File size: 64,648 Bytes
5070096
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
standard library package ISQThermodynamics {
    doc
    /*
     * International System of Quantities and Units
     * Generated on 2022-08-07T14:44:27Z from standard ISO-80000-5:2019 "Thermodynamics"
     * see also https://www.iso.org/obp/ui/#iso:std:iso:80000:-5:ed-2:v1:en
     * 
     * Note 1: In documentation comments, AsciiMath notation (see http://asciimath.org/) is used for mathematical concepts,
     * with Greek letters in Unicode encoding. In running text, AsciiMath is placed between backticks.
     * Note 2: For vector and tensor quantities currently the unit and quantity value type for their (scalar) magnitude is 
     * defined, as well as their typical Cartesian 3d VectorMeasurementReference (i.e. coordinate system) 
     * or TensorMeasurementReference.
     */

    private import ScalarValues::Real;
    private import Quantities::*;
    private import MeasurementReferences::*;
    private import ISQBase::*;

    /* Quantity definitions referenced from other ISQ packages */


    /* ISO-80000-5 item 5-1 thermodynamic temperature, temperature */
    /* See package ISQBase for the declarations of ThermodynamicTemperatureValue and ThermodynamicTemperatureUnit */

    alias TemperatureUnit for ThermodynamicTemperatureUnit;
    alias TemperatureValue for ThermodynamicTemperatureValue;
    alias temperature for thermodynamicTemperature;

    /* ISO-80000-5 item 5-2 Celsius temperature */
    attribute def CelsiusTemperatureValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 5-2 Celsius temperature
         * symbol(s): `t`, `θ`
         * application domain: generic
         * name: CelsiusTemperature
         * quantity dimension: Θ^1
         * measurement unit(s): °C
         * tensor order: 0
         * definition: temperature difference from the thermodynamic temperature of the ice point is called the Celsius temperature t, which is defined by the quantity equation: `t = T - T_0` where `T` is thermodynamic temperature (item 5-1) and `T_0 = 273,15 K`
         * remarks: The unit degree Celsius is a special name for the kelvin for use in stating values of Celsius temperature. The unit degree Celsius is by definition equal in magnitude to the kelvin. A difference or interval of temperature may be expressed in kelvin or in degrees Celsius. The thermodynamic temperature `T_0` is 0,01 K below the thermodynamic temperature of the triple point of water. The symbol °C for the degree Celsius shall be preceded by a space (see ISO 80000-1). Prefixes are not allowed in combination with the unit °C.
         */
        attribute :>> num: Real;
        attribute :>> mRef: CelsiusTemperatureUnit[1];
    }

    attribute celsiusTemperature: CelsiusTemperatureValue[*] nonunique :> scalarQuantities;

    attribute def CelsiusTemperatureUnit :> DerivedUnit {
        private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = 1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = thermodynamicTemperaturePF; }
    }

    /* ISO-80000-5 item 5-3.1 linear expansion coefficient */
    attribute def LinearExpansionCoefficientValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 5-3.1 linear expansion coefficient
         * symbol(s): `α_l`
         * application domain: generic
         * name: LinearExpansionCoefficient
         * quantity dimension: Θ^-1
         * measurement unit(s): K^-1
         * tensor order: 0
         * definition: relative change of length with temperature: `α_l = 1/l * (dl)/(dT)` where l is length (ISO 80000-3) and `T` is thermodynamic temperature (item 5-1)
         * remarks: The subscripts in the symbols may be omitted when there is no risk of confusion.
         */
        attribute :>> num: Real;
        attribute :>> mRef: LinearExpansionCoefficientUnit[1];
    }

    attribute linearExpansionCoefficient: LinearExpansionCoefficientValue[*] nonunique :> scalarQuantities;

    attribute def LinearExpansionCoefficientUnit :> DerivedUnit {
        private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = thermodynamicTemperaturePF; }
    }

    /* ISO-80000-5 item 5-3.2 cubic expansion coefficient */
    attribute def CubicExpansionCoefficientValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 5-3.2 cubic expansion coefficient
         * symbol(s): `α_V`, `γ`
         * application domain: generic
         * name: CubicExpansionCoefficient
         * quantity dimension: Θ^-1
         * measurement unit(s): K^-1
         * tensor order: 0
         * definition: relative change of volume with temperature: `α_V = 1/V * (dV)/(dT)` where `V` is volume (ISO 80000-3) and `T` is thermodynamic temperature (item 5-1)
         * remarks: Also called volumetric expansion coefficient. The subscripts in the symbols may be omitted when there is no risk of confusion.
         */
        attribute :>> num: Real;
        attribute :>> mRef: CubicExpansionCoefficientUnit[1];
    }

    attribute cubicExpansionCoefficient: CubicExpansionCoefficientValue[*] nonunique :> scalarQuantities;

    attribute def CubicExpansionCoefficientUnit :> DerivedUnit {
        private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = thermodynamicTemperaturePF; }
    }

    /* ISO-80000-5 item 5-3.3 relative pressure coefficient */
    attribute def RelativePressureCoefficientValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 5-3.3 relative pressure coefficient
         * symbol(s): `α_p`
         * application domain: generic
         * name: RelativePressureCoefficient
         * quantity dimension: Θ^-1
         * measurement unit(s): K^-1
         * tensor order: 0
         * definition: relative change of pressure with temperature at constant volume: `α_p = 1/p * ((partial p)/(partial T))_V` where `p` is pressure (ISO 80000-4), `T` is thermodynamic temperature (item 5-1), and `V` is volume (ISO 80000-3)
         * remarks: The subscripts in the symbols may be omitted when there is no risk of confusion.
         */
        attribute :>> num: Real;
        attribute :>> mRef: RelativePressureCoefficientUnit[1];
    }

    attribute relativePressureCoefficient: RelativePressureCoefficientValue[*] nonunique :> scalarQuantities;

    attribute def RelativePressureCoefficientUnit :> DerivedUnit {
        private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = thermodynamicTemperaturePF; }
    }

    /* ISO-80000-5 item 5-4 pressure coefficient */
    attribute def PressureCoefficientValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 5-4 pressure coefficient
         * symbol(s): `β`
         * application domain: generic
         * name: PressureCoefficient
         * quantity dimension: L^-1*M^1*T^-2*Θ^-1
         * measurement unit(s): Pa/K, kg*m^-1*s^-2*K^-1
         * tensor order: 0
         * definition: change of pressure with temperature at constant volume: `β = ((partial p)/(partial T))_V` where `p` is pressure (ISO 80000-4), `T` is thermodynamic temperature (item 5-1), and `V` is volume (ISO 80000-3)
         * remarks: None.
         */
        attribute :>> num: Real;
        attribute :>> mRef: PressureCoefficientUnit[1];
    }

    attribute pressureCoefficient: PressureCoefficientValue[*] nonunique :> scalarQuantities;

    attribute def PressureCoefficientUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
        private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, thermodynamicTemperaturePF); }
    }

    /* ISO-80000-5 item 5-5.1 isothermal compressibility */
    attribute def IsothermalCompressibilityValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 5-5.1 isothermal compressibility
         * symbol(s): `ϰ_T`
         * application domain: generic
         * name: IsothermalCompressibility
         * quantity dimension: L^1*M^-1*T^2
         * measurement unit(s): Pa^-1, kg^-1*m*s^2
         * tensor order: 0
         * definition: negative relative change of volume with pressure at constant temperature: `ϰ_T = -1/V * ((partial V)/(partial p))_T` where `V` is volume (ISO 80000-3), `p` is pressure (ISO 80000-4), and `T` is thermodynamic temperature (item 5-1)
         * remarks: The subscripts in the symbols may be omitted when there is no risk of confusion.
         */
        attribute :>> num: Real;
        attribute :>> mRef: IsothermalCompressibilityUnit[1];
    }

    attribute isothermalCompressibility: IsothermalCompressibilityValue[*] nonunique :> scalarQuantities;

    attribute def IsothermalCompressibilityUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 1; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 2; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); }
    }

    /* ISO-80000-5 item 5-5.2 isentropic compressibility */
    attribute def IsentropicCompressibilityValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 5-5.2 isentropic compressibility
         * symbol(s): `ϰ_S`
         * application domain: generic
         * name: IsentropicCompressibility
         * quantity dimension: L^1*M^-1*T^2
         * measurement unit(s): Pa^-1, kg^-1*m*s^2
         * tensor order: 0
         * definition: negative relative change of volume with pressure at constant entropy: `ϰ_S = -1/V * ((partial V)/(partial p))_S` where `V` is volume (ISO 80000-3), `p` is pressure (ISO 80000-4), and `S` is entropy (item 5-18)
         * remarks: The subscripts in the symbols may be omitted when there is no risk of confusion.
         */
        attribute :>> num: Real;
        attribute :>> mRef: IsentropicCompressibilityUnit[1];
    }

    attribute isentropicCompressibility: IsentropicCompressibilityValue[*] nonunique :> scalarQuantities;

    attribute def IsentropicCompressibilityUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 1; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 2; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); }
    }

    /* ISO-80000-5 item 5-6.1 heat, amount of heat */
    attribute heat: EnergyValue :> scalarQuantities {
        doc
        /*
         * source: item 5-6.1 heat, amount of heat
         * symbol(s): `Q`
         * application domain: generic
         * name: Heat (specializes Energy)
         * quantity dimension: L^2*M^1*T^-2
         * measurement unit(s): J, kg*m^2*s^-2
         * tensor order: 0
         * definition: difference between the increase in the internal energy (item 5-20.2) of a system and the work (ISO 80000-4) done on the system, provided that the amounts of substances within the system are not changed
         * remarks: The heat transferred in an isothermal phase transformation should be expressed as the change in the appropriate state functions, e.g. `T ΔS`, where `T` is thermodynamic temperature (item 5-1) and `S` is entropy (item 5-18), or `ΔH`, where `H` is enthalpy (item 5-20.3). NOTE A supply of heat can correspond to an increase in thermodynamic temperature or to other effects, such as phase change or chemical processes; see item 5-6.2.
         */
    }

    alias amountOfHeat for heat;

    /* ISO-80000-5 item 5-6.2 latent heat */
    attribute latentHeat: EnergyValue :> scalarQuantities {
        doc
        /*
         * source: item 5-6.2 latent heat
         * symbol(s): `Q`
         * application domain: generic
         * name: LatentHeat (specializes Energy)
         * quantity dimension: L^2*M^1*T^-2
         * measurement unit(s): J, kg*m^2*s^-2
         * tensor order: 0
         * definition: energy released or absorbed by a system during a constant-temperature process
         * remarks: Examples of latent heat are latent heat of fusion (melting) and latent heat of vaporization (boiling).
         */
    }

    /* ISO-80000-5 item 5-7 heat flow rate */
    attribute def HeatFlowRateValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 5-7 heat flow rate
         * symbol(s): `dot(Q)`
         * application domain: generic
         * name: HeatFlowRate
         * quantity dimension: L^2*M^1*T^-3
         * measurement unit(s): W, J/s, kg*m^2*s^-3
         * tensor order: 0
         * definition: time rate at which heat (item 5-6.1) crosses a given surface
         * remarks: None.
         */
        attribute :>> num: Real;
        attribute :>> mRef: HeatFlowRateUnit[1];
    }

    attribute heatFlowRate: HeatFlowRateValue[*] nonunique :> scalarQuantities;

    attribute def HeatFlowRateUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -3; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); }
    }

    /* ISO-80000-5 item 5-8 density of heat flow rate */
    attribute def DensityOfHeatFlowRateValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 5-8 density of heat flow rate
         * symbol(s): `q`, `φ`
         * application domain: generic
         * name: DensityOfHeatFlowRate
         * quantity dimension: M^1*T^-3
         * measurement unit(s): W/m^2, kg*s^-3
         * tensor order: 0
         * definition: quotient of heat flow rate and area: `q = dot Q / A` where `dot Q` is heat flow rate (item 5-7) and A is area (ISO 80000-3) of a given surface
         * remarks: None.
         */
        attribute :>> num: Real;
        attribute :>> mRef: DensityOfHeatFlowRateUnit[1];
    }

    attribute densityOfHeatFlowRate: DensityOfHeatFlowRateValue[*] nonunique :> scalarQuantities;

    attribute def DensityOfHeatFlowRateUnit :> DerivedUnit {
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -3; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (massPF, durationPF); }
    }

    /* ISO-80000-5 item 5-9 thermal conductivity */
    attribute def ThermalConductivityValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 5-9 thermal conductivity
         * symbol(s): `λ_l`, `(ϰ)`
         * application domain: generic
         * name: ThermalConductivity
         * quantity dimension: L^1*M^1*T^-3*Θ^-1
         * measurement unit(s): W/(m*K), kg*m*s^-3*K^-1
         * tensor order: 0
         * definition: quotient of density of heat flow rate (item 5-8) and thermodynamic temperature gradient that has the same direction as the heat flow
         * remarks: None.
         */
        attribute :>> num: Real;
        attribute :>> mRef: ThermalConductivityUnit[1];
    }

    attribute thermalConductivity: ThermalConductivityValue[*] nonunique :> scalarQuantities;

    attribute def ThermalConductivityUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 1; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -3; }
        private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, thermodynamicTemperaturePF); }
    }

    /* ISO-80000-5 item 5-10.1 coefficient of heat transfer */
    attribute def CoefficientOfHeatTransferValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 5-10.1 coefficient of heat transfer
         * symbol(s): `K`, `(k)`
         * application domain: generic
         * name: CoefficientOfHeatTransfer
         * quantity dimension: M^1*T^-3*Θ^-1
         * measurement unit(s): W/(m^2*K), kg*s^-3*K^-1
         * tensor order: 0
         * definition: quotient of density of heat flow rate (item 5-8) and thermodynamic temperature (item 5-1) difference
         * remarks: In building technology, the coefficient of heat transfer is often called thermal transmittance, with the symbol U (no longer recommended). See remark to item 5-13.
         */
        attribute :>> num: Real;
        attribute :>> mRef: CoefficientOfHeatTransferUnit[1];
    }

    attribute coefficientOfHeatTransfer: CoefficientOfHeatTransferValue[*] nonunique :> scalarQuantities;

    attribute def CoefficientOfHeatTransferUnit :> DerivedUnit {
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -3; }
        private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (massPF, durationPF, thermodynamicTemperaturePF); }
    }

    /* ISO-80000-5 item 5-10.2 surface coefficient of heat transfer */
    attribute def SurfaceCoefficientOfHeatTransferValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 5-10.2 surface coefficient of heat transfer
         * symbol(s): `h`, `(α)`
         * application domain: generic
         * name: SurfaceCoefficientOfHeatTransfer
         * quantity dimension: M^1*T^-3*Θ^-1
         * measurement unit(s): W/(m^2*K), kg*s^-3*K^-1
         * tensor order: 0
         * definition: quotient of density of heat flow rate and the difference of the temperature at the surface and a reference temperature: `h = q / (T_s - T_r)` where q is density of heat flow rate (item 5-8), `T_s` is the thermodynamic temperature (item 5-1) at the surface, and `T_r` is a reference thermodynamic temperature characterizing the adjacent surroundings
         * remarks: None.
         */
        attribute :>> num: Real;
        attribute :>> mRef: SurfaceCoefficientOfHeatTransferUnit[1];
    }

    attribute surfaceCoefficientOfHeatTransfer: SurfaceCoefficientOfHeatTransferValue[*] nonunique :> scalarQuantities;

    attribute def SurfaceCoefficientOfHeatTransferUnit :> DerivedUnit {
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -3; }
        private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (massPF, durationPF, thermodynamicTemperaturePF); }
    }

    /* ISO-80000-5 item 5-11 thermal insulance, coefficient of thermal insulance */
    attribute def ThermalInsulanceValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 5-11 thermal insulance, coefficient of thermal insulance
         * symbol(s): `M`
         * application domain: generic
         * name: ThermalInsulance
         * quantity dimension: M^-1*T^3*Θ^1
         * measurement unit(s): m^2*K/W, kg^-1*s^3*K
         * tensor order: 0
         * definition: inverse of coefficient of heat transfer `K`: `M = 1/K` where `K` is coefficient of heat transfer (item 5-10.1)
         * remarks: In building technology, this quantity is often called thermal resistance, with the symbol R.
         */
        attribute :>> num: Real;
        attribute :>> mRef: ThermalInsulanceUnit[1];
    }

    attribute thermalInsulance: ThermalInsulanceValue[*] nonunique :> scalarQuantities;

    attribute def ThermalInsulanceUnit :> DerivedUnit {
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 3; }
        private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = 1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (massPF, durationPF, thermodynamicTemperaturePF); }
    }

    alias CoefficientOfThermalInsulanceUnit for ThermalInsulanceUnit;
    alias CoefficientOfThermalInsulanceValue for ThermalInsulanceValue;
    alias coefficientOfThermalInsulance for thermalInsulance;

    /* ISO-80000-5 item 5-12 thermal resistance */
    attribute def ThermalResistanceValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 5-12 thermal resistance
         * symbol(s): `R`
         * application domain: generic
         * name: ThermalResistance
         * quantity dimension: L^-2*M^-1*T^3*Θ^1
         * measurement unit(s): K/W, kg^-1*m^-2*s^3*K
         * tensor order: 0
         * definition: quotient of thermodynamic temperature (item 5-1) difference and heat flow rate (item 5-7)
         * remarks: See remark to item 5-11.
         */
        attribute :>> num: Real;
        attribute :>> mRef: ThermalResistanceUnit[1];
    }

    attribute thermalResistance: ThermalResistanceValue[*] nonunique :> scalarQuantities;

    attribute def ThermalResistanceUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -2; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 3; }
        private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = 1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, thermodynamicTemperaturePF); }
    }

    /* ISO-80000-5 item 5-13 thermal conductance */
    attribute def ThermalConductanceValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 5-13 thermal conductance
         * symbol(s): `G`, `(H)`
         * application domain: generic
         * name: ThermalConductance
         * quantity dimension: L^2*M^1*T^-3*Θ^-1
         * measurement unit(s): W/K, kg*m^2*s^-3*K^-1
         * tensor order: 0
         * definition: inverse of thermal resistance `R`: `G = 1/R` where `R` is thermal resistance (item 5-12)
         * remarks: See remark to item 5-11. This quantity is also called heat transfer coefficient. See item 5-10.1.
         */
        attribute :>> num: Real;
        attribute :>> mRef: ThermalConductanceUnit[1];
    }

    attribute thermalConductance: ThermalConductanceValue[*] nonunique :> scalarQuantities;

    attribute def ThermalConductanceUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -3; }
        private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, thermodynamicTemperaturePF); }
    }

    /* ISO-80000-5 item 5-14 thermal diffusivity */
    attribute def ThermalDiffusivityValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 5-14 thermal diffusivity
         * symbol(s): `a`
         * application domain: generic
         * name: ThermalDiffusivity
         * quantity dimension: L^2*T^-1
         * measurement unit(s): m^2*s^-1
         * tensor order: 0
         * definition: quotient of thermal conductivity and the product of mass density and specific heat capacity: `a = λ / (ρ C_p)` where `λ` is thermal conductivity (item 5-9), `ρ` is mass density (ISO 80000-4), and `c_p` is specific heat capacity at constant pressure (item 5-16.2)
         * remarks: None.
         */
        attribute :>> num: Real;
        attribute :>> mRef: ThermalDiffusivityUnit[1];
    }

    attribute thermalDiffusivity: ThermalDiffusivityValue[*] nonunique :> scalarQuantities;

    attribute def ThermalDiffusivityUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF); }
    }

    /* ISO-80000-5 item 5-15 heat capacity */
    attribute def HeatCapacityValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 5-15 heat capacity
         * symbol(s): `C`
         * application domain: generic
         * name: HeatCapacity
         * quantity dimension: L^2*M^1*T^-2*Θ^-1
         * measurement unit(s): J/K, kg*m^2*s^-2*K^-1
         * tensor order: 0
         * definition: derivative of added heat with respect to thermodynamic temperature of a system: `C = (dQ)/(dT)` where `Q` is amount of heat (item 5-6.1) and `T` is thermodynamic temperature (item 5-1)
         * remarks: Heat capacity is not completely defined unless specified as seen in items 5-16.2, 5-16.3 and 5-16.4.
         */
        attribute :>> num: Real;
        attribute :>> mRef: HeatCapacityUnit[1];
    }

    attribute heatCapacity: HeatCapacityValue[*] nonunique :> scalarQuantities;

    attribute def HeatCapacityUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
        private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, thermodynamicTemperaturePF); }
    }

    /* ISO-80000-5 item 5-16.1 specific heat capacity */
    attribute def SpecificHeatCapacityValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 5-16.1 specific heat capacity
         * symbol(s): `c`
         * application domain: generic
         * name: SpecificHeatCapacity
         * quantity dimension: L^2*T^-2*Θ^-1
         * measurement unit(s): J/(kg*K), m^2*s^-2*K^-1
         * tensor order: 0
         * definition: quotient of heat capacity and mass: `c = C/m` where `C` is heat capacity (item 5-15) and `m` is mass (ISO 80000-4)
         * remarks: For the corresponding quantities related to the amount of substance, see ISO 80000-9.
         */
        attribute :>> num: Real;
        attribute :>> mRef: SpecificHeatCapacityUnit[1];
    }

    attribute specificHeatCapacity: SpecificHeatCapacityValue[*] nonunique :> scalarQuantities;

    attribute def SpecificHeatCapacityUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
        private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF, thermodynamicTemperaturePF); }
    }

    /* ISO-80000-5 item 5-16.2 specific heat capacity at constant pressure */
    attribute def SpecificHeatCapacityAtConstantPressureValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 5-16.2 specific heat capacity at constant pressure
         * symbol(s): `c_p`
         * application domain: generic
         * name: SpecificHeatCapacityAtConstantPressure
         * quantity dimension: L^2*T^-2*Θ^-1
         * measurement unit(s): J/(kg*K), m^2*s^-2*K^-1
         * tensor order: 0
         * definition: specific heat capacity (item 5-16.1) at constant pressure (ISO 80000-4)
         * remarks: Also called specific isobaric heat capacity.
         */
        attribute :>> num: Real;
        attribute :>> mRef: SpecificHeatCapacityAtConstantPressureUnit[1];
    }

    attribute specificHeatCapacityAtConstantPressure: SpecificHeatCapacityAtConstantPressureValue[*] nonunique :> scalarQuantities;

    attribute def SpecificHeatCapacityAtConstantPressureUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
        private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF, thermodynamicTemperaturePF); }
    }

    /* ISO-80000-5 item 5-16.3 specific heat capacity at constant volume */
    attribute def SpecificHeatCapacityAtConstantVolumeValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 5-16.3 specific heat capacity at constant volume
         * symbol(s): `c_V`
         * application domain: generic
         * name: SpecificHeatCapacityAtConstantVolume
         * quantity dimension: L^2*T^-2*Θ^-1
         * measurement unit(s): J/(kg*K), m^2*s^-2*K^-1
         * tensor order: 0
         * definition: specific heat capacity (item 5-16.1) at constant volume (ISO 80000-3)
         * remarks: Also called specific isochoric heat capacity.
         */
        attribute :>> num: Real;
        attribute :>> mRef: SpecificHeatCapacityAtConstantVolumeUnit[1];
    }

    attribute specificHeatCapacityAtConstantVolume: SpecificHeatCapacityAtConstantVolumeValue[*] nonunique :> scalarQuantities;

    attribute def SpecificHeatCapacityAtConstantVolumeUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
        private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF, thermodynamicTemperaturePF); }
    }

    /* ISO-80000-5 item 5-16.4 specific heat capacity at saturated vapour pressure */
    attribute def SpecificHeatCapacityAtSaturatedVapourPressureValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 5-16.4 specific heat capacity at saturated vapour pressure
         * symbol(s): `c_"sat"`
         * application domain: generic
         * name: SpecificHeatCapacityAtSaturatedVapourPressure
         * quantity dimension: L^2*T^-2*Θ^-1
         * measurement unit(s): J/(kg*K), m^2*s^-2*K^-1
         * tensor order: 0
         * definition: specific heat capacity (item 5-16.1) at saturated vapour pressure (ISO 80000-4)
         * remarks: None.
         */
        attribute :>> num: Real;
        attribute :>> mRef: SpecificHeatCapacityAtSaturatedVapourPressureUnit[1];
    }

    attribute specificHeatCapacityAtSaturatedVapourPressure: SpecificHeatCapacityAtSaturatedVapourPressureValue[*] nonunique :> scalarQuantities;

    attribute def SpecificHeatCapacityAtSaturatedVapourPressureUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
        private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF, thermodynamicTemperaturePF); }
    }

    /* ISO-80000-5 item 5-17.1 ratio of specific heat capacities */
    attribute def RatioOfSpecificHeatCapacitiesValue :> DimensionOneValue {
        doc
        /*
         * source: item 5-17.1 ratio of specific heat capacities
         * symbol(s): `γ`
         * application domain: generic
         * name: RatioOfSpecificHeatCapacities (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: quotient of specific heat capacity at constant pressure and specific heat capacity at constant volume: `γ = c_p/c_V` where `c_p` is specific heat capacity at constant pressure (item 5-16.2) and `c_V` is specific heat capacity at constant volume (item 5-16.3)
         * remarks: This quantity can also be expressed by `γ = C_p/C_V` where `C_p` is heat capacity at constant pressure and `C_V` is heat capacity at constant volume.
         */
    }
    attribute ratioOfSpecificHeatCapacities: RatioOfSpecificHeatCapacitiesValue :> scalarQuantities;

    /* ISO-80000-5 item 5-17.2 isentropic exponent, isentropic expansion factor */
    attribute def IsentropicExponentValue :> DimensionOneValue {
        doc
        /*
         * source: item 5-17.2 isentropic exponent, isentropic expansion factor
         * symbol(s): `ϰ`
         * application domain: generic
         * name: IsentropicExponent (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: the negative of relative pressure change, divided by relative volume change, at constant entropy: `ϰ = -V/p * ((partial p)/(partial V))_S` where `V` is volume (ISO 80000-3), `p` is pressure (ISO 80000-4), and `S` is entropy (item 5-18)
         * remarks: For an ideal gas, `ϰ` is equal to `γ` (item 5-17.1).
         */
    }
    attribute isentropicExponent: IsentropicExponentValue :> scalarQuantities;

    alias isentropicExpansionFactor for isentropicExponent;

    /* ISO-80000-5 item 5-18 entropy */
    attribute def EntropyValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 5-18 entropy
         * symbol(s): `S`
         * application domain: generic
         * name: Entropy
         * quantity dimension: L^2*M^1*T^-2*Θ^-1
         * measurement unit(s): J/K, kg*m^2*s^-2*K^-1
         * tensor order: 0
         * definition: natural logarithm of number of equally probable microscopic configurations in a macroscopic system, multiplied by the Boltzmann constant: `S = k lnW` where `W` is number of configurations and `k` is the Boltzmann constant (ISO 80000-1)
         * remarks: None.
         */
        attribute :>> num: Real;
        attribute :>> mRef: EntropyUnit[1];
    }

    attribute entropy: EntropyValue[*] nonunique :> scalarQuantities;

    attribute def EntropyUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
        private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, thermodynamicTemperaturePF); }
    }

    /* ISO-80000-5 item 5-19 specific entropy */
    attribute def SpecificEntropyValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 5-19 specific entropy
         * symbol(s): `s`
         * application domain: generic
         * name: SpecificEntropy
         * quantity dimension: L^2*T^-2*Θ^-1
         * measurement unit(s): J/(kg*K), m^2*s^-2*K^-1
         * tensor order: 0
         * definition: quotient of entropy and mass: `s = S/m` where `S` is entropy (item 5-18) and `m` is mass (ISO 80000-4)
         * remarks: For the corresponding quantity related to amount of substance, see ISO 80000-9.
         */
        attribute :>> num: Real;
        attribute :>> mRef: SpecificEntropyUnit[1];
    }

    attribute specificEntropy: SpecificEntropyValue[*] nonunique :> scalarQuantities;

    attribute def SpecificEntropyUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
        private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF, thermodynamicTemperaturePF); }
    }

    /* ISO-80000-5 item 5-20.1 energy */
    attribute def EnergyValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 5-20.1 energy
         * symbol(s): `E`
         * application domain: thermodynamics
         * name: Energy
         * quantity dimension: L^2*M^1*T^-2
         * measurement unit(s): J, kg*m^2*s^-2
         * tensor order: 0
         * definition: ability of a system to do work (ISO 80000-4)
         * remarks: Energy exists in different forms that are mutually transformable into each other, either totally or partially. In contrast to internal energy (item 5-20.2), energy is not a state function.
         */
        attribute :>> num: Real;
        attribute :>> mRef: EnergyUnit[1];
    }

    attribute energy: EnergyValue[*] nonunique :> scalarQuantities;

    attribute def EnergyUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); }
    }

    /* ISO-80000-5 item 5-20.2 internal energy, thermodynamic energy */
    attribute internalEnergy: EnergyValue :> scalarQuantities {
        doc
        /*
         * source: item 5-20.2 internal energy, thermodynamic energy
         * symbol(s): `U`
         * application domain: generic
         * name: InternalEnergy (specializes Energy)
         * quantity dimension: L^2*M^1*T^-2
         * measurement unit(s): J, kg*m^2*s^-2
         * tensor order: 0
         * definition: energy of a system whose change is given by the amount of the heat (item 5-6.1) transferred to the system and the work (ISO 80000-4) done on the system, provided that the system is closed and no chemical reactions occur
         * remarks: In thermodynamic text books, usually the formula `ΔU = Q + W` is used. Note that the zero of the energy is undefined.
         */
    }

    alias thermodynamicEnergy for internalEnergy;

    /* ISO-80000-5 item 5-20.3 enthalpy */
    attribute enthalpy: EnergyValue :> scalarQuantities {
        doc
        /*
         * source: item 5-20.3 enthalpy
         * symbol(s): `H`
         * application domain: generic
         * name: Enthalpy (specializes Energy)
         * quantity dimension: L^2*M^1*T^-2
         * measurement unit(s): J, kg*m^2*s^-2
         * tensor order: 0
         * definition: sum of internal energy of the system and the product of pressure and volume of the system: `H = U + p*V` where U is internal energy (item 5-20.2), `p` is pressure (ISO 80000-4), and `V` is volume (ISO 80000-3)
         * remarks: None.
         */
    }

    /* ISO-80000-5 item 5-20.4 Helmholtz energy, Helmholtz function */
    attribute helmholtzEnergy: EnergyValue :> scalarQuantities {
        doc
        /*
         * source: item 5-20.4 Helmholtz energy, Helmholtz function
         * symbol(s): `A`, `F`
         * application domain: generic
         * name: HelmholtzEnergy (specializes Energy)
         * quantity dimension: L^2*M^1*T^-2
         * measurement unit(s): J, kg*m^2*s^-2
         * tensor order: 0
         * definition: difference of internal energy of the system and the product of thermodynamic temperature and entropy of the system: `A = U - TS` where `U` is internal energy (item 5-20.2), `T` is thermodynamic temperature (item 5-1), and `S` is entropy (item 5-18)
         * remarks: The name Helmholtz free energy is also used. However, this term is not recommended.
         */
    }

    alias helmholtzFunction for helmholtzEnergy;

    /* ISO-80000-5 item 5-20.5 Gibbs energy, Gibbs function */
    attribute gibbsEnergy: EnergyValue :> scalarQuantities {
        doc
        /*
         * source: item 5-20.5 Gibbs energy, Gibbs function
         * symbol(s): `G`
         * application domain: generic
         * name: GibbsEnergy (specializes Energy)
         * quantity dimension: L^2*M^1*T^-2
         * measurement unit(s): J, kg*m^2*s^-2
         * tensor order: 0
         * definition: difference of the enthalpy and the product of thermodynamic temperature and entropy of the system: `G = H - T*S` where H is enthalpy (item 5-20.3), `T` is thermodynamic temperature (item 5-1), and `S` is entropy (item 5-18)
         * remarks: The name Gibbs free energy is also used. However, this term is not recommended.
         */
    }

    alias gibbsFunction for gibbsEnergy;

    /* ISO-80000-5 item 5-21.1 specific energy */
    attribute def SpecificEnergyValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 5-21.1 specific energy
         * symbol(s): `e`
         * application domain: generic
         * name: SpecificEnergy
         * quantity dimension: L^2*T^-2
         * measurement unit(s): J/kg, m^2*s^-2
         * tensor order: 0
         * definition: quotient of energy and mass: `e = E/m` where `E` is energy (item 5-20.1) and `m` is mass (ISO 80000-4)
         * remarks: None.
         */
        attribute :>> num: Real;
        attribute :>> mRef: SpecificEnergyUnit[1];
    }

    attribute specificEnergy: SpecificEnergyValue[*] nonunique :> scalarQuantities;

    attribute def SpecificEnergyUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF); }
    }

    /* ISO-80000-5 item 5-21.2 specific internal energy, specific thermodynamic energy */
    attribute specificInternalEnergy: SpecificEnergyValue :> scalarQuantities {
        doc
        /*
         * source: item 5-21.2 specific internal energy, specific thermodynamic energy
         * symbol(s): `u`
         * application domain: generic
         * name: SpecificInternalEnergy (specializes SpecificEnergy)
         * quantity dimension: L^2*T^-2
         * measurement unit(s): J/kg, m^2*s^-2
         * tensor order: 0
         * definition: quotient of internal energy and mass: `u = U/m` where `U` is internal energy (item 5-20.2) and `m` is mass (ISO 80000-4)
         * remarks: None.
         */
    }

    alias specificThermodynamicEnergy for specificInternalEnergy;

    /* ISO-80000-5 item 5-21.3 specific enthalpy */
    attribute def SpecificEnthalpyValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 5-21.3 specific enthalpy
         * symbol(s): `h`
         * application domain: generic
         * name: SpecificEnthalpy
         * quantity dimension: L^2*T^-2
         * measurement unit(s): J/kg, m^2*s^-2
         * tensor order: 0
         * definition: quotient of enthalpy and mass: `h = H/m` where `H` is enthalpy (item 5-20.3) and `m` is mass (ISO 80000-4)
         * remarks: None.
         */
        attribute :>> num: Real;
        attribute :>> mRef: SpecificEnthalpyUnit[1];
    }

    attribute specificEnthalpy: SpecificEnthalpyValue[*] nonunique :> scalarQuantities;

    attribute def SpecificEnthalpyUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF); }
    }

    /* ISO-80000-5 item 5-21.4 specific Helmholtz energy, specific Helmholtz function */
    attribute specificHelmholtzEnergy: SpecificEnergyValue :> scalarQuantities {
        doc
        /*
         * source: item 5-21.4 specific Helmholtz energy, specific Helmholtz function
         * symbol(s): `a`, `f`
         * application domain: generic
         * name: SpecificHelmholtzEnergy (specializes SpecificEnergy)
         * quantity dimension: L^2*T^-2
         * measurement unit(s): J/kg, m^2*s^-2
         * tensor order: 0
         * definition: quotient of Helmholtz energy and mass: `a = A/m` where A is Helmholtz energy (item 5-20.4) and m is mass (ISO 80000-4)
         * remarks: The name specific Helmholtz free energy is also used. However, this term is not recommended.
         */
    }

    alias specificHelmholtzFunction for specificHelmholtzEnergy;

    /* ISO-80000-5 item 5-21.5 specific Gibbs energy, specific Gibbs function */
    attribute specificGibbsEnergy: SpecificEnergyValue :> scalarQuantities {
        doc
        /*
         * source: item 5-21.5 specific Gibbs energy, specific Gibbs function
         * symbol(s): `g`
         * application domain: generic
         * name: SpecificGibbsEnergy (specializes SpecificEnergy)
         * quantity dimension: L^2*T^-2
         * measurement unit(s): J/kg, m^2*s^-2
         * tensor order: 0
         * definition: quotient of Gibbs energy and mass: `g = G/m` where `G` is Gibbs energy (item 5-20.5) and `m` is mass (ISO 80000-4)
         * remarks: The name specific Gibbs free energy is also used. However, this term is not recommended.
         */
    }

    alias specificGibbsFunction for specificGibbsEnergy;

    /* ISO-80000-5 item 5-22 Massieu function */
    attribute def MassieuFunctionValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 5-22 Massieu function
         * symbol(s): `J`
         * application domain: generic
         * name: MassieuFunction
         * quantity dimension: L^2*M^1*T^-2*Θ^-1
         * measurement unit(s): J/K, kg*m^2*s^-2*K^-1
         * tensor order: 0
         * definition: quotient of the negative of Helmholtz energy and temperature: `J = -A/T` where `A` is Helmholtz energy (item 5-20.4) and `T` is thermodynamic temperature (item 5-1)
         * remarks: None.
         */
        attribute :>> num: Real;
        attribute :>> mRef: MassieuFunctionUnit[1];
    }

    attribute massieuFunction: MassieuFunctionValue[*] nonunique :> scalarQuantities;

    attribute def MassieuFunctionUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
        private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, thermodynamicTemperaturePF); }
    }

    /* ISO-80000-5 item 5-23 Planck function */
    attribute def PlanckFunctionValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 5-23 Planck function
         * symbol(s): `Y`
         * application domain: generic
         * name: PlanckFunction
         * quantity dimension: L^2*M^1*T^-2*Θ^-1
         * measurement unit(s): J/K, kg*m^2*s^-2*K^-1
         * tensor order: 0
         * definition: quotient of the negative of Gibbs energy and temperature: `Y = -G/T` where G is Gibbs energy (item 5-20.5) and `T` is thermodynamic temperature (item 5-1)
         * remarks: None.
         */
        attribute :>> num: Real;
        attribute :>> mRef: PlanckFunctionUnit[1];
    }

    attribute planckFunction: PlanckFunctionValue[*] nonunique :> scalarQuantities;

    attribute def PlanckFunctionUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
        private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, thermodynamicTemperaturePF); }
    }

    /* ISO-80000-5 item 5-24 Joule-Thomson coefficient */
    attribute def JouleThomsonCoefficientValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 5-24 Joule-Thomson coefficient
         * symbol(s): `μ_"JT"`
         * application domain: generic
         * name: JouleThomsonCoefficient
         * quantity dimension: L^1*M^-1*T^2*Θ^1
         * measurement unit(s): K/Pa, kg^-1*m*s^2*K
         * tensor order: 0
         * definition: change of thermodynamic temperature with respect to pressure in a Joule-Thomson process at constant enthalpy: `μ_(JT) = ((partial T)/(partial p))_H` where `T` is thermodynamic temperature (item 5-1), `p` is pressure (ISO 80000-4) and H is enthalpy (item 5-20.3)
         * remarks: None.
         */
        attribute :>> num: Real;
        attribute :>> mRef: JouleThomsonCoefficientUnit[1];
    }

    attribute jouleThomsonCoefficient: JouleThomsonCoefficientValue[*] nonunique :> scalarQuantities;

    attribute def JouleThomsonCoefficientUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 1; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 2; }
        private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = 1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, thermodynamicTemperaturePF); }
    }

    /* ISO-80000-5 item 5-25.1 thermal efficiency */
    attribute def ThermalEfficiencyValue :> DimensionOneValue {
        doc
        /*
         * source: item 5-25.1 thermal efficiency
         * symbol(s): `η`
         * application domain: thermodynamics
         * name: ThermalEfficiency (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: quotient of work (ISO 80000-4) delivered by a heat engine and supplied heat: `η = W/Q` where `W` is work (ISO 80000-4) and `Q` is heat (item 5-6.1)
         * remarks: None.
         */
    }
    attribute thermalEfficiency: ThermalEfficiencyValue :> scalarQuantities;

    /* ISO-80000-5 item 5-25.2 maximum thermal efficiency */
    attribute def MaximumThermalEfficiencyValue :> DimensionOneValue {
        doc
        /*
         * source: item 5-25.2 maximum thermal efficiency
         * symbol(s): `η_"max"`
         * application domain: generic
         * name: MaximumThermalEfficiency (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: efficiency determined by the quotient of the temperatures of the hot source and the cold sink: `η_max = 1 - T_c/T_h` where `T_c` is the thermodynamic temperature (item 5-1) of the cold sink and `T_h` is the thermodynamic temperature (item 5-1) of the hot source
         * remarks: An ideal heat engine operating according to the Carnot process is delivering the maximum efficiency.
         */
    }
    attribute maximumThermalEfficiency: MaximumThermalEfficiencyValue :> scalarQuantities;

    /* ISO-80000-5 item 5-26 specific gas constant */
    attribute def SpecificGasConstantValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 5-26 specific gas constant
         * symbol(s): `R_s`
         * application domain: generic
         * name: SpecificGasConstant
         * quantity dimension: L^2*T^-2*Θ^-1
         * measurement unit(s): J/(kg*K), m^2*s^-2*K^-1
         * tensor order: 0
         * definition: quotient of the Boltzmann constant `k` (ISO 80000-1) and the mass `m` (ISO 80000-4) of the gas particle
         * remarks: None.
         */
        attribute :>> num: Real;
        attribute :>> mRef: SpecificGasConstantUnit[1];
    }

    attribute specificGasConstant: SpecificGasConstantValue[*] nonunique :> scalarQuantities;

    attribute def SpecificGasConstantUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
        private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF, thermodynamicTemperaturePF); }
    }

    /* ISO-80000-5 item 5-27 mass concentration of water */
    attribute def MassConcentrationOfWaterValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 5-27 mass concentration of water
         * symbol(s): `w`
         * application domain: generic
         * name: MassConcentrationOfWater
         * quantity dimension: L^-3*M^1
         * measurement unit(s): kg*m^-3
         * tensor order: 0
         * definition: quotient of mass of water and a specified volume: `w = m/V` where `m` is mass (ISO 80000-4) of water, irrespective of the form of aggregation state, and `V` is volume (ISO 80000-3)
         * remarks: Mass concentration of water at saturation is denoted `w_"sat"`.
         */
        attribute :>> num: Real;
        attribute :>> mRef: MassConcentrationOfWaterUnit[1];
    }

    attribute massConcentrationOfWater: MassConcentrationOfWaterValue[*] nonunique :> scalarQuantities;

    attribute def MassConcentrationOfWaterUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -3; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF); }
    }

    /* ISO-80000-5 item 5-28 mass concentration of water vapour absolute humidity */
    attribute def MassConcentrationOfWaterVapourAbsoluteHumidityValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 5-28 mass concentration of water vapour absolute humidity
         * symbol(s): `v`
         * application domain: generic
         * name: MassConcentrationOfWaterVapourAbsoluteHumidity
         * quantity dimension: L^-3*M^1
         * measurement unit(s): kg*m^-3
         * tensor order: 0
         * definition: quotient of mass of water vapour and a specified volume: `v = m/V` where m is mass (ISO 80000-4) of water vapour and `V` is volume (ISO 80000-3)
         * remarks: Mass concentration of water vapour at saturation is denoted `v_"sat"`.
         */
        attribute :>> num: Real;
        attribute :>> mRef: MassConcentrationOfWaterVapourAbsoluteHumidityUnit[1];
    }

    attribute massConcentrationOfWaterVapourAbsoluteHumidity: MassConcentrationOfWaterVapourAbsoluteHumidityValue[*] nonunique :> scalarQuantities;

    attribute def MassConcentrationOfWaterVapourAbsoluteHumidityUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -3; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF); }
    }

    /* ISO-80000-5 item 5-29 mass ratio of water to dry matter */
    attribute def MassRatioOfWaterToDryMatterValue :> DimensionOneValue {
        doc
        /*
         * source: item 5-29 mass ratio of water to dry matter
         * symbol(s): `u`
         * application domain: generic
         * name: MassRatioOfWaterToDryMatter (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: quotient of mass of water and mass of dry matter: `u = m/m_d` where `m` is mass (ISO 80000-4) of water and `m_d` is mass of dry matter
         * remarks: Mass ratio of water to dry matter at saturation is denoted `u_"sat"`.
         */
    }
    attribute massRatioOfWaterToDryMatter: MassRatioOfWaterToDryMatterValue :> scalarQuantities;

    /* ISO-80000-5 item 5-30 mass ratio of water vapour to dry gas */
    attribute def MassRatioOfWaterVapourToDryGasValue :> DimensionOneValue {
        doc
        /*
         * source: item 5-30 mass ratio of water vapour to dry gas
         * symbol(s): `r`, `(x)`
         * application domain: generic
         * name: MassRatioOfWaterVapourToDryGas (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: quotient of mass of water vapour and mass of dry gas: `r = m/m_d` where `m` is mass (ISO 80000-4) of water vapour and `m_d` is mass of dry gas
         * remarks: Mass ratio of water vapour to dry gas at saturation is denoted `r_"sat"`. Mass ratio of water vapour to dry gas is also called mixing ratio.
         */
    }
    attribute massRatioOfWaterVapourToDryGas: MassRatioOfWaterVapourToDryGasValue :> scalarQuantities;

    /* ISO-80000-5 item 5-31 mass fraction of water */
    attribute def MassFractionOfWaterValue :> DimensionOneValue {
        doc
        /*
         * source: item 5-31 mass fraction of water
         * symbol(s): `w_(H_(2)O)`
         * application domain: generic
         * name: MassFractionOfWater (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: quantity given by: `w_(H_(2)O) = u/(1+u)` where `u` is mass ratio of water to dry matter (item 5-29)
         * remarks: None.
         */
    }
    attribute massFractionOfWater: MassFractionOfWaterValue :> scalarQuantities;

    /* ISO-80000-5 item 5-32 mass fraction of dry matter */
    attribute def MassFractionOfDryMatterValue :> DimensionOneValue {
        doc
        /*
         * source: item 5-32 mass fraction of dry matter
         * symbol(s): `w_d`
         * application domain: generic
         * name: MassFractionOfDryMatter (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: quantity given by: `w_d = 1 - w_(H_(2)O)` where `w_(H_(2)O)` is mass fraction of water (item 5-31)
         * remarks: None.
         */
    }
    attribute massFractionOfDryMatter: MassFractionOfDryMatterValue :> scalarQuantities;

    /* ISO-80000-5 item 5-33 relative humidity */
    attribute def RelativeHumidityValue :> DimensionOneValue {
        doc
        /*
         * source: item 5-33 relative humidity
         * symbol(s): `φ`
         * application domain: generic
         * name: RelativeHumidity (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: quotient of partial pressure of water vapour and partial pressure at its saturation: `φ = p/p_"sat"` where `p` is partial pressure (ISO 80000-4) of vapour and `p_"sat"` is its partial pressure at saturation at the same temperature
         * remarks: Relative humidity is often referred to as RH and expressed in percent. See also remark in item 5-35.
         */
    }
    attribute relativeHumidity: RelativeHumidityValue :> scalarQuantities;

    /* ISO-80000-5 item 5-34 relative mass concentration of vapour */
    attribute def RelativeMassConcentrationOfVapourValue :> DimensionOneValue {
        doc
        /*
         * source: item 5-34 relative mass concentration of vapour
         * symbol(s): `φ`
         * application domain: generic
         * name: RelativeMassConcentrationOfVapour (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: quotient of mass concentration of water vapour and mass concentration at its saturation: `φ = v/v_"sat"` where `v` is mass concentration of water vapour (item 5-28) and `v_"sat"` is its mass concentration of water vapour at saturation of the same temperature
         * remarks: For water vapour concentrations up to 1 kg/m^3, the relative humidity (item 5-33) is assumed to be equal to relative mass concentration of vapour. For details see Reference [8].
         */
    }
    attribute relativeMassConcentrationOfVapour: RelativeMassConcentrationOfVapourValue :> scalarQuantities;

    /* ISO-80000-5 item 5-35 relative mass ratio of vapour */
    attribute def RelativeMassRatioOfVapourValue :> DimensionOneValue {
        doc
        /*
         * source: item 5-35 relative mass ratio of vapour
         * symbol(s): `ψ`
         * application domain: generic
         * name: RelativeMassRatioOfVapour (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: quotient of mass ratio of water vapour to dry gas and mass ratio of water vapour to dry gas at saturation: `ψ = r/r_"sat"` where `r` is mass ratio of water vapour to dry gas (item 5-30) and `r_"sat"` is its mass ratio of water vapour to dry gas at saturation of the same temperature
         * remarks: This quantity is also used as an approximation of relative humidity (item 5-33).
         */
    }
    attribute relativeMassRatioOfVapour: RelativeMassRatioOfVapourValue :> scalarQuantities;

    /* ISO-80000-5 item 5-36 dew-point temperature */
    attribute dewPointTemperature: ThermodynamicTemperatureValue :> scalarQuantities {
        doc
        /*
         * source: item 5-36 dew-point temperature
         * symbol(s): `T_d`
         * application domain: generic
         * name: DewPointTemperature (specializes ThermodynamicTemperature)
         * quantity dimension: Θ^1
         * measurement unit(s): K
         * tensor order: 0
         * definition: temperature at which water vapour in the air reaches saturation under isobaric conditions
         * remarks: The corresponding Celsius temperature, denoted `t_d`, is still called dew-point temperature. The unit for the corresponding Celsius temperature is degree Celsius, symbol °C.
         */
    }

}