|
standard library package ShapeItems { |
|
doc |
|
/* |
|
* This package provides a model of items that represent basic geometric shapes. |
|
*/ |
|
|
|
private import ScalarValues::Boolean; |
|
private import ScalarValues::Positive; |
|
private import ISQ::*; |
|
private import SI::m; |
|
private import Occurrences::MatesWith; |
|
private import Objects::*; |
|
private import Items::Item; |
|
private import SequenceFunctions::equals; |
|
private import SequenceFunctions::isEmpty; |
|
private import SequenceFunctions::notEmpty; |
|
private import SequenceFunctions::size; |
|
private import SequenceFunctions::includes; |
|
private import ControlFunctions::'if'; |
|
private import ControlFunctions::forAll; |
|
private import ControlFunctions::exists; |
|
private import Quantities::scalarQuantities; |
|
|
|
item def PlanarCurve :> Curve { |
|
doc |
|
/* |
|
* A PlanarCurve is a Curve with a given length embeddable in a plane. |
|
*/ |
|
|
|
attribute :>> length [1]; |
|
|
|
attribute :>> outerSpaceDimension; |
|
assert constraint { notEmpty(outerSpaceDimension) & outerSpaceDimension <= 2 } |
|
} |
|
|
|
item def PlanarSurface :> Surface { |
|
doc |
|
/* |
|
* A PlanarSurface is a flat Surface with a given area. |
|
*/ |
|
|
|
attribute :>> area [1]; |
|
attribute :>> outerSpaceDimension = 2; |
|
|
|
item :>> shape : PlanarCurve; |
|
} |
|
|
|
item def Line :> PlanarCurve { |
|
doc |
|
/* |
|
* A Line is a Curve that is a straight line of a given length. |
|
*/ |
|
|
|
attribute :>> length [1]; |
|
attribute :>> outerSpaceDimension = 1; |
|
} |
|
|
|
abstract item def Path :> StructuredSpaceObject, Curve { |
|
doc |
|
/* |
|
* Path is the most general structured Curve. |
|
*/ |
|
|
|
item :>> faces [0]; |
|
item :>> edges [1..*] { |
|
item :>> vertices [0..2]; |
|
} |
|
item :>> vertices = edges.vertices; |
|
|
|
assert constraint { isClosed == vertices->forAll{in p1 : Point; |
|
vertices->exists{p2 : Point; p1 != p2 and |
|
includes(p1.matingOccurrences, p2) } } } |
|
} |
|
|
|
attribute semiMajorAxis : LengthValue [0..*] :> scalarQuantities; |
|
attribute semiMinorAxis : LengthValue [0..*] :> scalarQuantities; |
|
attribute xoffset : LengthValue [0..*] :> scalarQuantities default 0 [m]; |
|
attribute yoffset : LengthValue [0..*] :> scalarQuantities default 0 [m]; |
|
attribute baseLength : LengthValue [0..*] :> scalarQuantities; |
|
attribute baseWidth : LengthValue [0..*] :> scalarQuantities; |
|
|
|
item def ConicSection :> Path, PlanarCurve { |
|
doc |
|
/* |
|
* A ConicSection is a closed PlanarCurve, possibly disconnected, see Hyperbola. |
|
*/ |
|
|
|
|
|
item :>> edges [1..2]; |
|
|
|
item :>> vertices [0]; |
|
} |
|
|
|
item def Ellipse :> ConicSection { |
|
doc |
|
/* |
|
* An Ellipse is a ConicSection in the shape of an ellipse of a given semiaxes. |
|
*/ |
|
|
|
attribute :>> semiMajorAxis [1]; |
|
attribute :>> semiMinorAxis [1]; |
|
|
|
item :>> edges [1]; |
|
} |
|
|
|
item def Circle :> Ellipse { |
|
doc |
|
/* |
|
* A Circle is an Ellipse with semiaxes equal to its radius. |
|
*/ |
|
|
|
attribute :>> radius [1]; |
|
attribute :>> semiMajorAxis [1] = radius; |
|
attribute :>> semiMinorAxis [1] = radius; |
|
|
|
item :>> edges { |
|
attribute length [1] = Circle::radius * TrigFunctions::pi * 2; |
|
} |
|
} |
|
|
|
item def Parabola :> ConicSection { |
|
doc |
|
/* |
|
* A Parabola is a ConicSection in the shape of a parabola of a given focal length. |
|
*/ |
|
|
|
attribute focalDistance : LengthValue [1] :> scalarQuantities; |
|
|
|
item :>> edges [1]; |
|
} |
|
|
|
item def Hyperbola :> ConicSection { |
|
doc |
|
/* |
|
* A Hyperbola is a ConicSection in the shape of a hyperbola with given axes. |
|
*/ |
|
|
|
attribute tranverseAxis : LengthValue [1] :> scalarQuantities; |
|
attribute conjugateAxis : LengthValue [1] :> scalarQuantities; |
|
} |
|
|
|
item def Polygon :> Path, PlanarCurve { |
|
doc |
|
/* |
|
* A Polygon is a closed planar Path with straight edges. |
|
*/ |
|
|
|
item :>> edges : Line { item :>> vertices [2]; } |
|
|
|
attribute :>> isClosed = true; |
|
|
|
assert constraint { (1..size(edges))->forAll {in i; |
|
edges |
|
includes((edges |
|
edges |
|
} |
|
|
|
item def Triangle :> Polygon { |
|
doc |
|
/* |
|
* A Triangle is three-sided Polygon with given length (base), width (perpendicular distance |
|
* from base to apex), and offset of this perpendicular at the base from the center of the base. |
|
*/ |
|
|
|
attribute :>> length [1]; |
|
attribute :>> width [1]; |
|
attribute :>> xoffset [1]; |
|
|
|
item :>> edges [3] = (base, e2, e3); |
|
item base [1] { length = Triangle::length; } |
|
item e2 [1]; |
|
item e3 [1]; |
|
|
|
item :>> vertices [6]; |
|
item v12 [2] ordered = (vertices |
|
item apex [2] ordered = (vertices |
|
item v31 [2] ordered = (vertices |
|
} |
|
|
|
item def RightTriangle :> Triangle { |
|
doc |
|
/* |
|
* A RightTriangle is a Triangle with sides opposite the hypotenuse at right angles. |
|
*/ |
|
|
|
attribute :>> xoffset = length / 2; |
|
|
|
item :>> e2 { attribute :>> length = Triangle::width; } |
|
|
|
item hypotenuse :>> e3 { |
|
attribute :>> length = ( Triangle::length^2 + Triangle::width^2 ); |
|
} |
|
} |
|
|
|
item def Quadrilateral :> Polygon { |
|
doc |
|
/* |
|
* A Quadrilateral is a four-sided Polygon. |
|
*/ |
|
|
|
item :>> edges [4] = (e1, e2, e3, e4); |
|
item e1 [1]; |
|
item e2 [1]; |
|
item e3 [1]; |
|
item e4 [1]; |
|
|
|
item :>> vertices [8]; |
|
item v12 [2] ordered = (vertices |
|
item v23 [2] ordered = (vertices |
|
item v34 [2] ordered = (vertices |
|
item v41 [2] ordered = (vertices |
|
} |
|
|
|
item def Rectangle :> Quadrilateral { |
|
doc |
|
/* |
|
* A Rectangle is a Quadrilateral four right angles and given length and width. |
|
*/ |
|
|
|
attribute :>> length [1]; |
|
attribute :>> width [1]; |
|
|
|
item :>> e1 { attribute :>> length = Rectangle::length; } |
|
item :>> e2 { attribute :>> length = Rectangle::width; } |
|
item :>> e3 { attribute :>> length = e1.length; } |
|
item :>> e4 { attribute :>> length = e2.length; } |
|
} |
|
|
|
abstract item def Shell :> StructuredSpaceObject, Surface { |
|
doc |
|
/* |
|
* Shell is the most general structured Surface. |
|
*/ |
|
} |
|
|
|
item def Disc :> Shell, PlanarSurface { |
|
doc |
|
/* |
|
* A Disc is a Shell bound by an Ellipse. |
|
*/ |
|
|
|
attribute :>> semiMajorAxis [1]; |
|
attribute :>> semiMinorAxis [1]; |
|
|
|
item :>> shape : Ellipse [1] { |
|
attribute :>> semiMajorAxis = Disc::semiMajorAxis; |
|
attribute :>> semiMinorAxis = Disc::semiMinorAxis; |
|
} |
|
|
|
item :>> faces : PlanarSurface [1] { |
|
item :>> edges [1]; |
|
} |
|
item :>> edges : Ellipse [1] = shape; |
|
item :>> vertices [0]; |
|
} |
|
|
|
item def CircularDisc :> Disc { |
|
doc |
|
/* |
|
* A CircularDisc is a Disc bound by a Circle. |
|
*/ |
|
|
|
attribute :>> radius [1] = semiMajorAxis; |
|
item :>> shape : Circle; |
|
item :>> edges : Circle; |
|
} |
|
|
|
item def ConicSurface :> Shell { |
|
doc |
|
/* |
|
* A ConicSurface is a Surface that has ConicSection cross-sections. |
|
*/ |
|
|
|
item :>> faces [1..2]; |
|
item :>> edges [0]; |
|
item :>> vertices [0]; |
|
|
|
attribute :>> genus = 0; |
|
} |
|
|
|
item def Ellipsoid :> ConicSurface { |
|
doc |
|
/* |
|
* An Ellipsoid is a ConicSurface with only elliptical cross-sections. |
|
*/ |
|
|
|
attribute semiAxis1 : LengthValue [1] :> scalarQuantities; |
|
attribute semiAxis2 : LengthValue [1] :> scalarQuantities; |
|
attribute semiAxis3 : LengthValue [1] :> scalarQuantities; |
|
|
|
item :>> faces [1]; |
|
} |
|
|
|
item def Sphere :> Ellipsoid { |
|
doc |
|
/* |
|
* A Sphere is an Ellipsoid with all the same semiaxes. |
|
*/ |
|
|
|
attribute :>> radius [1] = semiAxis1; |
|
|
|
assert constraint { ( semiAxis1 == semiAxis2 ) & |
|
( semiAxis2 == semiAxis3 ) } |
|
} |
|
|
|
item def Paraboloid :> ConicSurface { |
|
doc |
|
/* |
|
* A Paraboloid is a ConicSurface with only parabolic cross-sections. |
|
*/ |
|
|
|
attribute focalDistance : LengthValue [1] :> scalarQuantities; |
|
|
|
item :>> faces [1]; |
|
} |
|
|
|
item def Hyperboloid :> ConicSurface { |
|
doc |
|
/* |
|
* A Hyperboloid is a ConicSurface with only hyperbolic cross-sections. |
|
*/ |
|
|
|
attribute transverseAxis : LengthValue [1] :> scalarQuantities; |
|
attribute conjugateAxis : LengthValue [1] :> scalarQuantities; |
|
} |
|
|
|
item def Toroid :> Shell { |
|
doc |
|
/* |
|
* A Toroid is a surface generated from revolving a planar closed curve about an line coplanar |
|
* with the curve. It is single sided with one hole. |
|
*/ |
|
|
|
attribute revolutionRadius : LengthValue [1] :> scalarQuantities; |
|
|
|
item revolvedCurve : PlanarCurve [1] { attribute :>> isClosed = true; } |
|
|
|
item :>> faces [1]; |
|
item :>> edges [0]; |
|
item :>> vertices [0]; |
|
|
|
attribute :>> genus = 1; |
|
} |
|
|
|
item def Torus :> Toroid { |
|
doc |
|
/* |
|
* A Torus is a revolution of a Circle. |
|
*/ |
|
|
|
attribute majorRadius :>> revolutionRadius; |
|
attribute minorRadius : LengthValue [1] :> scalarQuantities; |
|
|
|
item :>> revolvedCurve: Circle [1] { attribute :>> radius = minorRadius; } |
|
} |
|
|
|
|
|
item def RectangularToroid :> Toroid { |
|
doc |
|
/* |
|
* A RectangularToroid is a revolution of a Rectangle. |
|
*/ |
|
|
|
attribute rectangleLength : LengthValue [1] :> scalarQuantities; |
|
attribute rectangleWidth : LengthValue [1] :> scalarQuantities; |
|
|
|
item :>> revolvedCurve: Rectangle [1] { |
|
attribute :>> length = rectangleLength; |
|
attribute :>> width = rectangleWidth; |
|
} |
|
} |
|
|
|
item def ConeOrCylinder :> Shell { |
|
doc |
|
/* |
|
* A ConeOrCylinder is Shell that a Cone or a Cylinder with a given elliptical base, |
|
* height, width (perpendicular distance from the base to the center of the top side or vertex), |
|
* and offsets of this perpendicular at the base from the center of the base. |
|
*/ |
|
|
|
attribute :>> semiMajorAxis [1]; |
|
attribute :>> semiMinorAxis [1]; |
|
attribute :>> height [1]; |
|
|
|
attribute :>> xoffset [1]; |
|
attribute :>> yoffset [1]; |
|
|
|
item :>> faces [2..3]; |
|
item base : Disc [1] :> faces; |
|
item af : Disc [0..1] :> faces; |
|
item cf : Surface [1] :> faces; |
|
|
|
item :>> edges [2..4] = faces.edges; |
|
item be [2] :> edges { |
|
attribute :>> semiMajorAxis = ConeOrCylinder::semiMajorAxis; |
|
attribute :>> semiMinorAxis = ConeOrCylinder::semiMinorAxis; |
|
} |
|
item ae [0..2] :> edges { |
|
attribute :>> semiMajorAxis = be.semiMajorAxis; |
|
attribute :>> semiMinorAxis = be.semiMinorAxis; |
|
} |
|
assert constraint { size(ae) == (if isEmpty(af) ? 0 else 2) and |
|
size(edges) == (if isEmpty(af) ? 2 else 4) } |
|
|
|
item :>> vertices [0..1] = faces.vertices; |
|
assert constraint { isEmpty(af) == notEmpty(vertices) } |
|
|
|
/* Bind face edges to specific edges */ |
|
binding [1] bind base.edges [0..*] = be [0..*]; |
|
binding [1] bind cf.edges [0..*] = be [0..*]; |
|
|
|
/* Meeting edges */ |
|
connection :MatesWith connect be [1] to be [1]; |
|
|
|
attribute :>> genus = 0; |
|
} |
|
|
|
item def Cone :> ConeOrCylinder { |
|
doc |
|
/* |
|
* A Cone has one elliptical sides joined to a point by a curved side. |
|
*/ |
|
|
|
item :>> faces [2]; |
|
|
|
item apex :>> vertices; |
|
|
|
/* Bind face vertices to specific vertices */ |
|
binding [1] bind cf.vertices [0..*] = apex [0..*]; |
|
} |
|
|
|
item def EccentricCone :> Cone { |
|
doc |
|
/* |
|
* An EccentricCone is a Cone with least one positive offset. |
|
*/ |
|
|
|
assert constraint { xoffset > 0 or yoffset > 0 } |
|
} |
|
|
|
item def CircularCone :> Cone { |
|
doc |
|
/* |
|
* A CircularCone is a Cone with a circular base. |
|
*/ |
|
|
|
attribute :>> radius [1] = semiMajorAxis; |
|
|
|
assert constraint { semiMajorAxis == semiMinorAxis } |
|
|
|
item :>> base : CircularDisc; |
|
} |
|
|
|
item def RightCircularCone :> CircularCone { |
|
doc |
|
/* |
|
* A RightCircularCone is a CircularCone with zero offsets. |
|
*/ |
|
|
|
attribute :>> xoffset { attribute :>> num = 0; } |
|
attribute :>> yoffset { attribute :>> num = 0; } |
|
} |
|
|
|
item def Cylinder :> ConeOrCylinder { |
|
doc |
|
/* |
|
* A Cylinder has two elliptical sides joined by a curved side. |
|
*/ |
|
|
|
item :>> af [1]; |
|
|
|
binding [1] bind cf.edges [0..*] = ae [0..*]; |
|
|
|
connection :MatesWith connect ae [1] to ae [1] { |
|
doc /* Meeting edges */ |
|
} |
|
} |
|
|
|
item def EccentricCylinder :> Cylinder { |
|
doc |
|
/* |
|
* An EccentricCylinder is a Cylinder with least one positive offset. |
|
*/ |
|
|
|
assert constraint { xoffset > 0 or yoffset > 0 } |
|
} |
|
|
|
item def CircularCylinder :> Cylinder { |
|
doc |
|
/* |
|
* A CircularCylinder is a Cylinder with two circular sides. |
|
*/ |
|
|
|
attribute :>> radius [1] = semiMajorAxis; |
|
|
|
assert constraint { semiMajorAxis == semiMinorAxis } |
|
|
|
item :>> base : CircularDisc; |
|
item :>> af : CircularDisc; |
|
} |
|
|
|
item def RightCircularCylinder :> CircularCylinder { |
|
doc |
|
/* |
|
* A RightCircularCylinder is a CircularCylinder with zero offsets. |
|
*/ |
|
|
|
attribute :>> xoffset { attribute :>> num = 0; } |
|
attribute :>> yoffset { attribute :>> num = 0; } |
|
} |
|
|
|
item def Polyhedron :> Shell { |
|
doc |
|
/* |
|
* A Polyhedron is a closed Shell with polygonal sides. |
|
*/ |
|
|
|
attribute :>> isClosed = true; |
|
|
|
item :>> faces : Polygon [2..*]; |
|
|
|
item :>> edges = faces.edges; |
|
|
|
attribute :>> outerSpaceDimension = if size(faces) > 2 ? 3 else 2; |
|
|
|
attribute :>> genus = 0; |
|
} |
|
|
|
item def CuboidOrTriangularPrism :> Polyhedron { |
|
doc |
|
/* |
|
* A CuboidOrTriangularPrism is a Polyhedron that is either a Cuboid or TriangularPrism. |
|
*/ |
|
|
|
item :>> faces [5..6]; |
|
item tf : Quadrilateral [1] :> faces; |
|
item bf : Quadrilateral [1] :> faces; |
|
item ff : Polygon [1] :> faces { item :>> edges [3..4]; } |
|
item rf : Polygon [1] :> faces { item :>> edges [3..4]; } |
|
item slf : Quadrilateral [1] :> faces; |
|
item srf : Quadrilateral [0..1] :> faces; |
|
|
|
item :>> edges; |
|
assert constraint { size(edges) == 18 or size(edges) == 24 } |
|
|
|
item tfe [2] :> edges; |
|
item tre [2] :> edges; |
|
item tsle [2] :> edges; |
|
item tsre [0..2] :> edges; |
|
item bfe [2] :> edges; |
|
item bre [2] :> edges; |
|
item bsle [2] :> edges; |
|
item bsre [2] :> edges; |
|
item ufle [2] :> edges; |
|
item ufre [0..2] :> edges; |
|
item urle [2] :> edges; |
|
item urre [0..2] :> edges; |
|
|
|
assert constraint { ( isEmpty(srf) implies isEmpty(tsre) ) and |
|
( isEmpty(tsre) == isEmpty(ufre) ) and |
|
( isEmpty(ufre) == isEmpty(urre) ) } |
|
|
|
item :>> vertices; |
|
assert constraint { size(vertices) == size(edges) } |
|
|
|
item tflv [3] :> vertices; |
|
item tfrv [0..3] :> vertices; |
|
item trlv [3] :> vertices; |
|
item trrv [0..3] :> vertices; |
|
item bflv [3] :> vertices; |
|
item bfrv [3] :> vertices; |
|
item brlv [3] :> vertices; |
|
item brrv [3] :> vertices; |
|
|
|
assert constraint { ( isEmpty(tfrv) == isEmpty(trrv) ) } |
|
|
|
/* Bind face edges to specific edges */ |
|
binding [1] bind tf.edges [0..1] = tfe [0..1]; |
|
binding [1] bind tf.edges [0..1] = tre [0..1]; |
|
binding [1] bind tf.edges [0..1] = tsle [0..1]; |
|
binding [1] bind bf.edges [0..1] = bfe [0..1]; |
|
binding [1] bind bf.edges [0..1] = bre [0..1]; |
|
binding [1] bind bf.edges [0..1] = bsle [0..1]; |
|
binding [1] bind bf.edges [0..1] = bsre [0..1]; |
|
|
|
binding [1] bind ff.edges [0..1] = tfe [0..1]; |
|
binding [1] bind ff.edges [0..1] = bfe [0..1]; |
|
binding [1] bind ff.edges [0..1] = ufle [0..1]; |
|
|
|
binding [1] bind rf.edges [0..1] = tre [0..1]; |
|
binding [1] bind rf.edges [0..1] = bre [0..1]; |
|
binding [1] bind rf.edges [0..1] = urle [0..1]; |
|
|
|
/* Bind edge vertices to specific vertices */ |
|
binding [1] bind tfe.vertices [0..1] = tflv [0..1]; |
|
binding [1] bind tre.vertices [0..1] = trlv [0..1]; |
|
binding [1] bind tsle.vertices [0..1] = tflv [0..1]; |
|
binding [1] bind tsle.vertices [0..1] = trlv [0..1]; |
|
|
|
binding [1] bind bfe.vertices [0..1] = bflv [0..1]; |
|
binding [1] bind bfe.vertices [0..1] = bfrv [0..1]; |
|
binding [1] bind bre.vertices [0..1] = brlv [0..1]; |
|
binding [1] bind bre.vertices [0..1] = brrv [0..1]; |
|
binding [1] bind bsle.vertices [0..1] = bflv [0..1]; |
|
binding [1] bind bsle.vertices [0..1] = brlv [0..1]; |
|
binding [1] bind bsre.vertices [0..1] = bfrv [0..1]; |
|
binding [1] bind bsre.vertices [0..1] = brrv [0..1]; |
|
|
|
binding [1] bind ufle.vertices [0..1] = tflv [0..1]; |
|
binding [1] bind ufle.vertices [0..1] = bflv [0..1]; |
|
binding [1] bind urle.vertices [0..1] = trlv [0..1]; |
|
binding [1] bind urle.vertices [0..1] = brlv [0..1]; |
|
|
|
/* Meeting edges */ |
|
connection :MatesWith connect tfe [1] to tfe [1]; |
|
connection :MatesWith connect tre [1] to tre [1]; |
|
connection :MatesWith connect tsle [1] to tsle [1]; |
|
connection :MatesWith connect bfe [1] to bfe [1]; |
|
connection :MatesWith connect bre [1] to bre [1]; |
|
connection :MatesWith connect bsle [1] to bsle [1]; |
|
connection :MatesWith connect bsre [1] to bsre [1]; |
|
connection :MatesWith connect ufle [1] to ufle [1]; |
|
connection :MatesWith connect urle [1] to urle [1]; |
|
connection :MatesWith connect bsre [1] to bsre [1]; |
|
|
|
/* Meeting vertices */ |
|
connection :MatesWith connect tflv [2] to tflv [2]; |
|
connection :MatesWith connect trlv [2] to trlv [2]; |
|
connection :MatesWith connect bflv [2] to bflv [2]; |
|
connection :MatesWith connect bfrv [2] to bfrv [2]; |
|
connection :MatesWith connect brlv [2] to brlv [2]; |
|
connection :MatesWith connect brrv [2] to brrv [2]; |
|
} |
|
|
|
item def TriangularPrism :> CuboidOrTriangularPrism { |
|
doc |
|
/* |
|
* A TriangularPrism is a Polyhedron with five sides, two triangular and |
|
* the others quadrilateral. |
|
*/ |
|
|
|
|
|
item :>> faces [5]; |
|
item :>> ff : Triangle; |
|
item :>> rf : Triangle; |
|
|
|
item :>> edges [18]; |
|
|
|
item :>> vertices; |
|
|
|
/* Bind face edges to specific edges */ |
|
binding [1] bind tf.edges [0..1] = bsre [0..1]; |
|
|
|
/* Bind edge vertices to specific vertices */ |
|
binding [1] bind tfe.vertices [0..1] = bfrv [0..1]; |
|
binding [1] bind tre.vertices [0..1] = bfrv [0..1]; |
|
} |
|
|
|
item def RightTriangularPrism :> TriangularPrism { |
|
doc |
|
/* |
|
* A RightTriangularPrism a TriangularPrism with two right triangluar sides, |
|
* with given length, width, and height. |
|
*/ |
|
|
|
attribute :>> length [1]; |
|
attribute :>> width [1]; |
|
attribute :>> height [1]; |
|
|
|
item :>> tf : Rectangle; |
|
item :>> bf : Rectangle; |
|
item :>> ff : RightTriangle { |
|
attribute :>> length = RightTriangularPrism::length; |
|
attribute :>> width = RightTriangularPrism::width; |
|
} |
|
item :>> rf : RightTriangle { |
|
attribute :>> length = ff.length; |
|
attribute :>> width = rf.width; |
|
} |
|
item :>> slf : Rectangle; |
|
item :>> srf : Rectangle; |
|
|
|
item :>> tfe { attribute :>> length = ff.hypotenuse.length; } |
|
item :>> tre { attribute :>> length = tfe.length; } |
|
item :>> tsle { attribute :>> length = height; } |
|
item :>> bfe { attribute :>> length = RightTriangularPrism::length; } |
|
item :>> bre { attribute :>> length = RightTriangularPrism::length; } |
|
item :>> bsle { attribute :>> length = height; } |
|
item :>> bsre { attribute :>> length = height; } |
|
item :>> ufle { attribute :>> length = width; } |
|
item :>> urle { attribute :>> length = width; } |
|
} |
|
alias Wedge for RightTriangularPrism; |
|
|
|
item def Cuboid :> CuboidOrTriangularPrism { |
|
doc |
|
/* |
|
* A Cuboid is a Polyhedron with six sides, all quadrilateral. |
|
*/ |
|
|
|
item :>> faces [6]; |
|
item :>> ff : Quadrilateral; |
|
item :>> rf : Quadrilateral; |
|
|
|
item :>> edges [24]; |
|
|
|
item :>> vertices; |
|
|
|
/* Bind face edges to specific edges */ |
|
binding [1] bind tf.edges [0..1] = tsre [0..1]; |
|
binding [1] bind ff.edges [0..1] = ufre [0..1]; |
|
binding [1] bind rf.edges [0..1] = urre [0..1]; |
|
|
|
binding [1] bind srf.edges [0..1] = tsre [0..1]; |
|
binding [1] bind srf.edges [0..1] = bsre [0..1]; |
|
binding [1] bind srf.edges [0..1] = ufre [0..1]; |
|
binding [1] bind srf.edges [0..1] = urre [0..1]; |
|
|
|
/* Bind edge vertices to specific vertices */ |
|
binding [1] bind tfe.vertices [0..1] = tfrv [0..1]; |
|
binding [1] bind tre.vertices [0..1] = trrv [0..1]; |
|
binding [1] bind tsre.vertices [0..1] = tfrv [0..1]; |
|
binding [1] bind tsre.vertices [0..1] = trrv [0..1]; |
|
|
|
binding [1] bind ufre.vertices [0..1] = tfrv [0..1]; |
|
binding [1] bind ufre.vertices [0..1] = bfrv [0..1]; |
|
binding [1] bind urre.vertices [0..1] = trrv [0..1]; |
|
binding [1] bind urre.vertices [0..1] = brrv [0..1]; |
|
|
|
/* Meeting edges */ |
|
connection :MatesWith connect tsre [1] to tsre [1]; |
|
connection :MatesWith connect ufre [1] to ufre [1]; |
|
connection :MatesWith connect urre [1] to urre [1]; |
|
connection :MatesWith connect bsre [1] to bsre [1]; |
|
|
|
/* Meeting vertices */ |
|
connection :MatesWith connect tfrv [2] to tfrv [2]; |
|
connection :MatesWith connect trrv [2] to trrv [2]; |
|
} |
|
|
|
item def RectangularCuboid :> Cuboid { |
|
doc |
|
/* |
|
* A RectangularCuboid is a Cuboid with all Rectangular sides. |
|
*/ |
|
|
|
attribute :>> length [1]; |
|
attribute :>> width [1]; |
|
attribute :>> height [1]; |
|
|
|
item :>> tf : Rectangle { attribute :>> length = RectangularCuboid::length; |
|
attribute :>> width = RectangularCuboid::height; } |
|
item :>> bf : Rectangle { attribute :>> length = RectangularCuboid::length; |
|
attribute :>> width = RectangularCuboid::height; } |
|
item :>> ff : Rectangle { attribute :>> length = RectangularCuboid::length; |
|
attribute :>> width = RectangularCuboid::width; } |
|
item :>> rf : Rectangle { attribute :>> length = RectangularCuboid::length; |
|
attribute :>> width = RectangularCuboid::width; } |
|
item :>> slf : Rectangle { attribute :>> length = RectangularCuboid::height; |
|
attribute :>> width = RectangularCuboid::width; } |
|
item :>> srf : Rectangle { attribute :>> length = RectangularCuboid::height; |
|
attribute :>> width = RectangularCuboid::width; } |
|
} |
|
alias Box for RectangularCuboid; |
|
|
|
item def Pyramid :> Polyhedron { |
|
doc |
|
/* |
|
* A Pyramid is a Polyhedron with the sides of a polygon (base) forming the bases of triangles |
|
* that join at an apex point. Its height is the perpendicular distance from the base to the apex, |
|
* and its offsets are between this perpendicular at the base and the center of the base. |
|
*/ |
|
|
|
attribute :>> height [1]; |
|
attribute :>> xoffset; |
|
attribute :>> yoffset; |
|
|
|
item :>> faces; |
|
item base [1] :> faces; |
|
item wall : Triangle :> faces; |
|
attribute wallNumber : Positive = size(wall); |
|
|
|
assert constraint { size(faces) == wallNumber + 1 } |
|
assert constraint { size(wall) == size(base.edges) } |
|
|
|
item :>> edges; |
|
|
|
assert constraint { size(edges) == wallNumber * 4 } |
|
|
|
item :>> vertices; |
|
item apex :> vertices = wall.apex; |
|
|
|
assert constraint { size(apex) == wallNumber } |
|
|
|
/* Base to wall and wall to wall edge mating. */ |
|
assert constraint { (1..wallNumber)->forAll {in i; |
|
includes(wall |
|
Pyramid::base.edges |
|
includes((wall |
|
wall |
|
|
|
/* Meeting apices. */ |
|
connection :MatesWith connect apex [wallNumber] to apex [wallNumber]; |
|
} |
|
|
|
item def Tetrahedron :> Pyramid { |
|
doc |
|
/* |
|
* A Tetrahedron is Pyramid with a triangular base. |
|
*/ |
|
|
|
attribute :>> baseLength [1]; |
|
attribute :>> baseWidth [1]; |
|
|
|
item :>> base : Triangle { |
|
attribute :>> length = Tetrahedron::baseLength; |
|
attribute :>> width = Tetrahedron::baseWidth; |
|
} |
|
} |
|
|
|
item def RectangularPyramid :> Pyramid { |
|
doc |
|
/* |
|
* A RectangularPyramid is Pyramid with a rectangular base. |
|
*/ |
|
|
|
attribute :>> baseLength [1]; |
|
attribute :>> baseWidth [1]; |
|
|
|
item :>> base : Rectangle { |
|
attribute :>> length = RectangularPyramid::baseLength; |
|
attribute :>> width = RectangularPyramid::baseWidth; |
|
} |
|
} |
|
} |