standard library package ShapeItems { doc /* * This package provides a model of items that represent basic geometric shapes. */ private import ScalarValues::Boolean; private import ScalarValues::Positive; private import ISQ::*; private import SI::m; private import Occurrences::MatesWith; private import Objects::*; private import Items::Item; private import SequenceFunctions::equals; private import SequenceFunctions::isEmpty; private import SequenceFunctions::notEmpty; private import SequenceFunctions::size; private import SequenceFunctions::includes; private import ControlFunctions::'if'; private import ControlFunctions::forAll; private import ControlFunctions::exists; private import Quantities::scalarQuantities; item def PlanarCurve :> Curve { doc /* * A PlanarCurve is a Curve with a given length embeddable in a plane. */ attribute :>> length [1]; attribute :>> outerSpaceDimension; assert constraint { notEmpty(outerSpaceDimension) & outerSpaceDimension <= 2 } } item def PlanarSurface :> Surface { doc /* * A PlanarSurface is a flat Surface with a given area. */ attribute :>> area [1]; attribute :>> outerSpaceDimension = 2; item :>> shape : PlanarCurve; } item def Line :> PlanarCurve { doc /* * A Line is a Curve that is a straight line of a given length. */ attribute :>> length [1]; attribute :>> outerSpaceDimension = 1; } abstract item def Path :> StructuredSpaceObject, Curve { doc /* * Path is the most general structured Curve. */ item :>> faces [0]; item :>> edges [1..*] { item :>> vertices [0..2]; } item :>> vertices = edges.vertices; assert constraint { isClosed == vertices->forAll{in p1 : Point; vertices->exists{p2 : Point; p1 != p2 and includes(p1.matingOccurrences, p2) } } } } attribute semiMajorAxis : LengthValue [0..*] :> scalarQuantities; attribute semiMinorAxis : LengthValue [0..*] :> scalarQuantities; attribute xoffset : LengthValue [0..*] :> scalarQuantities default 0 [m]; attribute yoffset : LengthValue [0..*] :> scalarQuantities default 0 [m]; attribute baseLength : LengthValue [0..*] :> scalarQuantities; attribute baseWidth : LengthValue [0..*] :> scalarQuantities; item def ConicSection :> Path, PlanarCurve { doc /* * A ConicSection is a closed PlanarCurve, possibly disconnected, see Hyperbola. */ item :>> edges [1..2]; item :>> vertices [0]; } item def Ellipse :> ConicSection { doc /* * An Ellipse is a ConicSection in the shape of an ellipse of a given semiaxes. */ attribute :>> semiMajorAxis [1]; attribute :>> semiMinorAxis [1]; item :>> edges [1]; } item def Circle :> Ellipse { doc /* * A Circle is an Ellipse with semiaxes equal to its radius. */ attribute :>> radius [1]; attribute :>> semiMajorAxis [1] = radius; attribute :>> semiMinorAxis [1] = radius; item :>> edges { attribute length [1] = Circle::radius * TrigFunctions::pi * 2; } } item def Parabola :> ConicSection { doc /* * A Parabola is a ConicSection in the shape of a parabola of a given focal length. */ attribute focalDistance : LengthValue [1] :> scalarQuantities; item :>> edges [1]; } item def Hyperbola :> ConicSection { doc /* * A Hyperbola is a ConicSection in the shape of a hyperbola with given axes. */ attribute tranverseAxis : LengthValue [1] :> scalarQuantities; attribute conjugateAxis : LengthValue [1] :> scalarQuantities; } item def Polygon :> Path, PlanarCurve { doc /* * A Polygon is a closed planar Path with straight edges. */ item :>> edges : Line { item :>> vertices [2]; } attribute :>> isClosed = true; assert constraint { (1..size(edges))->forAll {in i; edges#(i).vertices->equals((vertices#((2*i)-1), vertices#(2*i))) and includes((edges#(i).vertices#(2) as Item).matingOccurrences, edges#(if i==size(edges) ? 1 else i+1).vertices#(1)) } } } item def Triangle :> Polygon { doc /* * A Triangle is three-sided Polygon with given length (base), width (perpendicular distance * from base to apex), and offset of this perpendicular at the base from the center of the base. */ attribute :>> length [1]; attribute :>> width [1]; attribute :>> xoffset [1]; item :>> edges [3] = (base, e2, e3); item base [1] { length = Triangle::length; } item e2 [1]; item e3 [1]; item :>> vertices [6]; item v12 [2] ordered = (vertices#(2), vertices#(3)); item apex [2] ordered = (vertices#(4), vertices#(5)); item v31 [2] ordered = (vertices#(6), vertices#(1)); } item def RightTriangle :> Triangle { doc /* * A RightTriangle is a Triangle with sides opposite the hypotenuse at right angles. */ attribute :>> xoffset = length / 2; item :>> e2 { attribute :>> length = Triangle::width; } item hypotenuse :>> e3 { attribute :>> length = ( Triangle::length^2 + Triangle::width^2 ); } } item def Quadrilateral :> Polygon { doc /* * A Quadrilateral is a four-sided Polygon. */ item :>> edges [4] = (e1, e2, e3, e4); item e1 [1]; item e2 [1]; item e3 [1]; item e4 [1]; item :>> vertices [8]; item v12 [2] ordered = (vertices#(2), vertices#(3)); item v23 [2] ordered = (vertices#(4), vertices#(5)); item v34 [2] ordered = (vertices#(6), vertices#(7)); item v41 [2] ordered = (vertices#(6), vertices#(1)); } item def Rectangle :> Quadrilateral { doc /* * A Rectangle is a Quadrilateral four right angles and given length and width. */ attribute :>> length [1]; attribute :>> width [1]; item :>> e1 { attribute :>> length = Rectangle::length; } item :>> e2 { attribute :>> length = Rectangle::width; } item :>> e3 { attribute :>> length = e1.length; } item :>> e4 { attribute :>> length = e2.length; } } abstract item def Shell :> StructuredSpaceObject, Surface { doc /* * Shell is the most general structured Surface. */ } item def Disc :> Shell, PlanarSurface { doc /* * A Disc is a Shell bound by an Ellipse. */ attribute :>> semiMajorAxis [1]; attribute :>> semiMinorAxis [1]; item :>> shape : Ellipse [1] { attribute :>> semiMajorAxis = Disc::semiMajorAxis; attribute :>> semiMinorAxis = Disc::semiMinorAxis; } item :>> faces : PlanarSurface [1] { item :>> edges [1]; } item :>> edges : Ellipse [1] = shape; item :>> vertices [0]; } item def CircularDisc :> Disc { doc /* * A CircularDisc is a Disc bound by a Circle. */ attribute :>> radius [1] = semiMajorAxis; item :>> shape : Circle; item :>> edges : Circle; } item def ConicSurface :> Shell { doc /* * A ConicSurface is a Surface that has ConicSection cross-sections. */ item :>> faces [1..2]; item :>> edges [0]; item :>> vertices [0]; attribute :>> genus = 0; } item def Ellipsoid :> ConicSurface { doc /* * An Ellipsoid is a ConicSurface with only elliptical cross-sections. */ attribute semiAxis1 : LengthValue [1] :> scalarQuantities; attribute semiAxis2 : LengthValue [1] :> scalarQuantities; attribute semiAxis3 : LengthValue [1] :> scalarQuantities; item :>> faces [1]; } item def Sphere :> Ellipsoid { doc /* * A Sphere is an Ellipsoid with all the same semiaxes. */ attribute :>> radius [1] = semiAxis1; assert constraint { ( semiAxis1 == semiAxis2 ) & ( semiAxis2 == semiAxis3 ) } } item def Paraboloid :> ConicSurface { doc /* * A Paraboloid is a ConicSurface with only parabolic cross-sections. */ attribute focalDistance : LengthValue [1] :> scalarQuantities; item :>> faces [1]; } item def Hyperboloid :> ConicSurface { doc /* * A Hyperboloid is a ConicSurface with only hyperbolic cross-sections. */ attribute transverseAxis : LengthValue [1] :> scalarQuantities; attribute conjugateAxis : LengthValue [1] :> scalarQuantities; } item def Toroid :> Shell { doc /* * A Toroid is a surface generated from revolving a planar closed curve about an line coplanar * with the curve. It is single sided with one hole. */ attribute revolutionRadius : LengthValue [1] :> scalarQuantities; item revolvedCurve : PlanarCurve [1] { attribute :>> isClosed = true; } item :>> faces [1]; item :>> edges [0]; item :>> vertices [0]; attribute :>> genus = 1; } item def Torus :> Toroid { doc /* * A Torus is a revolution of a Circle. */ attribute majorRadius :>> revolutionRadius; attribute minorRadius : LengthValue [1] :> scalarQuantities; item :>> revolvedCurve: Circle [1] { attribute :>> radius = minorRadius; } } item def RectangularToroid :> Toroid { doc /* * A RectangularToroid is a revolution of a Rectangle. */ attribute rectangleLength : LengthValue [1] :> scalarQuantities; attribute rectangleWidth : LengthValue [1] :> scalarQuantities; item :>> revolvedCurve: Rectangle [1] { attribute :>> length = rectangleLength; attribute :>> width = rectangleWidth; } } item def ConeOrCylinder :> Shell { doc /* * A ConeOrCylinder is Shell that a Cone or a Cylinder with a given elliptical base, * height, width (perpendicular distance from the base to the center of the top side or vertex), * and offsets of this perpendicular at the base from the center of the base. */ attribute :>> semiMajorAxis [1]; attribute :>> semiMinorAxis [1]; attribute :>> height [1]; attribute :>> xoffset [1]; attribute :>> yoffset [1]; item :>> faces [2..3]; item base : Disc [1] :> faces; item af : Disc [0..1] :> faces; item cf : Surface [1] :> faces; item :>> edges [2..4] = faces.edges; item be [2] :> edges { attribute :>> semiMajorAxis = ConeOrCylinder::semiMajorAxis; attribute :>> semiMinorAxis = ConeOrCylinder::semiMinorAxis; } item ae [0..2] :> edges { attribute :>> semiMajorAxis = be.semiMajorAxis; attribute :>> semiMinorAxis = be.semiMinorAxis; } assert constraint { size(ae) == (if isEmpty(af) ? 0 else 2) and size(edges) == (if isEmpty(af) ? 2 else 4) } item :>> vertices [0..1] = faces.vertices; assert constraint { isEmpty(af) == notEmpty(vertices) } /* Bind face edges to specific edges */ binding [1] bind base.edges [0..*] = be [0..*]; binding [1] bind cf.edges [0..*] = be [0..*]; /* Meeting edges */ connection :MatesWith connect be [1] to be [1]; attribute :>> genus = 0; } item def Cone :> ConeOrCylinder { doc /* * A Cone has one elliptical sides joined to a point by a curved side. */ item :>> faces [2]; item apex :>> vertices; /* Bind face vertices to specific vertices */ binding [1] bind cf.vertices [0..*] = apex [0..*]; } item def EccentricCone :> Cone { doc /* * An EccentricCone is a Cone with least one positive offset. */ assert constraint { xoffset > 0 or yoffset > 0 } } item def CircularCone :> Cone { doc /* * A CircularCone is a Cone with a circular base. */ attribute :>> radius [1] = semiMajorAxis; assert constraint { semiMajorAxis == semiMinorAxis } item :>> base : CircularDisc; } item def RightCircularCone :> CircularCone { doc /* * A RightCircularCone is a CircularCone with zero offsets. */ attribute :>> xoffset { attribute :>> num = 0; } attribute :>> yoffset { attribute :>> num = 0; } } item def Cylinder :> ConeOrCylinder { doc /* * A Cylinder has two elliptical sides joined by a curved side. */ item :>> af [1]; binding [1] bind cf.edges [0..*] = ae [0..*]; connection :MatesWith connect ae [1] to ae [1] { doc /* Meeting edges */ } } item def EccentricCylinder :> Cylinder { doc /* * An EccentricCylinder is a Cylinder with least one positive offset. */ assert constraint { xoffset > 0 or yoffset > 0 } } item def CircularCylinder :> Cylinder { doc /* * A CircularCylinder is a Cylinder with two circular sides. */ attribute :>> radius [1] = semiMajorAxis; assert constraint { semiMajorAxis == semiMinorAxis } item :>> base : CircularDisc; item :>> af : CircularDisc; } item def RightCircularCylinder :> CircularCylinder { doc /* * A RightCircularCylinder is a CircularCylinder with zero offsets. */ attribute :>> xoffset { attribute :>> num = 0; } attribute :>> yoffset { attribute :>> num = 0; } } item def Polyhedron :> Shell { doc /* * A Polyhedron is a closed Shell with polygonal sides. */ attribute :>> isClosed = true; item :>> faces : Polygon [2..*]; item :>> edges = faces.edges; attribute :>> outerSpaceDimension = if size(faces) > 2 ? 3 else 2; attribute :>> genus = 0; } item def CuboidOrTriangularPrism :> Polyhedron { doc /* * A CuboidOrTriangularPrism is a Polyhedron that is either a Cuboid or TriangularPrism. */ item :>> faces [5..6]; item tf : Quadrilateral [1] :> faces; item bf : Quadrilateral [1] :> faces; item ff : Polygon [1] :> faces { item :>> edges [3..4]; } item rf : Polygon [1] :> faces { item :>> edges [3..4]; } item slf : Quadrilateral [1] :> faces; item srf : Quadrilateral [0..1] :> faces; item :>> edges; assert constraint { size(edges) == 18 or size(edges) == 24 } item tfe [2] :> edges; item tre [2] :> edges; item tsle [2] :> edges; item tsre [0..2] :> edges; item bfe [2] :> edges; item bre [2] :> edges; item bsle [2] :> edges; item bsre [2] :> edges; item ufle [2] :> edges; item ufre [0..2] :> edges; item urle [2] :> edges; item urre [0..2] :> edges; assert constraint { ( isEmpty(srf) implies isEmpty(tsre) ) and ( isEmpty(tsre) == isEmpty(ufre) ) and ( isEmpty(ufre) == isEmpty(urre) ) } item :>> vertices; assert constraint { size(vertices) == size(edges) } item tflv [3] :> vertices; item tfrv [0..3] :> vertices; item trlv [3] :> vertices; item trrv [0..3] :> vertices; item bflv [3] :> vertices; item bfrv [3] :> vertices; item brlv [3] :> vertices; item brrv [3] :> vertices; assert constraint { ( isEmpty(tfrv) == isEmpty(trrv) ) } /* Bind face edges to specific edges */ binding [1] bind tf.edges [0..1] = tfe [0..1]; binding [1] bind tf.edges [0..1] = tre [0..1]; binding [1] bind tf.edges [0..1] = tsle [0..1]; binding [1] bind bf.edges [0..1] = bfe [0..1]; binding [1] bind bf.edges [0..1] = bre [0..1]; binding [1] bind bf.edges [0..1] = bsle [0..1]; binding [1] bind bf.edges [0..1] = bsre [0..1]; binding [1] bind ff.edges [0..1] = tfe [0..1]; binding [1] bind ff.edges [0..1] = bfe [0..1]; binding [1] bind ff.edges [0..1] = ufle [0..1]; binding [1] bind rf.edges [0..1] = tre [0..1]; binding [1] bind rf.edges [0..1] = bre [0..1]; binding [1] bind rf.edges [0..1] = urle [0..1]; /* Bind edge vertices to specific vertices */ binding [1] bind tfe.vertices [0..1] = tflv [0..1]; binding [1] bind tre.vertices [0..1] = trlv [0..1]; binding [1] bind tsle.vertices [0..1] = tflv [0..1]; binding [1] bind tsle.vertices [0..1] = trlv [0..1]; binding [1] bind bfe.vertices [0..1] = bflv [0..1]; binding [1] bind bfe.vertices [0..1] = bfrv [0..1]; binding [1] bind bre.vertices [0..1] = brlv [0..1]; binding [1] bind bre.vertices [0..1] = brrv [0..1]; binding [1] bind bsle.vertices [0..1] = bflv [0..1]; binding [1] bind bsle.vertices [0..1] = brlv [0..1]; binding [1] bind bsre.vertices [0..1] = bfrv [0..1]; binding [1] bind bsre.vertices [0..1] = brrv [0..1]; binding [1] bind ufle.vertices [0..1] = tflv [0..1]; binding [1] bind ufle.vertices [0..1] = bflv [0..1]; binding [1] bind urle.vertices [0..1] = trlv [0..1]; binding [1] bind urle.vertices [0..1] = brlv [0..1]; /* Meeting edges */ connection :MatesWith connect tfe [1] to tfe [1]; connection :MatesWith connect tre [1] to tre [1]; connection :MatesWith connect tsle [1] to tsle [1]; connection :MatesWith connect bfe [1] to bfe [1]; connection :MatesWith connect bre [1] to bre [1]; connection :MatesWith connect bsle [1] to bsle [1]; connection :MatesWith connect bsre [1] to bsre [1]; connection :MatesWith connect ufle [1] to ufle [1]; connection :MatesWith connect urle [1] to urle [1]; connection :MatesWith connect bsre [1] to bsre [1]; /* Meeting vertices */ connection :MatesWith connect tflv [2] to tflv [2]; connection :MatesWith connect trlv [2] to trlv [2]; connection :MatesWith connect bflv [2] to bflv [2]; connection :MatesWith connect bfrv [2] to bfrv [2]; connection :MatesWith connect brlv [2] to brlv [2]; connection :MatesWith connect brrv [2] to brrv [2]; } item def TriangularPrism :> CuboidOrTriangularPrism { doc /* * A TriangularPrism is a Polyhedron with five sides, two triangular and * the others quadrilateral. */ item :>> faces [5]; item :>> ff : Triangle; item :>> rf : Triangle; item :>> edges [18]; item :>> vertices; /* Bind face edges to specific edges */ binding [1] bind tf.edges [0..1] = bsre [0..1]; /* Bind edge vertices to specific vertices */ binding [1] bind tfe.vertices [0..1] = bfrv [0..1]; binding [1] bind tre.vertices [0..1] = bfrv [0..1]; } item def RightTriangularPrism :> TriangularPrism { doc /* * A RightTriangularPrism a TriangularPrism with two right triangluar sides, * with given length, width, and height. */ attribute :>> length [1]; attribute :>> width [1]; attribute :>> height [1]; item :>> tf : Rectangle; item :>> bf : Rectangle; item :>> ff : RightTriangle { attribute :>> length = RightTriangularPrism::length; attribute :>> width = RightTriangularPrism::width; } item :>> rf : RightTriangle { attribute :>> length = ff.length; attribute :>> width = rf.width; } item :>> slf : Rectangle; item :>> srf : Rectangle; item :>> tfe { attribute :>> length = ff.hypotenuse.length; } item :>> tre { attribute :>> length = tfe.length; } item :>> tsle { attribute :>> length = height; } item :>> bfe { attribute :>> length = RightTriangularPrism::length; } item :>> bre { attribute :>> length = RightTriangularPrism::length; } item :>> bsle { attribute :>> length = height; } item :>> bsre { attribute :>> length = height; } item :>> ufle { attribute :>> length = width; } item :>> urle { attribute :>> length = width; } } alias Wedge for RightTriangularPrism; item def Cuboid :> CuboidOrTriangularPrism { doc /* * A Cuboid is a Polyhedron with six sides, all quadrilateral. */ item :>> faces [6]; item :>> ff : Quadrilateral; item :>> rf : Quadrilateral; item :>> edges [24]; item :>> vertices; /* Bind face edges to specific edges */ binding [1] bind tf.edges [0..1] = tsre [0..1]; binding [1] bind ff.edges [0..1] = ufre [0..1]; binding [1] bind rf.edges [0..1] = urre [0..1]; binding [1] bind srf.edges [0..1] = tsre [0..1]; binding [1] bind srf.edges [0..1] = bsre [0..1]; binding [1] bind srf.edges [0..1] = ufre [0..1]; binding [1] bind srf.edges [0..1] = urre [0..1]; /* Bind edge vertices to specific vertices */ binding [1] bind tfe.vertices [0..1] = tfrv [0..1]; binding [1] bind tre.vertices [0..1] = trrv [0..1]; binding [1] bind tsre.vertices [0..1] = tfrv [0..1]; binding [1] bind tsre.vertices [0..1] = trrv [0..1]; binding [1] bind ufre.vertices [0..1] = tfrv [0..1]; binding [1] bind ufre.vertices [0..1] = bfrv [0..1]; binding [1] bind urre.vertices [0..1] = trrv [0..1]; binding [1] bind urre.vertices [0..1] = brrv [0..1]; /* Meeting edges */ connection :MatesWith connect tsre [1] to tsre [1]; connection :MatesWith connect ufre [1] to ufre [1]; connection :MatesWith connect urre [1] to urre [1]; connection :MatesWith connect bsre [1] to bsre [1]; /* Meeting vertices */ connection :MatesWith connect tfrv [2] to tfrv [2]; connection :MatesWith connect trrv [2] to trrv [2]; } item def RectangularCuboid :> Cuboid { doc /* * A RectangularCuboid is a Cuboid with all Rectangular sides. */ attribute :>> length [1]; attribute :>> width [1]; attribute :>> height [1]; item :>> tf : Rectangle { attribute :>> length = RectangularCuboid::length; attribute :>> width = RectangularCuboid::height; } item :>> bf : Rectangle { attribute :>> length = RectangularCuboid::length; attribute :>> width = RectangularCuboid::height; } item :>> ff : Rectangle { attribute :>> length = RectangularCuboid::length; attribute :>> width = RectangularCuboid::width; } item :>> rf : Rectangle { attribute :>> length = RectangularCuboid::length; attribute :>> width = RectangularCuboid::width; } item :>> slf : Rectangle { attribute :>> length = RectangularCuboid::height; attribute :>> width = RectangularCuboid::width; } item :>> srf : Rectangle { attribute :>> length = RectangularCuboid::height; attribute :>> width = RectangularCuboid::width; } } alias Box for RectangularCuboid; item def Pyramid :> Polyhedron { doc /* * A Pyramid is a Polyhedron with the sides of a polygon (base) forming the bases of triangles * that join at an apex point. Its height is the perpendicular distance from the base to the apex, * and its offsets are between this perpendicular at the base and the center of the base. */ attribute :>> height [1]; attribute :>> xoffset; attribute :>> yoffset; item :>> faces; item base [1] :> faces; item wall : Triangle :> faces; attribute wallNumber : Positive = size(wall); assert constraint { size(faces) == wallNumber + 1 } assert constraint { size(wall) == size(base.edges) } item :>> edges; assert constraint { size(edges) == wallNumber * 4 } item :>> vertices; item apex :> vertices = wall.apex; assert constraint { size(apex) == wallNumber } /* Base to wall and wall to wall edge mating. */ assert constraint { (1..wallNumber)->forAll {in i; includes(wall#(i).base.matingOccurrences, Pyramid::base.edges#(i)) and includes((wall#(i).edges#(3) as Item).matingOccurrences, wall#(if i==wallNumber ? 1 else i+1).edges#(2)) } } /* Meeting apices. */ connection :MatesWith connect apex [wallNumber] to apex [wallNumber]; } item def Tetrahedron :> Pyramid { doc /* * A Tetrahedron is Pyramid with a triangular base. */ attribute :>> baseLength [1]; attribute :>> baseWidth [1]; item :>> base : Triangle { attribute :>> length = Tetrahedron::baseLength; attribute :>> width = Tetrahedron::baseWidth; } } item def RectangularPyramid :> Pyramid { doc /* * A RectangularPyramid is Pyramid with a rectangular base. */ attribute :>> baseLength [1]; attribute :>> baseWidth [1]; item :>> base : Rectangle { attribute :>> length = RectangularPyramid::baseLength; attribute :>> width = RectangularPyramid::baseWidth; } } }