (d vec(ω))/(dt)` Where `vec(ω)` denotes the angular velocity (item 3-12) and `t` the duration (item 3-9).
*/
attribute :>> isBound = false;
attribute :>> num: Real[3];
attribute :>> mRef: Cartesian3dAngularAccelerationCoordinateFrame[1];
}
attribute angularAccelerationVector: Cartesian3dAngularAccelerationVector :> vectorQuantities;
attribute def Cartesian3dAngularAccelerationCoordinateFrame :> VectorMeasurementReference {
attribute :>> dimensions = 3;
attribute :>> isBound = false;
attribute :>> isOrthogonal = true;
attribute :>> mRefs: AngularAccelerationUnit[3];
}
/* ISO-80000-3 item 3-14 period duration, period */
attribute periodDuration: DurationValue :> scalarQuantities {
doc
/*
* source: item 3-14 period duration, period
* symbol(s): `T`
* application domain: generic
* name: PeriodDuration (specializes Duration)
* quantity dimension: T^1
* measurement unit(s): s
* tensor order: 0
* definition: duration (item 3-9) of one cycle of a periodic event
* remarks: A periodic event is an event that occurs regularly with a fixed time interval.
*/
}
alias period for periodDuration;
/* ISO-80000-3 item 3-15 time constant */
attribute timeConstant: DurationValue :> scalarQuantities {
doc
/*
* source: item 3-15 time constant
* symbol(s): `τ`, `T`
* application domain: generic
* name: TimeConstant (specializes Duration)
* quantity dimension: T^1
* measurement unit(s): s
* tensor order: 0
* definition: parameter characterizing the response to a step input of a first-order, linear time-invariant system
* remarks: If a quantity is a function of the duration (item 3-9) expressed by: `F(t) prop e^(-t/τ)` where `t` denotes the duration (item 3-9), then `τ` denotes the time constant. Here the time constant `τ` applies to an exponentially decaying quantity.
*/
}
/* ISO-80000-3 item 3-16 rotation */
attribute rotation: CountValue :> scalarQuantities {
doc
/*
* source: item 3-16 rotation
* symbol(s): `N`
* application domain: generic
* name: Rotation (specializes Count)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: number of revolutions
* remarks: `N` is the number (not necessarily an integer) of revolutions, for example, of a rotating body about a given axis. Its value is given by: `N = φ/(2 π)` where `φ` denotes the measure of rotational displacement (item 3-6).
*/
}
/* ISO-80000-3 item 3-17.1 frequency */
attribute def FrequencyValue :> ScalarQuantityValue {
doc
/*
* source: item 3-17.1 frequency
* symbol(s): `f`, `ν`
* application domain: generic
* name: Frequency
* quantity dimension: T^-1
* measurement unit(s): Hz, s^-1
* tensor order: 0
* definition: inverse of period duration (item 3-14)
* remarks: The frequency is given by: `f = 1/T` where `T` denotes the period duration (item 3-14).
*/
attribute :>> num: Real;
attribute :>> mRef: FrequencyUnit[1];
}
attribute frequency: FrequencyValue[*] nonunique :> scalarQuantities;
attribute def FrequencyUnit :> DerivedUnit {
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = durationPF; }
}
/* ISO-80000-3 item 3-17.2 rotational frequency */
attribute rotationalFrequency: FrequencyValue :> scalarQuantities {
doc
/*
* source: item 3-17.2 rotational frequency
* symbol(s): `n`
* application domain: generic
* name: RotationalFrequency (specializes Frequency)
* quantity dimension: T^-1
* measurement unit(s): s^-1
* tensor order: 0
* definition: duration (item 3-9) of one cycle of a periodic event
* remarks: The rotational frequency is given by: `n = (dN) / (dt)` where `N` denotes the rotation (item 3-16) and `t` is the duration (item 3-9).
*/
}
/* ISO-80000-3 item 3-18 angular frequency */
attribute def AngularFrequencyValue :> ScalarQuantityValue {
doc
/*
* source: item 3-18 angular frequency
* symbol(s): `ω`
* application domain: generic
* name: AngularFrequency
* quantity dimension: T^-1
* measurement unit(s): rad*s^-1, s^-1
* tensor order: 0
* definition: rate of change of the phase angle (item 3-7)
* remarks: The angular frequency is given by: `ω = 2 π f` where `f` denotes the frequency (item 3-17.1).
*/
attribute :>> num: Real;
attribute :>> mRef: AngularFrequencyUnit[1];
}
attribute angularFrequency: AngularFrequencyValue[*] nonunique :> scalarQuantities;
attribute def AngularFrequencyUnit :> DerivedUnit {
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = durationPF; }
}
/* ISO-80000-3 item 3-19 wavelength */
attribute wavelength: LengthValue :> scalarQuantities {
doc
/*
* source: item 3-19 wavelength
* symbol(s): `λ`
* application domain: generic
* name: Wavelength (specializes Length)
* quantity dimension: L^1
* measurement unit(s): m
* tensor order: 0
* definition: length (item 3-1.1) of the repetition interval of a wave
* remarks: None.
*/
}
/* ISO-80000-3 item 3-20 repetency, wavenumber */
attribute def RepetencyValue :> ScalarQuantityValue {
doc
/*
* source: item 3-20 repetency, wavenumber
* symbol(s): `σ`, `ṽ`
* application domain: generic
* name: Repetency
* quantity dimension: L^-1
* measurement unit(s): m^-1
* tensor order: 0
* definition: inverse of the wavelength (item 3-19)
* remarks: The repetency is given by: `σ = 1 / λ` where `λ` denotes the wavelength (item 3-19).
*/
attribute :>> num: Real;
attribute :>> mRef: RepetencyUnit[1];
}
attribute repetency: RepetencyValue[*] nonunique :> scalarQuantities;
attribute def RepetencyUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; }
}
alias WavenumberUnit for RepetencyUnit;
alias WavenumberValue for RepetencyValue;
alias wavenumber for repetency;
/* ISO-80000-3 item 3-21 wave vector */
attribute def Cartesian3dWaveVector :> VectorQuantityValue {
doc
/*
* source: item 3-21 wave vector
* symbol(s): `vec(k)`
* application domain: generic
* name: WaveVector
* quantity dimension: L^-1
* measurement unit(s): m^-1
* tensor order: 1
* definition: vector normal to the surfaces of constant phase angle (item 3-7) of a wave, with the magnitude (ISO 80000-2) of repetency (item 3-20)
* remarks: None.
*/
attribute :>> isBound = false;
attribute :>> num: Real[3];
attribute :>> mRef: Cartesian3dWaveCoordinateFrame[1];
}
attribute waveVector: Cartesian3dWaveVector :> vectorQuantities;
attribute def Cartesian3dWaveCoordinateFrame :> VectorMeasurementReference {
attribute :>> dimensions = 3;
attribute :>> isBound = false;
attribute :>> isOrthogonal = true;
attribute :>> mRefs: RepetencyUnit[3];
}
/* ISO-80000-3 item 3-22 angular repetency, angular wavenumber */
attribute def AngularRepetencyValue :> ScalarQuantityValue {
doc
/*
* source: item 3-22 angular repetency, angular wavenumber
* symbol(s): `k`
* application domain: generic
* name: AngularRepetency
* quantity dimension: L^-1
* measurement unit(s): m^-1
* tensor order: 0
* definition: magnitude (ISO 80000-2) of the wave vector (item 3-21)
* remarks: The angular repetency is given by: `κ = (2 π)/λ` where `λ` denotes the wavelength (item 3-19).
*/
attribute :>> num: Real;
attribute :>> mRef: AngularRepetencyUnit[1];
}
attribute angularRepetency: AngularRepetencyValue[*] nonunique :> scalarQuantities;
attribute def AngularRepetencyUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; }
}
alias AngularWavenumberUnit for AngularRepetencyUnit;
alias AngularWavenumberValue for AngularRepetencyValue;
alias angularWavenumber for angularRepetency;
/* ISO-80000-3 item 3-23.1 phase velocity, phase speed */
attribute def PhaseVelocityValue :> ScalarQuantityValue {
doc
/*
* source: item 3-23.1 phase velocity, phase speed
* symbol(s): `c`, `v`, `(ν)`, `c_φ`, `v_φ`, `(ν_φ)`
* application domain: generic
* name: PhaseVelocity
* quantity dimension: L^1*T^-1
* measurement unit(s): m*s^-1
* tensor order: 0
* definition: speed with which the phase angle (item 3-7) of a wave propagates in space
* remarks: The phase velocity is given by: `c = ω/κ` where `ω` denotes the angular frequency (item 3-18) and `k` the angular repetency (item 3-22). If phase velocities of electromagnetic waves and other phase velocities are both involved, then `c` should be used for the former and `υ` for the latter. Phase velocity can also be written as `c = λ f`.
*/
attribute :>> num: Real;
attribute :>> mRef: PhaseVelocityUnit[1];
}
attribute phaseVelocity: PhaseVelocityValue[*] nonunique :> scalarQuantities;
attribute def PhaseVelocityUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF); }
}
alias PhaseSpeedUnit for PhaseVelocityUnit;
alias PhaseSpeedValue for PhaseVelocityValue;
alias phaseSpeed for phaseVelocity;
/* ISO-80000-3 item 3-23.2 group velocity, group speed */
attribute groupVelocity: SpeedValue :> scalarQuantities {
doc
/*
* source: item 3-23.2 group velocity, group speed
* symbol(s): `c_g`, `v_g`, `(ν_g)`
* application domain: generic
* name: GroupVelocity (specializes Speed)
* quantity dimension: L^1*T^-1
* measurement unit(s): m*s^-1
* tensor order: 0
* definition: speed with which the envelope of a wave propagates in space
* remarks: The group velocity is given by: `c_g = (d ω)/ (dk)` where `ω` denotes the angular frequency (item 3-18) and `k` the angular repetency (item 3-22).
*/
}
alias groupSpeed for groupVelocity;
/* ISO-80000-3 item 3-24 damping coefficient */
attribute def DampingCoefficientValue :> ScalarQuantityValue {
doc
/*
* source: item 3-24 damping coefficient
* symbol(s): `δ`
* application domain: generic
* name: DampingCoefficient
* quantity dimension: T^-1
* measurement unit(s): s^-1
* tensor order: 0
* definition: inverse of the time constant (item 3-15) of an exponentially varying quantity
* remarks: None.
*/
attribute :>> num: Real;
attribute :>> mRef: DampingCoefficientUnit[1];
}
attribute dampingCoefficient: DampingCoefficientValue[*] nonunique :> scalarQuantities;
attribute def DampingCoefficientUnit :> DerivedUnit {
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = durationPF; }
}
/* ISO-80000-3 item 3-25 logarithmic decrement */
attribute def LogarithmicDecrementValue :> DimensionOneValue {
doc
/*
* source: item 3-25 logarithmic decrement
* symbol(s): `Λ`
* application domain: generic
* name: LogarithmicDecrement (specializes DimensionOneQuantity)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: product of damping coefficient (item 3-24) and period duration (item 3-14)
* remarks: None.
*/
}
attribute logarithmicDecrement: LogarithmicDecrementValue :> scalarQuantities;
/* ISO-80000-3 item 3-26.1 attenuation, extinction */
attribute def AttenuationValue :> ScalarQuantityValue {
doc
/*
* source: item 3-26.1 attenuation, extinction
* symbol(s): `α`
* application domain: generic
* name: Attenuation
* quantity dimension: L^-1
* measurement unit(s): m^-1
* tensor order: 0
* definition: gradual decrease in magnitude (ISO 80000-2) of any kind of flux through a medium
* remarks: If a quantity is a function of distance (item 3-1.8) expressed by: `f(x) prop e^(-α x)` where `x` denotes distance (item 3-1.8), then `α` denotes attenuation. The inverse of attenuation is called attenuation length.
*/
attribute :>> num: Real;
attribute :>> mRef: AttenuationUnit[1];
}
attribute attenuation: AttenuationValue[*] nonunique :> scalarQuantities;
attribute def AttenuationUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; }
}
alias ExtinctionUnit for AttenuationUnit;
alias ExtinctionValue for AttenuationValue;
alias extinction for attenuation;
/* ISO-80000-3 item 3-26.2 phase coefficient */
attribute def PhaseCoefficientValue :> ScalarQuantityValue {
doc
/*
* source: item 3-26.2 phase coefficient
* symbol(s): `β`
* application domain: generic
* name: PhaseCoefficient
* quantity dimension: L^-1
* measurement unit(s): rad/m, m^-1
* tensor order: 0
* definition: change of phase angle (item 3-7) with the length (item 3-1.1) along the path travelled by a plane wave
* remarks: If a quantity is a function of distance expressed by: `f(x) prop cos(β(x-x_0))` where `x` denotes distance (item 3-1.8), then `β` denotes the phase coefficient.
*/
attribute :>> num: Real;
attribute :>> mRef: PhaseCoefficientUnit[1];
}
attribute phaseCoefficient: PhaseCoefficientValue[*] nonunique :> scalarQuantities;
attribute def PhaseCoefficientUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; }
}
/* ISO-80000-3 item 3-26.3 propagation coefficient */
attribute def PropagationCoefficientValue :> ScalarQuantityValue {
doc
/*
* source: item 3-26.3 propagation coefficient
* symbol(s): `γ`
* application domain: generic
* name: PropagationCoefficient
* quantity dimension: L^-1
* measurement unit(s): m^-1
* tensor order: 0
* definition: measure of the change of amplitude and phase angle (item 3-7) of a plane wave propagating in a given direction
* remarks: The propagation coefficient is given by: `γ = α + iβ` where `α` denotes attenuation (item 3-26.1) and `β` the phase coefficient (item 3-26.2) of a plane wave.
*/
attribute :>> num: Real;
attribute :>> mRef: PropagationCoefficientUnit[1];
}
attribute propagationCoefficient: PropagationCoefficientValue[*] nonunique :> scalarQuantities;
attribute def PropagationCoefficientUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; }
}
}
|