File size: 64,648 Bytes
5070096 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 |
standard library package ISQThermodynamics {
doc
/*
* International System of Quantities and Units
* Generated on 2022-08-07T14:44:27Z from standard ISO-80000-5:2019 "Thermodynamics"
* see also https://www.iso.org/obp/ui/#iso:std:iso:80000:-5:ed-2:v1:en
*
* Note 1: In documentation comments, AsciiMath notation (see http://asciimath.org/) is used for mathematical concepts,
* with Greek letters in Unicode encoding. In running text, AsciiMath is placed between backticks.
* Note 2: For vector and tensor quantities currently the unit and quantity value type for their (scalar) magnitude is
* defined, as well as their typical Cartesian 3d VectorMeasurementReference (i.e. coordinate system)
* or TensorMeasurementReference.
*/
private import ScalarValues::Real;
private import Quantities::*;
private import MeasurementReferences::*;
private import ISQBase::*;
/* Quantity definitions referenced from other ISQ packages */
/* ISO-80000-5 item 5-1 thermodynamic temperature, temperature */
/* See package ISQBase for the declarations of ThermodynamicTemperatureValue and ThermodynamicTemperatureUnit */
alias TemperatureUnit for ThermodynamicTemperatureUnit;
alias TemperatureValue for ThermodynamicTemperatureValue;
alias temperature for thermodynamicTemperature;
/* ISO-80000-5 item 5-2 Celsius temperature */
attribute def CelsiusTemperatureValue :> ScalarQuantityValue {
doc
/*
* source: item 5-2 Celsius temperature
* symbol(s): `t`, `θ`
* application domain: generic
* name: CelsiusTemperature
* quantity dimension: Θ^1
* measurement unit(s): °C
* tensor order: 0
* definition: temperature difference from the thermodynamic temperature of the ice point is called the Celsius temperature t, which is defined by the quantity equation: `t = T - T_0` where `T` is thermodynamic temperature (item 5-1) and `T_0 = 273,15 K`
* remarks: The unit degree Celsius is a special name for the kelvin for use in stating values of Celsius temperature. The unit degree Celsius is by definition equal in magnitude to the kelvin. A difference or interval of temperature may be expressed in kelvin or in degrees Celsius. The thermodynamic temperature `T_0` is 0,01 K below the thermodynamic temperature of the triple point of water. The symbol °C for the degree Celsius shall be preceded by a space (see ISO 80000-1). Prefixes are not allowed in combination with the unit °C.
*/
attribute :>> num: Real;
attribute :>> mRef: CelsiusTemperatureUnit[1];
}
attribute celsiusTemperature: CelsiusTemperatureValue[*] nonunique :> scalarQuantities;
attribute def CelsiusTemperatureUnit :> DerivedUnit {
private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = 1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = thermodynamicTemperaturePF; }
}
/* ISO-80000-5 item 5-3.1 linear expansion coefficient */
attribute def LinearExpansionCoefficientValue :> ScalarQuantityValue {
doc
/*
* source: item 5-3.1 linear expansion coefficient
* symbol(s): `α_l`
* application domain: generic
* name: LinearExpansionCoefficient
* quantity dimension: Θ^-1
* measurement unit(s): K^-1
* tensor order: 0
* definition: relative change of length with temperature: `α_l = 1/l * (dl)/(dT)` where l is length (ISO 80000-3) and `T` is thermodynamic temperature (item 5-1)
* remarks: The subscripts in the symbols may be omitted when there is no risk of confusion.
*/
attribute :>> num: Real;
attribute :>> mRef: LinearExpansionCoefficientUnit[1];
}
attribute linearExpansionCoefficient: LinearExpansionCoefficientValue[*] nonunique :> scalarQuantities;
attribute def LinearExpansionCoefficientUnit :> DerivedUnit {
private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = thermodynamicTemperaturePF; }
}
/* ISO-80000-5 item 5-3.2 cubic expansion coefficient */
attribute def CubicExpansionCoefficientValue :> ScalarQuantityValue {
doc
/*
* source: item 5-3.2 cubic expansion coefficient
* symbol(s): `α_V`, `γ`
* application domain: generic
* name: CubicExpansionCoefficient
* quantity dimension: Θ^-1
* measurement unit(s): K^-1
* tensor order: 0
* definition: relative change of volume with temperature: `α_V = 1/V * (dV)/(dT)` where `V` is volume (ISO 80000-3) and `T` is thermodynamic temperature (item 5-1)
* remarks: Also called volumetric expansion coefficient. The subscripts in the symbols may be omitted when there is no risk of confusion.
*/
attribute :>> num: Real;
attribute :>> mRef: CubicExpansionCoefficientUnit[1];
}
attribute cubicExpansionCoefficient: CubicExpansionCoefficientValue[*] nonunique :> scalarQuantities;
attribute def CubicExpansionCoefficientUnit :> DerivedUnit {
private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = thermodynamicTemperaturePF; }
}
/* ISO-80000-5 item 5-3.3 relative pressure coefficient */
attribute def RelativePressureCoefficientValue :> ScalarQuantityValue {
doc
/*
* source: item 5-3.3 relative pressure coefficient
* symbol(s): `α_p`
* application domain: generic
* name: RelativePressureCoefficient
* quantity dimension: Θ^-1
* measurement unit(s): K^-1
* tensor order: 0
* definition: relative change of pressure with temperature at constant volume: `α_p = 1/p * ((partial p)/(partial T))_V` where `p` is pressure (ISO 80000-4), `T` is thermodynamic temperature (item 5-1), and `V` is volume (ISO 80000-3)
* remarks: The subscripts in the symbols may be omitted when there is no risk of confusion.
*/
attribute :>> num: Real;
attribute :>> mRef: RelativePressureCoefficientUnit[1];
}
attribute relativePressureCoefficient: RelativePressureCoefficientValue[*] nonunique :> scalarQuantities;
attribute def RelativePressureCoefficientUnit :> DerivedUnit {
private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = thermodynamicTemperaturePF; }
}
/* ISO-80000-5 item 5-4 pressure coefficient */
attribute def PressureCoefficientValue :> ScalarQuantityValue {
doc
/*
* source: item 5-4 pressure coefficient
* symbol(s): `β`
* application domain: generic
* name: PressureCoefficient
* quantity dimension: L^-1*M^1*T^-2*Θ^-1
* measurement unit(s): Pa/K, kg*m^-1*s^-2*K^-1
* tensor order: 0
* definition: change of pressure with temperature at constant volume: `β = ((partial p)/(partial T))_V` where `p` is pressure (ISO 80000-4), `T` is thermodynamic temperature (item 5-1), and `V` is volume (ISO 80000-3)
* remarks: None.
*/
attribute :>> num: Real;
attribute :>> mRef: PressureCoefficientUnit[1];
}
attribute pressureCoefficient: PressureCoefficientValue[*] nonunique :> scalarQuantities;
attribute def PressureCoefficientUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; }
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, thermodynamicTemperaturePF); }
}
/* ISO-80000-5 item 5-5.1 isothermal compressibility */
attribute def IsothermalCompressibilityValue :> ScalarQuantityValue {
doc
/*
* source: item 5-5.1 isothermal compressibility
* symbol(s): `ϰ_T`
* application domain: generic
* name: IsothermalCompressibility
* quantity dimension: L^1*M^-1*T^2
* measurement unit(s): Pa^-1, kg^-1*m*s^2
* tensor order: 0
* definition: negative relative change of volume with pressure at constant temperature: `ϰ_T = -1/V * ((partial V)/(partial p))_T` where `V` is volume (ISO 80000-3), `p` is pressure (ISO 80000-4), and `T` is thermodynamic temperature (item 5-1)
* remarks: The subscripts in the symbols may be omitted when there is no risk of confusion.
*/
attribute :>> num: Real;
attribute :>> mRef: IsothermalCompressibilityUnit[1];
}
attribute isothermalCompressibility: IsothermalCompressibilityValue[*] nonunique :> scalarQuantities;
attribute def IsothermalCompressibilityUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 1; }
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 2; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); }
}
/* ISO-80000-5 item 5-5.2 isentropic compressibility */
attribute def IsentropicCompressibilityValue :> ScalarQuantityValue {
doc
/*
* source: item 5-5.2 isentropic compressibility
* symbol(s): `ϰ_S`
* application domain: generic
* name: IsentropicCompressibility
* quantity dimension: L^1*M^-1*T^2
* measurement unit(s): Pa^-1, kg^-1*m*s^2
* tensor order: 0
* definition: negative relative change of volume with pressure at constant entropy: `ϰ_S = -1/V * ((partial V)/(partial p))_S` where `V` is volume (ISO 80000-3), `p` is pressure (ISO 80000-4), and `S` is entropy (item 5-18)
* remarks: The subscripts in the symbols may be omitted when there is no risk of confusion.
*/
attribute :>> num: Real;
attribute :>> mRef: IsentropicCompressibilityUnit[1];
}
attribute isentropicCompressibility: IsentropicCompressibilityValue[*] nonunique :> scalarQuantities;
attribute def IsentropicCompressibilityUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 1; }
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 2; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); }
}
/* ISO-80000-5 item 5-6.1 heat, amount of heat */
attribute heat: EnergyValue :> scalarQuantities {
doc
/*
* source: item 5-6.1 heat, amount of heat
* symbol(s): `Q`
* application domain: generic
* name: Heat (specializes Energy)
* quantity dimension: L^2*M^1*T^-2
* measurement unit(s): J, kg*m^2*s^-2
* tensor order: 0
* definition: difference between the increase in the internal energy (item 5-20.2) of a system and the work (ISO 80000-4) done on the system, provided that the amounts of substances within the system are not changed
* remarks: The heat transferred in an isothermal phase transformation should be expressed as the change in the appropriate state functions, e.g. `T ΔS`, where `T` is thermodynamic temperature (item 5-1) and `S` is entropy (item 5-18), or `ΔH`, where `H` is enthalpy (item 5-20.3). NOTE A supply of heat can correspond to an increase in thermodynamic temperature or to other effects, such as phase change or chemical processes; see item 5-6.2.
*/
}
alias amountOfHeat for heat;
/* ISO-80000-5 item 5-6.2 latent heat */
attribute latentHeat: EnergyValue :> scalarQuantities {
doc
/*
* source: item 5-6.2 latent heat
* symbol(s): `Q`
* application domain: generic
* name: LatentHeat (specializes Energy)
* quantity dimension: L^2*M^1*T^-2
* measurement unit(s): J, kg*m^2*s^-2
* tensor order: 0
* definition: energy released or absorbed by a system during a constant-temperature process
* remarks: Examples of latent heat are latent heat of fusion (melting) and latent heat of vaporization (boiling).
*/
}
/* ISO-80000-5 item 5-7 heat flow rate */
attribute def HeatFlowRateValue :> ScalarQuantityValue {
doc
/*
* source: item 5-7 heat flow rate
* symbol(s): `dot(Q)`
* application domain: generic
* name: HeatFlowRate
* quantity dimension: L^2*M^1*T^-3
* measurement unit(s): W, J/s, kg*m^2*s^-3
* tensor order: 0
* definition: time rate at which heat (item 5-6.1) crosses a given surface
* remarks: None.
*/
attribute :>> num: Real;
attribute :>> mRef: HeatFlowRateUnit[1];
}
attribute heatFlowRate: HeatFlowRateValue[*] nonunique :> scalarQuantities;
attribute def HeatFlowRateUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -3; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); }
}
/* ISO-80000-5 item 5-8 density of heat flow rate */
attribute def DensityOfHeatFlowRateValue :> ScalarQuantityValue {
doc
/*
* source: item 5-8 density of heat flow rate
* symbol(s): `q`, `φ`
* application domain: generic
* name: DensityOfHeatFlowRate
* quantity dimension: M^1*T^-3
* measurement unit(s): W/m^2, kg*s^-3
* tensor order: 0
* definition: quotient of heat flow rate and area: `q = dot Q / A` where `dot Q` is heat flow rate (item 5-7) and A is area (ISO 80000-3) of a given surface
* remarks: None.
*/
attribute :>> num: Real;
attribute :>> mRef: DensityOfHeatFlowRateUnit[1];
}
attribute densityOfHeatFlowRate: DensityOfHeatFlowRateValue[*] nonunique :> scalarQuantities;
attribute def DensityOfHeatFlowRateUnit :> DerivedUnit {
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -3; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (massPF, durationPF); }
}
/* ISO-80000-5 item 5-9 thermal conductivity */
attribute def ThermalConductivityValue :> ScalarQuantityValue {
doc
/*
* source: item 5-9 thermal conductivity
* symbol(s): `λ_l`, `(ϰ)`
* application domain: generic
* name: ThermalConductivity
* quantity dimension: L^1*M^1*T^-3*Θ^-1
* measurement unit(s): W/(m*K), kg*m*s^-3*K^-1
* tensor order: 0
* definition: quotient of density of heat flow rate (item 5-8) and thermodynamic temperature gradient that has the same direction as the heat flow
* remarks: None.
*/
attribute :>> num: Real;
attribute :>> mRef: ThermalConductivityUnit[1];
}
attribute thermalConductivity: ThermalConductivityValue[*] nonunique :> scalarQuantities;
attribute def ThermalConductivityUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 1; }
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -3; }
private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, thermodynamicTemperaturePF); }
}
/* ISO-80000-5 item 5-10.1 coefficient of heat transfer */
attribute def CoefficientOfHeatTransferValue :> ScalarQuantityValue {
doc
/*
* source: item 5-10.1 coefficient of heat transfer
* symbol(s): `K`, `(k)`
* application domain: generic
* name: CoefficientOfHeatTransfer
* quantity dimension: M^1*T^-3*Θ^-1
* measurement unit(s): W/(m^2*K), kg*s^-3*K^-1
* tensor order: 0
* definition: quotient of density of heat flow rate (item 5-8) and thermodynamic temperature (item 5-1) difference
* remarks: In building technology, the coefficient of heat transfer is often called thermal transmittance, with the symbol U (no longer recommended). See remark to item 5-13.
*/
attribute :>> num: Real;
attribute :>> mRef: CoefficientOfHeatTransferUnit[1];
}
attribute coefficientOfHeatTransfer: CoefficientOfHeatTransferValue[*] nonunique :> scalarQuantities;
attribute def CoefficientOfHeatTransferUnit :> DerivedUnit {
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -3; }
private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (massPF, durationPF, thermodynamicTemperaturePF); }
}
/* ISO-80000-5 item 5-10.2 surface coefficient of heat transfer */
attribute def SurfaceCoefficientOfHeatTransferValue :> ScalarQuantityValue {
doc
/*
* source: item 5-10.2 surface coefficient of heat transfer
* symbol(s): `h`, `(α)`
* application domain: generic
* name: SurfaceCoefficientOfHeatTransfer
* quantity dimension: M^1*T^-3*Θ^-1
* measurement unit(s): W/(m^2*K), kg*s^-3*K^-1
* tensor order: 0
* definition: quotient of density of heat flow rate and the difference of the temperature at the surface and a reference temperature: `h = q / (T_s - T_r)` where q is density of heat flow rate (item 5-8), `T_s` is the thermodynamic temperature (item 5-1) at the surface, and `T_r` is a reference thermodynamic temperature characterizing the adjacent surroundings
* remarks: None.
*/
attribute :>> num: Real;
attribute :>> mRef: SurfaceCoefficientOfHeatTransferUnit[1];
}
attribute surfaceCoefficientOfHeatTransfer: SurfaceCoefficientOfHeatTransferValue[*] nonunique :> scalarQuantities;
attribute def SurfaceCoefficientOfHeatTransferUnit :> DerivedUnit {
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -3; }
private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (massPF, durationPF, thermodynamicTemperaturePF); }
}
/* ISO-80000-5 item 5-11 thermal insulance, coefficient of thermal insulance */
attribute def ThermalInsulanceValue :> ScalarQuantityValue {
doc
/*
* source: item 5-11 thermal insulance, coefficient of thermal insulance
* symbol(s): `M`
* application domain: generic
* name: ThermalInsulance
* quantity dimension: M^-1*T^3*Θ^1
* measurement unit(s): m^2*K/W, kg^-1*s^3*K
* tensor order: 0
* definition: inverse of coefficient of heat transfer `K`: `M = 1/K` where `K` is coefficient of heat transfer (item 5-10.1)
* remarks: In building technology, this quantity is often called thermal resistance, with the symbol R.
*/
attribute :>> num: Real;
attribute :>> mRef: ThermalInsulanceUnit[1];
}
attribute thermalInsulance: ThermalInsulanceValue[*] nonunique :> scalarQuantities;
attribute def ThermalInsulanceUnit :> DerivedUnit {
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 3; }
private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = 1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (massPF, durationPF, thermodynamicTemperaturePF); }
}
alias CoefficientOfThermalInsulanceUnit for ThermalInsulanceUnit;
alias CoefficientOfThermalInsulanceValue for ThermalInsulanceValue;
alias coefficientOfThermalInsulance for thermalInsulance;
/* ISO-80000-5 item 5-12 thermal resistance */
attribute def ThermalResistanceValue :> ScalarQuantityValue {
doc
/*
* source: item 5-12 thermal resistance
* symbol(s): `R`
* application domain: generic
* name: ThermalResistance
* quantity dimension: L^-2*M^-1*T^3*Θ^1
* measurement unit(s): K/W, kg^-1*m^-2*s^3*K
* tensor order: 0
* definition: quotient of thermodynamic temperature (item 5-1) difference and heat flow rate (item 5-7)
* remarks: See remark to item 5-11.
*/
attribute :>> num: Real;
attribute :>> mRef: ThermalResistanceUnit[1];
}
attribute thermalResistance: ThermalResistanceValue[*] nonunique :> scalarQuantities;
attribute def ThermalResistanceUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -2; }
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 3; }
private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = 1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, thermodynamicTemperaturePF); }
}
/* ISO-80000-5 item 5-13 thermal conductance */
attribute def ThermalConductanceValue :> ScalarQuantityValue {
doc
/*
* source: item 5-13 thermal conductance
* symbol(s): `G`, `(H)`
* application domain: generic
* name: ThermalConductance
* quantity dimension: L^2*M^1*T^-3*Θ^-1
* measurement unit(s): W/K, kg*m^2*s^-3*K^-1
* tensor order: 0
* definition: inverse of thermal resistance `R`: `G = 1/R` where `R` is thermal resistance (item 5-12)
* remarks: See remark to item 5-11. This quantity is also called heat transfer coefficient. See item 5-10.1.
*/
attribute :>> num: Real;
attribute :>> mRef: ThermalConductanceUnit[1];
}
attribute thermalConductance: ThermalConductanceValue[*] nonunique :> scalarQuantities;
attribute def ThermalConductanceUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -3; }
private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, thermodynamicTemperaturePF); }
}
/* ISO-80000-5 item 5-14 thermal diffusivity */
attribute def ThermalDiffusivityValue :> ScalarQuantityValue {
doc
/*
* source: item 5-14 thermal diffusivity
* symbol(s): `a`
* application domain: generic
* name: ThermalDiffusivity
* quantity dimension: L^2*T^-1
* measurement unit(s): m^2*s^-1
* tensor order: 0
* definition: quotient of thermal conductivity and the product of mass density and specific heat capacity: `a = λ / (ρ C_p)` where `λ` is thermal conductivity (item 5-9), `ρ` is mass density (ISO 80000-4), and `c_p` is specific heat capacity at constant pressure (item 5-16.2)
* remarks: None.
*/
attribute :>> num: Real;
attribute :>> mRef: ThermalDiffusivityUnit[1];
}
attribute thermalDiffusivity: ThermalDiffusivityValue[*] nonunique :> scalarQuantities;
attribute def ThermalDiffusivityUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF); }
}
/* ISO-80000-5 item 5-15 heat capacity */
attribute def HeatCapacityValue :> ScalarQuantityValue {
doc
/*
* source: item 5-15 heat capacity
* symbol(s): `C`
* application domain: generic
* name: HeatCapacity
* quantity dimension: L^2*M^1*T^-2*Θ^-1
* measurement unit(s): J/K, kg*m^2*s^-2*K^-1
* tensor order: 0
* definition: derivative of added heat with respect to thermodynamic temperature of a system: `C = (dQ)/(dT)` where `Q` is amount of heat (item 5-6.1) and `T` is thermodynamic temperature (item 5-1)
* remarks: Heat capacity is not completely defined unless specified as seen in items 5-16.2, 5-16.3 and 5-16.4.
*/
attribute :>> num: Real;
attribute :>> mRef: HeatCapacityUnit[1];
}
attribute heatCapacity: HeatCapacityValue[*] nonunique :> scalarQuantities;
attribute def HeatCapacityUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, thermodynamicTemperaturePF); }
}
/* ISO-80000-5 item 5-16.1 specific heat capacity */
attribute def SpecificHeatCapacityValue :> ScalarQuantityValue {
doc
/*
* source: item 5-16.1 specific heat capacity
* symbol(s): `c`
* application domain: generic
* name: SpecificHeatCapacity
* quantity dimension: L^2*T^-2*Θ^-1
* measurement unit(s): J/(kg*K), m^2*s^-2*K^-1
* tensor order: 0
* definition: quotient of heat capacity and mass: `c = C/m` where `C` is heat capacity (item 5-15) and `m` is mass (ISO 80000-4)
* remarks: For the corresponding quantities related to the amount of substance, see ISO 80000-9.
*/
attribute :>> num: Real;
attribute :>> mRef: SpecificHeatCapacityUnit[1];
}
attribute specificHeatCapacity: SpecificHeatCapacityValue[*] nonunique :> scalarQuantities;
attribute def SpecificHeatCapacityUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF, thermodynamicTemperaturePF); }
}
/* ISO-80000-5 item 5-16.2 specific heat capacity at constant pressure */
attribute def SpecificHeatCapacityAtConstantPressureValue :> ScalarQuantityValue {
doc
/*
* source: item 5-16.2 specific heat capacity at constant pressure
* symbol(s): `c_p`
* application domain: generic
* name: SpecificHeatCapacityAtConstantPressure
* quantity dimension: L^2*T^-2*Θ^-1
* measurement unit(s): J/(kg*K), m^2*s^-2*K^-1
* tensor order: 0
* definition: specific heat capacity (item 5-16.1) at constant pressure (ISO 80000-4)
* remarks: Also called specific isobaric heat capacity.
*/
attribute :>> num: Real;
attribute :>> mRef: SpecificHeatCapacityAtConstantPressureUnit[1];
}
attribute specificHeatCapacityAtConstantPressure: SpecificHeatCapacityAtConstantPressureValue[*] nonunique :> scalarQuantities;
attribute def SpecificHeatCapacityAtConstantPressureUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF, thermodynamicTemperaturePF); }
}
/* ISO-80000-5 item 5-16.3 specific heat capacity at constant volume */
attribute def SpecificHeatCapacityAtConstantVolumeValue :> ScalarQuantityValue {
doc
/*
* source: item 5-16.3 specific heat capacity at constant volume
* symbol(s): `c_V`
* application domain: generic
* name: SpecificHeatCapacityAtConstantVolume
* quantity dimension: L^2*T^-2*Θ^-1
* measurement unit(s): J/(kg*K), m^2*s^-2*K^-1
* tensor order: 0
* definition: specific heat capacity (item 5-16.1) at constant volume (ISO 80000-3)
* remarks: Also called specific isochoric heat capacity.
*/
attribute :>> num: Real;
attribute :>> mRef: SpecificHeatCapacityAtConstantVolumeUnit[1];
}
attribute specificHeatCapacityAtConstantVolume: SpecificHeatCapacityAtConstantVolumeValue[*] nonunique :> scalarQuantities;
attribute def SpecificHeatCapacityAtConstantVolumeUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF, thermodynamicTemperaturePF); }
}
/* ISO-80000-5 item 5-16.4 specific heat capacity at saturated vapour pressure */
attribute def SpecificHeatCapacityAtSaturatedVapourPressureValue :> ScalarQuantityValue {
doc
/*
* source: item 5-16.4 specific heat capacity at saturated vapour pressure
* symbol(s): `c_"sat"`
* application domain: generic
* name: SpecificHeatCapacityAtSaturatedVapourPressure
* quantity dimension: L^2*T^-2*Θ^-1
* measurement unit(s): J/(kg*K), m^2*s^-2*K^-1
* tensor order: 0
* definition: specific heat capacity (item 5-16.1) at saturated vapour pressure (ISO 80000-4)
* remarks: None.
*/
attribute :>> num: Real;
attribute :>> mRef: SpecificHeatCapacityAtSaturatedVapourPressureUnit[1];
}
attribute specificHeatCapacityAtSaturatedVapourPressure: SpecificHeatCapacityAtSaturatedVapourPressureValue[*] nonunique :> scalarQuantities;
attribute def SpecificHeatCapacityAtSaturatedVapourPressureUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF, thermodynamicTemperaturePF); }
}
/* ISO-80000-5 item 5-17.1 ratio of specific heat capacities */
attribute def RatioOfSpecificHeatCapacitiesValue :> DimensionOneValue {
doc
/*
* source: item 5-17.1 ratio of specific heat capacities
* symbol(s): `γ`
* application domain: generic
* name: RatioOfSpecificHeatCapacities (specializes DimensionOneQuantity)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: quotient of specific heat capacity at constant pressure and specific heat capacity at constant volume: `γ = c_p/c_V` where `c_p` is specific heat capacity at constant pressure (item 5-16.2) and `c_V` is specific heat capacity at constant volume (item 5-16.3)
* remarks: This quantity can also be expressed by `γ = C_p/C_V` where `C_p` is heat capacity at constant pressure and `C_V` is heat capacity at constant volume.
*/
}
attribute ratioOfSpecificHeatCapacities: RatioOfSpecificHeatCapacitiesValue :> scalarQuantities;
/* ISO-80000-5 item 5-17.2 isentropic exponent, isentropic expansion factor */
attribute def IsentropicExponentValue :> DimensionOneValue {
doc
/*
* source: item 5-17.2 isentropic exponent, isentropic expansion factor
* symbol(s): `ϰ`
* application domain: generic
* name: IsentropicExponent (specializes DimensionOneQuantity)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: the negative of relative pressure change, divided by relative volume change, at constant entropy: `ϰ = -V/p * ((partial p)/(partial V))_S` where `V` is volume (ISO 80000-3), `p` is pressure (ISO 80000-4), and `S` is entropy (item 5-18)
* remarks: For an ideal gas, `ϰ` is equal to `γ` (item 5-17.1).
*/
}
attribute isentropicExponent: IsentropicExponentValue :> scalarQuantities;
alias isentropicExpansionFactor for isentropicExponent;
/* ISO-80000-5 item 5-18 entropy */
attribute def EntropyValue :> ScalarQuantityValue {
doc
/*
* source: item 5-18 entropy
* symbol(s): `S`
* application domain: generic
* name: Entropy
* quantity dimension: L^2*M^1*T^-2*Θ^-1
* measurement unit(s): J/K, kg*m^2*s^-2*K^-1
* tensor order: 0
* definition: natural logarithm of number of equally probable microscopic configurations in a macroscopic system, multiplied by the Boltzmann constant: `S = k lnW` where `W` is number of configurations and `k` is the Boltzmann constant (ISO 80000-1)
* remarks: None.
*/
attribute :>> num: Real;
attribute :>> mRef: EntropyUnit[1];
}
attribute entropy: EntropyValue[*] nonunique :> scalarQuantities;
attribute def EntropyUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, thermodynamicTemperaturePF); }
}
/* ISO-80000-5 item 5-19 specific entropy */
attribute def SpecificEntropyValue :> ScalarQuantityValue {
doc
/*
* source: item 5-19 specific entropy
* symbol(s): `s`
* application domain: generic
* name: SpecificEntropy
* quantity dimension: L^2*T^-2*Θ^-1
* measurement unit(s): J/(kg*K), m^2*s^-2*K^-1
* tensor order: 0
* definition: quotient of entropy and mass: `s = S/m` where `S` is entropy (item 5-18) and `m` is mass (ISO 80000-4)
* remarks: For the corresponding quantity related to amount of substance, see ISO 80000-9.
*/
attribute :>> num: Real;
attribute :>> mRef: SpecificEntropyUnit[1];
}
attribute specificEntropy: SpecificEntropyValue[*] nonunique :> scalarQuantities;
attribute def SpecificEntropyUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF, thermodynamicTemperaturePF); }
}
/* ISO-80000-5 item 5-20.1 energy */
attribute def EnergyValue :> ScalarQuantityValue {
doc
/*
* source: item 5-20.1 energy
* symbol(s): `E`
* application domain: thermodynamics
* name: Energy
* quantity dimension: L^2*M^1*T^-2
* measurement unit(s): J, kg*m^2*s^-2
* tensor order: 0
* definition: ability of a system to do work (ISO 80000-4)
* remarks: Energy exists in different forms that are mutually transformable into each other, either totally or partially. In contrast to internal energy (item 5-20.2), energy is not a state function.
*/
attribute :>> num: Real;
attribute :>> mRef: EnergyUnit[1];
}
attribute energy: EnergyValue[*] nonunique :> scalarQuantities;
attribute def EnergyUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); }
}
/* ISO-80000-5 item 5-20.2 internal energy, thermodynamic energy */
attribute internalEnergy: EnergyValue :> scalarQuantities {
doc
/*
* source: item 5-20.2 internal energy, thermodynamic energy
* symbol(s): `U`
* application domain: generic
* name: InternalEnergy (specializes Energy)
* quantity dimension: L^2*M^1*T^-2
* measurement unit(s): J, kg*m^2*s^-2
* tensor order: 0
* definition: energy of a system whose change is given by the amount of the heat (item 5-6.1) transferred to the system and the work (ISO 80000-4) done on the system, provided that the system is closed and no chemical reactions occur
* remarks: In thermodynamic text books, usually the formula `ΔU = Q + W` is used. Note that the zero of the energy is undefined.
*/
}
alias thermodynamicEnergy for internalEnergy;
/* ISO-80000-5 item 5-20.3 enthalpy */
attribute enthalpy: EnergyValue :> scalarQuantities {
doc
/*
* source: item 5-20.3 enthalpy
* symbol(s): `H`
* application domain: generic
* name: Enthalpy (specializes Energy)
* quantity dimension: L^2*M^1*T^-2
* measurement unit(s): J, kg*m^2*s^-2
* tensor order: 0
* definition: sum of internal energy of the system and the product of pressure and volume of the system: `H = U + p*V` where U is internal energy (item 5-20.2), `p` is pressure (ISO 80000-4), and `V` is volume (ISO 80000-3)
* remarks: None.
*/
}
/* ISO-80000-5 item 5-20.4 Helmholtz energy, Helmholtz function */
attribute helmholtzEnergy: EnergyValue :> scalarQuantities {
doc
/*
* source: item 5-20.4 Helmholtz energy, Helmholtz function
* symbol(s): `A`, `F`
* application domain: generic
* name: HelmholtzEnergy (specializes Energy)
* quantity dimension: L^2*M^1*T^-2
* measurement unit(s): J, kg*m^2*s^-2
* tensor order: 0
* definition: difference of internal energy of the system and the product of thermodynamic temperature and entropy of the system: `A = U - TS` where `U` is internal energy (item 5-20.2), `T` is thermodynamic temperature (item 5-1), and `S` is entropy (item 5-18)
* remarks: The name Helmholtz free energy is also used. However, this term is not recommended.
*/
}
alias helmholtzFunction for helmholtzEnergy;
/* ISO-80000-5 item 5-20.5 Gibbs energy, Gibbs function */
attribute gibbsEnergy: EnergyValue :> scalarQuantities {
doc
/*
* source: item 5-20.5 Gibbs energy, Gibbs function
* symbol(s): `G`
* application domain: generic
* name: GibbsEnergy (specializes Energy)
* quantity dimension: L^2*M^1*T^-2
* measurement unit(s): J, kg*m^2*s^-2
* tensor order: 0
* definition: difference of the enthalpy and the product of thermodynamic temperature and entropy of the system: `G = H - T*S` where H is enthalpy (item 5-20.3), `T` is thermodynamic temperature (item 5-1), and `S` is entropy (item 5-18)
* remarks: The name Gibbs free energy is also used. However, this term is not recommended.
*/
}
alias gibbsFunction for gibbsEnergy;
/* ISO-80000-5 item 5-21.1 specific energy */
attribute def SpecificEnergyValue :> ScalarQuantityValue {
doc
/*
* source: item 5-21.1 specific energy
* symbol(s): `e`
* application domain: generic
* name: SpecificEnergy
* quantity dimension: L^2*T^-2
* measurement unit(s): J/kg, m^2*s^-2
* tensor order: 0
* definition: quotient of energy and mass: `e = E/m` where `E` is energy (item 5-20.1) and `m` is mass (ISO 80000-4)
* remarks: None.
*/
attribute :>> num: Real;
attribute :>> mRef: SpecificEnergyUnit[1];
}
attribute specificEnergy: SpecificEnergyValue[*] nonunique :> scalarQuantities;
attribute def SpecificEnergyUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF); }
}
/* ISO-80000-5 item 5-21.2 specific internal energy, specific thermodynamic energy */
attribute specificInternalEnergy: SpecificEnergyValue :> scalarQuantities {
doc
/*
* source: item 5-21.2 specific internal energy, specific thermodynamic energy
* symbol(s): `u`
* application domain: generic
* name: SpecificInternalEnergy (specializes SpecificEnergy)
* quantity dimension: L^2*T^-2
* measurement unit(s): J/kg, m^2*s^-2
* tensor order: 0
* definition: quotient of internal energy and mass: `u = U/m` where `U` is internal energy (item 5-20.2) and `m` is mass (ISO 80000-4)
* remarks: None.
*/
}
alias specificThermodynamicEnergy for specificInternalEnergy;
/* ISO-80000-5 item 5-21.3 specific enthalpy */
attribute def SpecificEnthalpyValue :> ScalarQuantityValue {
doc
/*
* source: item 5-21.3 specific enthalpy
* symbol(s): `h`
* application domain: generic
* name: SpecificEnthalpy
* quantity dimension: L^2*T^-2
* measurement unit(s): J/kg, m^2*s^-2
* tensor order: 0
* definition: quotient of enthalpy and mass: `h = H/m` where `H` is enthalpy (item 5-20.3) and `m` is mass (ISO 80000-4)
* remarks: None.
*/
attribute :>> num: Real;
attribute :>> mRef: SpecificEnthalpyUnit[1];
}
attribute specificEnthalpy: SpecificEnthalpyValue[*] nonunique :> scalarQuantities;
attribute def SpecificEnthalpyUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF); }
}
/* ISO-80000-5 item 5-21.4 specific Helmholtz energy, specific Helmholtz function */
attribute specificHelmholtzEnergy: SpecificEnergyValue :> scalarQuantities {
doc
/*
* source: item 5-21.4 specific Helmholtz energy, specific Helmholtz function
* symbol(s): `a`, `f`
* application domain: generic
* name: SpecificHelmholtzEnergy (specializes SpecificEnergy)
* quantity dimension: L^2*T^-2
* measurement unit(s): J/kg, m^2*s^-2
* tensor order: 0
* definition: quotient of Helmholtz energy and mass: `a = A/m` where A is Helmholtz energy (item 5-20.4) and m is mass (ISO 80000-4)
* remarks: The name specific Helmholtz free energy is also used. However, this term is not recommended.
*/
}
alias specificHelmholtzFunction for specificHelmholtzEnergy;
/* ISO-80000-5 item 5-21.5 specific Gibbs energy, specific Gibbs function */
attribute specificGibbsEnergy: SpecificEnergyValue :> scalarQuantities {
doc
/*
* source: item 5-21.5 specific Gibbs energy, specific Gibbs function
* symbol(s): `g`
* application domain: generic
* name: SpecificGibbsEnergy (specializes SpecificEnergy)
* quantity dimension: L^2*T^-2
* measurement unit(s): J/kg, m^2*s^-2
* tensor order: 0
* definition: quotient of Gibbs energy and mass: `g = G/m` where `G` is Gibbs energy (item 5-20.5) and `m` is mass (ISO 80000-4)
* remarks: The name specific Gibbs free energy is also used. However, this term is not recommended.
*/
}
alias specificGibbsFunction for specificGibbsEnergy;
/* ISO-80000-5 item 5-22 Massieu function */
attribute def MassieuFunctionValue :> ScalarQuantityValue {
doc
/*
* source: item 5-22 Massieu function
* symbol(s): `J`
* application domain: generic
* name: MassieuFunction
* quantity dimension: L^2*M^1*T^-2*Θ^-1
* measurement unit(s): J/K, kg*m^2*s^-2*K^-1
* tensor order: 0
* definition: quotient of the negative of Helmholtz energy and temperature: `J = -A/T` where `A` is Helmholtz energy (item 5-20.4) and `T` is thermodynamic temperature (item 5-1)
* remarks: None.
*/
attribute :>> num: Real;
attribute :>> mRef: MassieuFunctionUnit[1];
}
attribute massieuFunction: MassieuFunctionValue[*] nonunique :> scalarQuantities;
attribute def MassieuFunctionUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, thermodynamicTemperaturePF); }
}
/* ISO-80000-5 item 5-23 Planck function */
attribute def PlanckFunctionValue :> ScalarQuantityValue {
doc
/*
* source: item 5-23 Planck function
* symbol(s): `Y`
* application domain: generic
* name: PlanckFunction
* quantity dimension: L^2*M^1*T^-2*Θ^-1
* measurement unit(s): J/K, kg*m^2*s^-2*K^-1
* tensor order: 0
* definition: quotient of the negative of Gibbs energy and temperature: `Y = -G/T` where G is Gibbs energy (item 5-20.5) and `T` is thermodynamic temperature (item 5-1)
* remarks: None.
*/
attribute :>> num: Real;
attribute :>> mRef: PlanckFunctionUnit[1];
}
attribute planckFunction: PlanckFunctionValue[*] nonunique :> scalarQuantities;
attribute def PlanckFunctionUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, thermodynamicTemperaturePF); }
}
/* ISO-80000-5 item 5-24 Joule-Thomson coefficient */
attribute def JouleThomsonCoefficientValue :> ScalarQuantityValue {
doc
/*
* source: item 5-24 Joule-Thomson coefficient
* symbol(s): `μ_"JT"`
* application domain: generic
* name: JouleThomsonCoefficient
* quantity dimension: L^1*M^-1*T^2*Θ^1
* measurement unit(s): K/Pa, kg^-1*m*s^2*K
* tensor order: 0
* definition: change of thermodynamic temperature with respect to pressure in a Joule-Thomson process at constant enthalpy: `μ_(JT) = ((partial T)/(partial p))_H` where `T` is thermodynamic temperature (item 5-1), `p` is pressure (ISO 80000-4) and H is enthalpy (item 5-20.3)
* remarks: None.
*/
attribute :>> num: Real;
attribute :>> mRef: JouleThomsonCoefficientUnit[1];
}
attribute jouleThomsonCoefficient: JouleThomsonCoefficientValue[*] nonunique :> scalarQuantities;
attribute def JouleThomsonCoefficientUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 1; }
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 2; }
private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = 1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, thermodynamicTemperaturePF); }
}
/* ISO-80000-5 item 5-25.1 thermal efficiency */
attribute def ThermalEfficiencyValue :> DimensionOneValue {
doc
/*
* source: item 5-25.1 thermal efficiency
* symbol(s): `η`
* application domain: thermodynamics
* name: ThermalEfficiency (specializes DimensionOneQuantity)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: quotient of work (ISO 80000-4) delivered by a heat engine and supplied heat: `η = W/Q` where `W` is work (ISO 80000-4) and `Q` is heat (item 5-6.1)
* remarks: None.
*/
}
attribute thermalEfficiency: ThermalEfficiencyValue :> scalarQuantities;
/* ISO-80000-5 item 5-25.2 maximum thermal efficiency */
attribute def MaximumThermalEfficiencyValue :> DimensionOneValue {
doc
/*
* source: item 5-25.2 maximum thermal efficiency
* symbol(s): `η_"max"`
* application domain: generic
* name: MaximumThermalEfficiency (specializes DimensionOneQuantity)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: efficiency determined by the quotient of the temperatures of the hot source and the cold sink: `η_max = 1 - T_c/T_h` where `T_c` is the thermodynamic temperature (item 5-1) of the cold sink and `T_h` is the thermodynamic temperature (item 5-1) of the hot source
* remarks: An ideal heat engine operating according to the Carnot process is delivering the maximum efficiency.
*/
}
attribute maximumThermalEfficiency: MaximumThermalEfficiencyValue :> scalarQuantities;
/* ISO-80000-5 item 5-26 specific gas constant */
attribute def SpecificGasConstantValue :> ScalarQuantityValue {
doc
/*
* source: item 5-26 specific gas constant
* symbol(s): `R_s`
* application domain: generic
* name: SpecificGasConstant
* quantity dimension: L^2*T^-2*Θ^-1
* measurement unit(s): J/(kg*K), m^2*s^-2*K^-1
* tensor order: 0
* definition: quotient of the Boltzmann constant `k` (ISO 80000-1) and the mass `m` (ISO 80000-4) of the gas particle
* remarks: None.
*/
attribute :>> num: Real;
attribute :>> mRef: SpecificGasConstantUnit[1];
}
attribute specificGasConstant: SpecificGasConstantValue[*] nonunique :> scalarQuantities;
attribute def SpecificGasConstantUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF, thermodynamicTemperaturePF); }
}
/* ISO-80000-5 item 5-27 mass concentration of water */
attribute def MassConcentrationOfWaterValue :> ScalarQuantityValue {
doc
/*
* source: item 5-27 mass concentration of water
* symbol(s): `w`
* application domain: generic
* name: MassConcentrationOfWater
* quantity dimension: L^-3*M^1
* measurement unit(s): kg*m^-3
* tensor order: 0
* definition: quotient of mass of water and a specified volume: `w = m/V` where `m` is mass (ISO 80000-4) of water, irrespective of the form of aggregation state, and `V` is volume (ISO 80000-3)
* remarks: Mass concentration of water at saturation is denoted `w_"sat"`.
*/
attribute :>> num: Real;
attribute :>> mRef: MassConcentrationOfWaterUnit[1];
}
attribute massConcentrationOfWater: MassConcentrationOfWaterValue[*] nonunique :> scalarQuantities;
attribute def MassConcentrationOfWaterUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -3; }
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF); }
}
/* ISO-80000-5 item 5-28 mass concentration of water vapour absolute humidity */
attribute def MassConcentrationOfWaterVapourAbsoluteHumidityValue :> ScalarQuantityValue {
doc
/*
* source: item 5-28 mass concentration of water vapour absolute humidity
* symbol(s): `v`
* application domain: generic
* name: MassConcentrationOfWaterVapourAbsoluteHumidity
* quantity dimension: L^-3*M^1
* measurement unit(s): kg*m^-3
* tensor order: 0
* definition: quotient of mass of water vapour and a specified volume: `v = m/V` where m is mass (ISO 80000-4) of water vapour and `V` is volume (ISO 80000-3)
* remarks: Mass concentration of water vapour at saturation is denoted `v_"sat"`.
*/
attribute :>> num: Real;
attribute :>> mRef: MassConcentrationOfWaterVapourAbsoluteHumidityUnit[1];
}
attribute massConcentrationOfWaterVapourAbsoluteHumidity: MassConcentrationOfWaterVapourAbsoluteHumidityValue[*] nonunique :> scalarQuantities;
attribute def MassConcentrationOfWaterVapourAbsoluteHumidityUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -3; }
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF); }
}
/* ISO-80000-5 item 5-29 mass ratio of water to dry matter */
attribute def MassRatioOfWaterToDryMatterValue :> DimensionOneValue {
doc
/*
* source: item 5-29 mass ratio of water to dry matter
* symbol(s): `u`
* application domain: generic
* name: MassRatioOfWaterToDryMatter (specializes DimensionOneQuantity)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: quotient of mass of water and mass of dry matter: `u = m/m_d` where `m` is mass (ISO 80000-4) of water and `m_d` is mass of dry matter
* remarks: Mass ratio of water to dry matter at saturation is denoted `u_"sat"`.
*/
}
attribute massRatioOfWaterToDryMatter: MassRatioOfWaterToDryMatterValue :> scalarQuantities;
/* ISO-80000-5 item 5-30 mass ratio of water vapour to dry gas */
attribute def MassRatioOfWaterVapourToDryGasValue :> DimensionOneValue {
doc
/*
* source: item 5-30 mass ratio of water vapour to dry gas
* symbol(s): `r`, `(x)`
* application domain: generic
* name: MassRatioOfWaterVapourToDryGas (specializes DimensionOneQuantity)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: quotient of mass of water vapour and mass of dry gas: `r = m/m_d` where `m` is mass (ISO 80000-4) of water vapour and `m_d` is mass of dry gas
* remarks: Mass ratio of water vapour to dry gas at saturation is denoted `r_"sat"`. Mass ratio of water vapour to dry gas is also called mixing ratio.
*/
}
attribute massRatioOfWaterVapourToDryGas: MassRatioOfWaterVapourToDryGasValue :> scalarQuantities;
/* ISO-80000-5 item 5-31 mass fraction of water */
attribute def MassFractionOfWaterValue :> DimensionOneValue {
doc
/*
* source: item 5-31 mass fraction of water
* symbol(s): `w_(H_(2)O)`
* application domain: generic
* name: MassFractionOfWater (specializes DimensionOneQuantity)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: quantity given by: `w_(H_(2)O) = u/(1+u)` where `u` is mass ratio of water to dry matter (item 5-29)
* remarks: None.
*/
}
attribute massFractionOfWater: MassFractionOfWaterValue :> scalarQuantities;
/* ISO-80000-5 item 5-32 mass fraction of dry matter */
attribute def MassFractionOfDryMatterValue :> DimensionOneValue {
doc
/*
* source: item 5-32 mass fraction of dry matter
* symbol(s): `w_d`
* application domain: generic
* name: MassFractionOfDryMatter (specializes DimensionOneQuantity)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: quantity given by: `w_d = 1 - w_(H_(2)O)` where `w_(H_(2)O)` is mass fraction of water (item 5-31)
* remarks: None.
*/
}
attribute massFractionOfDryMatter: MassFractionOfDryMatterValue :> scalarQuantities;
/* ISO-80000-5 item 5-33 relative humidity */
attribute def RelativeHumidityValue :> DimensionOneValue {
doc
/*
* source: item 5-33 relative humidity
* symbol(s): `φ`
* application domain: generic
* name: RelativeHumidity (specializes DimensionOneQuantity)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: quotient of partial pressure of water vapour and partial pressure at its saturation: `φ = p/p_"sat"` where `p` is partial pressure (ISO 80000-4) of vapour and `p_"sat"` is its partial pressure at saturation at the same temperature
* remarks: Relative humidity is often referred to as RH and expressed in percent. See also remark in item 5-35.
*/
}
attribute relativeHumidity: RelativeHumidityValue :> scalarQuantities;
/* ISO-80000-5 item 5-34 relative mass concentration of vapour */
attribute def RelativeMassConcentrationOfVapourValue :> DimensionOneValue {
doc
/*
* source: item 5-34 relative mass concentration of vapour
* symbol(s): `φ`
* application domain: generic
* name: RelativeMassConcentrationOfVapour (specializes DimensionOneQuantity)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: quotient of mass concentration of water vapour and mass concentration at its saturation: `φ = v/v_"sat"` where `v` is mass concentration of water vapour (item 5-28) and `v_"sat"` is its mass concentration of water vapour at saturation of the same temperature
* remarks: For water vapour concentrations up to 1 kg/m^3, the relative humidity (item 5-33) is assumed to be equal to relative mass concentration of vapour. For details see Reference [8].
*/
}
attribute relativeMassConcentrationOfVapour: RelativeMassConcentrationOfVapourValue :> scalarQuantities;
/* ISO-80000-5 item 5-35 relative mass ratio of vapour */
attribute def RelativeMassRatioOfVapourValue :> DimensionOneValue {
doc
/*
* source: item 5-35 relative mass ratio of vapour
* symbol(s): `ψ`
* application domain: generic
* name: RelativeMassRatioOfVapour (specializes DimensionOneQuantity)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: quotient of mass ratio of water vapour to dry gas and mass ratio of water vapour to dry gas at saturation: `ψ = r/r_"sat"` where `r` is mass ratio of water vapour to dry gas (item 5-30) and `r_"sat"` is its mass ratio of water vapour to dry gas at saturation of the same temperature
* remarks: This quantity is also used as an approximation of relative humidity (item 5-33).
*/
}
attribute relativeMassRatioOfVapour: RelativeMassRatioOfVapourValue :> scalarQuantities;
/* ISO-80000-5 item 5-36 dew-point temperature */
attribute dewPointTemperature: ThermodynamicTemperatureValue :> scalarQuantities {
doc
/*
* source: item 5-36 dew-point temperature
* symbol(s): `T_d`
* application domain: generic
* name: DewPointTemperature (specializes ThermodynamicTemperature)
* quantity dimension: Θ^1
* measurement unit(s): K
* tensor order: 0
* definition: temperature at which water vapour in the air reaches saturation under isobaric conditions
* remarks: The corresponding Celsius temperature, denoted `t_d`, is still called dew-point temperature. The unit for the corresponding Celsius temperature is degree Celsius, symbol °C.
*/
}
}
|