standard library package ISQElectromagnetism { doc /* * International System of Quantities and Units * Generated on 2022-08-07T14:44:27Z from standard IEC-80000-6:2008 "Electromagnetism" * see also https://www.iso.org/obp/ui/#iso:std:iec:80000:-6:ed-1:v1:en,fr * * Note 1: In documentation comments, AsciiMath notation (see http://asciimath.org/) is used for mathematical concepts, * with Greek letters in Unicode encoding. In running text, AsciiMath is placed between backticks. * Note 2: For vector and tensor quantities currently the unit and quantity value type for their (scalar) magnitude is * defined, as well as their typical Cartesian 3d VectorMeasurementReference (i.e. coordinate system) * or TensorMeasurementReference. */ private import ScalarValues::Real; private import Quantities::*; private import MeasurementReferences::*; private import ISQBase::*; /* Quantity definitions referenced from other ISQ packages */ private import ISQMechanics::PowerValue; private import ISQSpaceTime::AngularMeasureValue; private import ISQThermodynamics::EnergyValue; /* IEC-80000-6 item 6-1 electric current */ /* See package ISQBase for the declarations of ElectricCurrentValue and ElectricCurrentUnit */ /* IEC-80000-6 item 6-2 electric charge */ attribute def ElectricChargeValue :> ScalarQuantityValue { doc /* * source: item 6-2 electric charge * symbol(s): `Q`, `q` * application domain: generic * name: ElectricCharge * quantity dimension: T^1*I^1 * measurement unit(s): C * tensor order: 0 * definition: `d(Q) = I dt` where `I` is electric current (item 6-1) and `t` is time (ISO 80000-3, item 3-7) * remarks: Electric charge is carried by discrete particles and can be positive or negative. The sign convention is such that the elementary electric charge `e`, i.e. the charge of the proton, is positive. See IEC 60050-121, item121-11-01. To denote a point charge `q` is often used, and that is done in the present document. */ attribute :>> num: Real; attribute :>> mRef: ElectricChargeUnit[1]; } attribute electricCharge: ElectricChargeValue[*] nonunique :> scalarQuantities; attribute def ElectricChargeUnit :> DerivedUnit { private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 1; } private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (durationPF, electricCurrentPF); } } /* IEC-80000-6 item 6-3 electric charge density, volumic electric charge */ attribute def ElectricChargeDensityValue :> ScalarQuantityValue { doc /* * source: item 6-3 electric charge density, volumic electric charge * symbol(s): `ρ`, `ρ_V` * application domain: generic * name: ElectricChargeDensity * quantity dimension: L^-3*T^1*I^1 * measurement unit(s): C/m^3 * tensor order: 0 * definition: `ρ = (dQ)/(dV)` where `Q` is electric charge (item 6-2) and `V` is volume (ISO 80000-3, item 3-4) * remarks: See IEC 60050-121, item 121-11-07. */ attribute :>> num: Real; attribute :>> mRef: ElectricChargeDensityUnit[1]; } attribute electricChargeDensity: ElectricChargeDensityValue[*] nonunique :> scalarQuantities; attribute def ElectricChargeDensityUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -3; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 1; } private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF, electricCurrentPF); } } alias VolumicElectricChargeUnit for ElectricChargeDensityUnit; alias VolumicElectricChargeValue for ElectricChargeDensityValue; alias volumicElectricCharge for electricChargeDensity; /* IEC-80000-6 item 6-4 surface density of electric charge, areic electric charge */ attribute def SurfaceDensityOfElectricChargeValue :> ScalarQuantityValue { doc /* * source: item 6-4 surface density of electric charge, areic electric charge * symbol(s): `ρ_A`, `sigma` * application domain: generic * name: SurfaceDensityOfElectricCharge * quantity dimension: L^-2*T^1*I^1 * measurement unit(s): C/m^2 * tensor order: 0 * definition: `ρ_A = (dQ)/(dA)` where `Q` is electric charge (item 6-2) and `A` is area (ISO 80000-3, item 3-3)` * remarks: See IEC 60050-121, item 121-11-08. */ attribute :>> num: Real; attribute :>> mRef: SurfaceDensityOfElectricChargeUnit[1]; } attribute surfaceDensityOfElectricCharge: SurfaceDensityOfElectricChargeValue[*] nonunique :> scalarQuantities; attribute def SurfaceDensityOfElectricChargeUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -2; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 1; } private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF, electricCurrentPF); } } alias AreicElectricChargeUnit for SurfaceDensityOfElectricChargeUnit; alias AreicElectricChargeValue for SurfaceDensityOfElectricChargeValue; alias areicElectricCharge for surfaceDensityOfElectricCharge; /* IEC-80000-6 item 6-5 linear density of electric charge, lineic electric charge */ attribute def LinearDensityOfElectricChargeValue :> ScalarQuantityValue { doc /* * source: item 6-5 linear density of electric charge, lineic electric charge * symbol(s): `ρ_l`, `tau` * application domain: generic * name: LinearDensityOfElectricCharge * quantity dimension: L^-1*T^1*I^1 * measurement unit(s): C/m * tensor order: 0 * definition: `ρ_l = (dQ)/(dl)` where `Q` is electric charge (item 6-2) and `l` is length (ISO 80000-3, item 3-1.1) * remarks: See IEC 60050-121, item121-11-09. */ attribute :>> num: Real; attribute :>> mRef: LinearDensityOfElectricChargeUnit[1]; } attribute linearDensityOfElectricCharge: LinearDensityOfElectricChargeValue[*] nonunique :> scalarQuantities; attribute def LinearDensityOfElectricChargeUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 1; } private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF, electricCurrentPF); } } alias LineicElectricChargeUnit for LinearDensityOfElectricChargeUnit; alias LineicElectricChargeValue for LinearDensityOfElectricChargeValue; alias lineicElectricCharge for linearDensityOfElectricCharge; /* IEC-80000-6 item 6-6 electric dipole moment */ attribute def ElectricDipoleMomentValue :> ScalarQuantityValue { doc /* * source: item 6-6 electric dipole moment (magnitude) * symbol(s): `p` * application domain: generic * name: ElectricDipoleMoment * quantity dimension: L^1*T^1*I^1 * measurement unit(s): C*m * tensor order: 0 * definition: `vec(p) = q (vec(r_+) - vec(r_-))` where `vec(r_+)` and `vec(r_-)` are the position vectors (ISO 80000-3, item 3-1.11) to carriers of electric charges `q` and `-q` (item 6-2), respectively * remarks: The electric dipole moment of a substance within a domain is the vector sum of electric dipole moments of electric dipoles included in the domain. See IEC 60050-121, items 121-11-35 and 121-11-36. */ attribute :>> num: Real; attribute :>> mRef: ElectricDipoleMomentUnit[1]; } attribute electricDipoleMoment: ElectricDipoleMomentValue[*] nonunique :> scalarQuantities; attribute def ElectricDipoleMomentUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 1; } private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF, electricCurrentPF); } } attribute def Cartesian3dElectricDipoleMomentVector :> VectorQuantityValue { doc /* * source: item 6-6 electric dipole moment (vector) * symbol(s): `vec(p)` * application domain: generic * name: ElectricDipoleMoment * quantity dimension: L^1*T^1*I^1 * measurement unit(s): C*m * tensor order: 1 * definition: `vec(p) = q (vec(r_+) - vec(r_-))` where `vec(r_+)` and `vec(r_-)` are the position vectors (ISO 80000-3, item 3-1.11) to carriers of electric charges `q` and `-q` (item 6-2), respectively * remarks: The electric dipole moment of a substance within a domain is the vector sum of electric dipole moments of electric dipoles included in the domain. See IEC 60050-121, items 121-11-35 and 121-11-36. */ attribute :>> isBound = false; attribute :>> num: Real[3]; attribute :>> mRef: Cartesian3dElectricDipoleMomentCoordinateFrame[1]; } attribute electricDipoleMomentVector: Cartesian3dElectricDipoleMomentVector :> vectorQuantities; attribute def Cartesian3dElectricDipoleMomentCoordinateFrame :> VectorMeasurementReference { attribute :>> dimensions = 3; attribute :>> isBound = false; attribute :>> isOrthogonal = true; attribute :>> mRefs: ElectricDipoleMomentUnit[3]; } /* IEC-80000-6 item 6-7 electric polarization */ attribute def ElectricPolarizationValue :> ScalarQuantityValue { doc /* * source: item 6-7 electric polarization (magnitude) * symbol(s): `P` * application domain: generic * name: ElectricPolarization * quantity dimension: L^-2*T^1*I^1 * measurement unit(s): C/m^2 * tensor order: 0 * definition: `vec(P) = (d vec(p))/(dV)` where `vec(p)` is electric dipole moment (item 6-6) of a substance within a domain with volume `V` (ISO 80000-3, item 3-4) * remarks: See IEC 60050-121, item 121-11-37. */ attribute :>> num: Real; attribute :>> mRef: ElectricPolarizationUnit[1]; } attribute electricPolarization: ElectricPolarizationValue[*] nonunique :> scalarQuantities; attribute def ElectricPolarizationUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -2; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 1; } private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF, electricCurrentPF); } } attribute def Cartesian3dElectricPolarizationVector :> VectorQuantityValue { doc /* * source: item 6-7 electric polarization (vector) * symbol(s): `vec(P)` * application domain: generic * name: ElectricPolarization * quantity dimension: L^-2*T^1*I^1 * measurement unit(s): C/m^2 * tensor order: 1 * definition: `vec(P) = (d vec(p))/(dV)` where `vec(p)` is electric dipole moment (item 6-6) of a substance within a domain with volume `V` (ISO 80000-3, item 3-4) * remarks: See IEC 60050-121, item 121-11-37. */ attribute :>> isBound = false; attribute :>> num: Real[3]; attribute :>> mRef: Cartesian3dElectricPolarizationCoordinateFrame[1]; } attribute electricPolarizationVector: Cartesian3dElectricPolarizationVector :> vectorQuantities; attribute def Cartesian3dElectricPolarizationCoordinateFrame :> VectorMeasurementReference { attribute :>> dimensions = 3; attribute :>> isBound = false; attribute :>> isOrthogonal = true; attribute :>> mRefs: ElectricPolarizationUnit[3]; } /* IEC-80000-6 item 6-8 electric current density, areic electric current */ attribute def ElectricCurrentDensityValue :> ScalarQuantityValue { doc /* * source: item 6-8 electric current density, areic electric current (magnitude) * symbol(s): `J` * application domain: generic * name: ElectricCurrentDensity * quantity dimension: L^-2*I^1 * measurement unit(s): A/m^2 * tensor order: 0 * definition: `vec(J) = ρ vec(v)` where `ρ` is electric charge density (item 6-3) and `vec(v)` is velocity (ISO 80000-3, item 3-8.1) * remarks: Electric current `I` (item 6-1) through a surface `S` is `I = int_S vec(J) * vec(e_n) dA` where `vec(e_n) dA` is vector surface element. See IEC 60050-121, item 121-11-11. */ attribute :>> num: Real; attribute :>> mRef: ElectricCurrentDensityUnit[1]; } attribute electricCurrentDensity: ElectricCurrentDensityValue[*] nonunique :> scalarQuantities; attribute def ElectricCurrentDensityUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -2; } private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, electricCurrentPF); } } attribute def Cartesian3dElectricCurrentDensityVector :> VectorQuantityValue { doc /* * source: item 6-8 electric current density, areic electric current (vector) * symbol(s): `vec(J)` * application domain: generic * name: ElectricCurrentDensity * quantity dimension: L^-2*I^1 * measurement unit(s): A/m^2 * tensor order: 1 * definition: `vec(J) = ρ vec(v)` where `ρ` is electric charge density (item 6-3) and `vec(v)` is velocity (ISO 80000-3, item 3-8.1) * remarks: Electric current `I` (item 6-1) through a surface `S` is `I = int_S vec(J) * vec(e_n) dA` where `vec(e_n) dA` is vector surface element. See IEC 60050-121, item 121-11-11. */ attribute :>> isBound = false; attribute :>> num: Real[3]; attribute :>> mRef: Cartesian3dElectricCurrentDensityCoordinateFrame[1]; } attribute electricCurrentDensityVector: Cartesian3dElectricCurrentDensityVector :> vectorQuantities; attribute def Cartesian3dElectricCurrentDensityCoordinateFrame :> VectorMeasurementReference { attribute :>> dimensions = 3; attribute :>> isBound = false; attribute :>> isOrthogonal = true; attribute :>> mRefs: ElectricCurrentDensityUnit[3]; } alias Cartesian3dAreicElectricCurrentCoordinateFrame for Cartesian3dElectricCurrentDensityCoordinateFrame; alias areicElectricCurrentVector for electricCurrentDensityVector; /* IEC-80000-6 item 6-9 linear electric current density, lineic electric current */ attribute def LinearElectricCurrentDensityValue :> ScalarQuantityValue { doc /* * source: item 6-9 linear electric current density, lineic electric current (magnitude) * symbol(s): `J_S` * application domain: generic * name: LinearElectricCurrentDensity * quantity dimension: L^-1*I^1 * measurement unit(s): A/m * tensor order: 0 * definition: `vec(J_S) = ρ_A vec(v)` where `ρ_A` is surface density of electric charge (item 6-4) and `vec(v)` is velocity (ISO 80000-3, item 3-8.1) * remarks: Electric current `I` (item 6-1) through a curve `C` on a surface is `I = int_C vec(J_S) xx vec(e_n) * d vec(r)` where `vec(e_n)` is a unit vector perpendicular to the surface and line vector element and `d vec(r)` is the differential of position vector `vec(r)`. See IEC 60050-121, item 121-11-12. */ attribute :>> num: Real; attribute :>> mRef: LinearElectricCurrentDensityUnit[1]; } attribute linearElectricCurrentDensity: LinearElectricCurrentDensityValue[*] nonunique :> scalarQuantities; attribute def LinearElectricCurrentDensityUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; } private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, electricCurrentPF); } } attribute def Cartesian3dLinearElectricCurrentDensityVector :> VectorQuantityValue { doc /* * source: item 6-9 linear electric current density, lineic electric current (vector) * symbol(s): `vec(J_S)` * application domain: generic * name: LinearElectricCurrentDensity * quantity dimension: L^-1*I^1 * measurement unit(s): A/m * tensor order: 1 * definition: `vec(J_S) = ρ_A vec(v)` where `ρ_A` is surface density of electric charge (item 6-4) and `vec(v)` is velocity (ISO 80000-3, item 3-8.1) * remarks: Electric current `I` (item 6-1) through a curve `C` on a surface is `I = int_C vec(J_S) xx vec(e_n) * d vec(r)` where `vec(e_n)` is a unit vector perpendicular to the surface and line vector element and `d vec(r)` is the differential of position vector `vec(r)`. See IEC 60050-121, item 121-11-12. */ attribute :>> isBound = false; attribute :>> num: Real[3]; attribute :>> mRef: Cartesian3dLinearElectricCurrentDensityCoordinateFrame[1]; } attribute linearElectricCurrentDensityVector: Cartesian3dLinearElectricCurrentDensityVector :> vectorQuantities; attribute def Cartesian3dLinearElectricCurrentDensityCoordinateFrame :> VectorMeasurementReference { attribute :>> dimensions = 3; attribute :>> isBound = false; attribute :>> isOrthogonal = true; attribute :>> mRefs: LinearElectricCurrentDensityUnit[3]; } alias Cartesian3dLineicElectricCurrentCoordinateFrame for Cartesian3dLinearElectricCurrentDensityCoordinateFrame; alias lineicElectricCurrentVector for linearElectricCurrentDensityVector; /* IEC-80000-6 item 6-10 electric field strength */ attribute def ElectricFieldStrengthValue :> ScalarQuantityValue { doc /* * source: item 6-10 electric field strength (magnitude) * symbol(s): `E` * application domain: generic * name: ElectricFieldStrength * quantity dimension: L^1*M^1*T^-3*I^-1 * measurement unit(s): V/m * tensor order: 0 * definition: `vec(E) = vec(F)/q` where `vec(F)` is force (ISO 80000-4, item 4-9.1) and `q` is electric charge (item 6-2) * remarks: See IEC 60050, item 121-11-18. `q` is the charge of a test particle at rest. */ attribute :>> num: Real; attribute :>> mRef: ElectricFieldStrengthUnit[1]; } attribute electricFieldStrength: ElectricFieldStrengthValue[*] nonunique :> scalarQuantities; attribute def ElectricFieldStrengthUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 1; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -3; } private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = -1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF); } } attribute def Cartesian3dElectricFieldStrengthVector :> VectorQuantityValue { doc /* * source: item 6-10 electric field strength (vector) * symbol(s): `vec(E)` * application domain: generic * name: ElectricFieldStrength * quantity dimension: L^1*M^1*T^-3*I^-1 * measurement unit(s): V/m * tensor order: 1 * definition: `vec(E) = vec(F)/q` where `vec(F)` is force (ISO 80000-4, item 4-9.1) and `q` is electric charge (item 6-2) * remarks: See IEC 60050, item 121-11-18. `q` is the charge of a test particle at rest. */ attribute :>> isBound = false; attribute :>> num: Real[3]; attribute :>> mRef: Cartesian3dElectricFieldStrengthCoordinateFrame[1]; } attribute electricFieldStrengthVector: Cartesian3dElectricFieldStrengthVector :> vectorQuantities; attribute def Cartesian3dElectricFieldStrengthCoordinateFrame :> VectorMeasurementReference { attribute :>> dimensions = 3; attribute :>> isBound = false; attribute :>> isOrthogonal = true; attribute :>> mRefs: ElectricFieldStrengthUnit[3]; } /* IEC-80000-6 item 6-11.1 electric potential */ attribute def ElectricPotentialValue :> ScalarQuantityValue { doc /* * source: item 6-11.1 electric potential * symbol(s): `V`, `φ` * application domain: generic * name: ElectricPotential * quantity dimension: L^2*M^1*T^-3*I^-1 * measurement unit(s): V * tensor order: 0 * definition: `-grad(V) = vec(E) + (del A)/(del t)` where `vec(E)` is electric field strength (item 610), `A` is magnetic vector potential (item 6-32) and `t` is time (ISO 80000-3, item 3-7) * remarks: The electric potential is not unique, since any constant scalar field quantity can be added to it without changing its gradient. See IEC 60050-121, item 121-11-25. */ attribute :>> num: Real; attribute :>> mRef: ElectricPotentialUnit[1]; } attribute electricPotential: ElectricPotentialValue[*] nonunique :> scalarQuantities; attribute def ElectricPotentialUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -3; } private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = -1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF); } } /* IEC-80000-6 item 6-11.2 electric potential difference */ attribute def ElectricPotentialDifferenceValue :> ScalarQuantityValue { doc /* * source: item 6-11.2 electric potential difference * symbol(s): `V_(ab)` * application domain: generic * name: ElectricPotentialDifference * quantity dimension: L^2*M^1*T^-3*I^-1 * measurement unit(s): V * tensor order: 0 * definition: `V_(ab) = int_(vec(r_a))^(vec(r_b)) (vec(E) + (del A)/(del t)) * d vec(r)` where `vec(E)` is electric field strength (item 610), `A` is magnetic vector potential (item 6-32), `t` is time (ISO 80000-3, item 3-7), and `vec(r)` is position vector (ISO 80000-3, item 3-1.11) along a given curve `C` from point `a` to point `b` * remarks: `V_(ab) = V_a - V_b` where `V_a` and `V_b` are the potentials at points `a` and `b`, respectively. See IEC 60050-121, item 121-11-26. */ attribute :>> num: Real; attribute :>> mRef: ElectricPotentialDifferenceUnit[1]; } attribute electricPotentialDifference: ElectricPotentialDifferenceValue[*] nonunique :> scalarQuantities; attribute def ElectricPotentialDifferenceUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -3; } private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = -1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF); } } /* IEC-80000-6 item 6-11.3 voltage, electric tension */ attribute voltage: ElectricPotentialDifferenceValue :> scalarQuantities { doc /* * source: item 6-11.3 voltage, electric tension * symbol(s): `U`, `U_(ab)` * application domain: generic * name: Voltage (specializes ElectricPotentialDifference) * quantity dimension: L^2*M^1*T^-3*I^-1 * measurement unit(s): V * tensor order: 0 * definition: in electric circuit theory, `U_(ab) = V_a - V_b` where `V_a` and `V_b` are the electric potentials (item 6-11.1) at points `a` and `b`, respectively * remarks: For an electric field within a medium `U_(ab) = int_(vec(r_a) (C))^(vec(r_b)) vec(E) * d vec(r)` where `vec(E)` is electric field strength (item 6-10) and `vec(r)` is position vector (ISO 80000-3, item 3-1.11) along a given curve `C` from point `a` to point `b`. For an irrotational electric field, the voltage is independent of the path between the two points `a` and `b`. See IEC 60050-121, item 121-11-27. */ } alias electricTension for voltage; /* IEC-80000-6 item 6-12 electric flux density, electric displacement */ attribute def ElectricFluxDensityValue :> ScalarQuantityValue { doc /* * source: item 6-12 electric flux density, electric displacement (magnitude) * symbol(s): `D` * application domain: generic * name: ElectricFluxDensity * quantity dimension: L^-2*T^1*I^1 * measurement unit(s): C/m^2 * tensor order: 0 * definition: `vec(D) = ε_0 vec(E) + vec(P)` where `ε_0` is the electric constant (item 6-14.1 ), `vec(E)` is electric field strength (item 6-10), and `vec(P)` is electric polarization (item 6-7) * remarks: The electric flux density is related to electric charge density via `nabla * vec(D) = ρ` where `nabla * vec(D)` denotes the divergence of `vec(D)`. See IEC 60050-121, item 121-11-40. */ attribute :>> num: Real; attribute :>> mRef: ElectricFluxDensityUnit[1]; } attribute electricFluxDensity: ElectricFluxDensityValue[*] nonunique :> scalarQuantities; attribute def ElectricFluxDensityUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -2; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 1; } private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF, electricCurrentPF); } } attribute def Cartesian3dElectricFluxDensityVector :> VectorQuantityValue { doc /* * source: item 6-12 electric flux density, electric displacement (vector) * symbol(s): `vec(D)` * application domain: generic * name: ElectricFluxDensity * quantity dimension: L^-2*T^1*I^1 * measurement unit(s): C/m^2 * tensor order: 1 * definition: `vec(D) = ε_0 vec(E) + vec(P)` where `ε_0` is the electric constant (item 6-14.1 ), `vec(E)` is electric field strength (item 6-10), and `vec(P)` is electric polarization (item 6-7) * remarks: The electric flux density is related to electric charge density via `nabla * vec(D) = ρ` where `nabla * vec(D)` denotes the divergence of `vec(D)`. See IEC 60050-121, item 121-11-40. */ attribute :>> isBound = false; attribute :>> num: Real[3]; attribute :>> mRef: Cartesian3dElectricFluxDensityCoordinateFrame[1]; } attribute electricFluxDensityVector: Cartesian3dElectricFluxDensityVector :> vectorQuantities; attribute def Cartesian3dElectricFluxDensityCoordinateFrame :> VectorMeasurementReference { attribute :>> dimensions = 3; attribute :>> isBound = false; attribute :>> isOrthogonal = true; attribute :>> mRefs: ElectricFluxDensityUnit[3]; } alias Cartesian3dElectricDisplacementCoordinateFrame for Cartesian3dElectricFluxDensityCoordinateFrame; alias electricDisplacementVector for electricFluxDensityVector; /* IEC-80000-6 item 6-13 capacitance */ attribute def CapacitanceValue :> ScalarQuantityValue { doc /* * source: item 6-13 capacitance * symbol(s): `C` * application domain: generic * name: Capacitance * quantity dimension: L^-2*M^-1*T^4*I^2 * measurement unit(s): F * tensor order: 0 * definition: `C = Q/U` where `Q` is electric charge (item 6-2) and `U` is voltage (6-11.3) * remarks: See IEC 60050-131, item 131-12-13. */ attribute :>> num: Real; attribute :>> mRef: CapacitanceUnit[1]; } attribute capacitance: CapacitanceValue[*] nonunique :> scalarQuantities; attribute def CapacitanceUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -2; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 4; } private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 2; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF); } } /* IEC-80000-6 item 6-14.1 electric constant, permittivity of vacuum */ attribute def ElectricConstantValue :> ScalarQuantityValue { doc /* * source: item 6-14.1 electric constant, permittivity of vacuum * symbol(s): `ε_0` * application domain: generic * name: ElectricConstant * quantity dimension: L^-3*M^-1*T^4*I^2 * measurement unit(s): F/m * tensor order: 0 * definition: `ε_0 = 1 / (μ_0 * c_0^2)` where `μ_0` is the magnetic constant (item 6-26.1) and `c_0` is the speed of light (item 6-35.2) * remarks: `ε_0 = 8.854188 * 10^-12` F/m. See IEC 60050-121, item 121-11-03. */ attribute :>> num: Real; attribute :>> mRef: ElectricConstantUnit[1]; } attribute electricConstant: ElectricConstantValue[*] nonunique :> scalarQuantities; attribute def ElectricConstantUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -3; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 4; } private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 2; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF); } } alias PermittivityOfVacuumUnit for ElectricConstantUnit; alias PermittivityOfVacuumValue for ElectricConstantValue; alias permittivityOfVacuum for electricConstant; /* IEC-80000-6 item 6-14.2 permittivity */ attribute def PermittivityValue :> ScalarQuantityValue { doc /* * source: item 6-14.2 permittivity * symbol(s): `ε` * application domain: generic * name: Permittivity * quantity dimension: L^-3*M^-1*T^4*I^2 * measurement unit(s): F/m * tensor order: 0 * definition: `vec(D) = ε vec(E)` where `vec(D)` is electric flux density (item 6-12) and `vec(E)` is electric field strength (item 6-10) * remarks: This definition applies to an isotropic medium. For an anisotropic medium, permittivity is a second order tensor. See IEC 60050-121, item 121-12-12. */ attribute :>> num: Real; attribute :>> mRef: PermittivityUnit[1]; } attribute permittivity: PermittivityValue[*] nonunique :> scalarQuantities; attribute def PermittivityUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -3; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 4; } private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 2; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF); } } /* IEC-80000-6 item 6-15 relative permittivity */ attribute def RelativePermittivityValue :> DimensionOneValue { doc /* * source: item 6-15 relative permittivity * symbol(s): `ε_r` * application domain: generic * name: RelativePermittivity (specializes DimensionOneQuantity) * quantity dimension: 1 * measurement unit(s): 1 * tensor order: 0 * definition: `ε_r = ε / ε_0` where `ε` is permittivity (item 6-14.2) and `ε_0` is the electric constant (item 6-14.1) * remarks: See IEC 60050-121, item 121-12-13. */ } attribute relativePermittivity: RelativePermittivityValue :> scalarQuantities; /* IEC-80000-6 item 6-16 electric susceptibility */ attribute def ElectricSusceptibilityValue :> DimensionOneValue { doc /* * source: item 6-16 electric susceptibility * symbol(s): `χ` * application domain: generic * name: ElectricSusceptibility (specializes DimensionOneQuantity) * quantity dimension: 1 * measurement unit(s): 1 * tensor order: 0 * definition: `vec(P) = ε_0 χ vec(E)` where `vec(P)` is electric polarization (item 6-7), `ε_0` is the electric constant (item 6-14. 1) and `vec(E)` is electric field strength (item 6-10) * remarks: `χ = ε_r - 1`. The definition applies to an isotropic medium. For an anisotropic medium, electric susceptibility is a second order tensor. See IEC 60050-121, item 121-12-19. */ } attribute electricSusceptibility: ElectricSusceptibilityValue :> scalarQuantities; /* IEC-80000-6 item 6-17 electric flux */ attribute def ElectricFluxValue :> ScalarQuantityValue { doc /* * source: item 6-17 electric flux * symbol(s): `Ψ` * application domain: generic * name: ElectricFlux * quantity dimension: T^1*I^1 * measurement unit(s): C * tensor order: 0 * definition: `Ψ = int_S vec(D) * vec(e_n) dA` over a surface `S`, where `vec(D)` is electric flux (item 6-12) en `vec(e_n) dA` is the vector surface element (ISO 80000-3 item 3-3) * remarks: See IEC 60050-121, item 121-11-41. */ attribute :>> num: Real; attribute :>> mRef: ElectricFluxUnit[1]; } attribute electricFlux: ElectricFluxValue[*] nonunique :> scalarQuantities; attribute def ElectricFluxUnit :> DerivedUnit { private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 1; } private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (durationPF, electricCurrentPF); } } /* IEC-80000-6 item 6-18 displacement current density */ attribute def DisplacementCurrentDensityValue :> ScalarQuantityValue { doc /* * source: item 6-18 displacement current density (magnitude) * symbol(s): `J_D` * application domain: generic * name: DisplacementCurrentDensity * quantity dimension: L^-2*I^1 * measurement unit(s): A/m^2 * tensor order: 0 * definition: `vec(J_D) = (del vec(D))/(del t)` where `vec(D)` is electric flux density (item 6-12) and `t` is time (ISO 80000-3, item 3-7) * remarks: See IEC 60050-121, item 121-11-42. */ attribute :>> num: Real; attribute :>> mRef: DisplacementCurrentDensityUnit[1]; } attribute displacementCurrentDensity: DisplacementCurrentDensityValue[*] nonunique :> scalarQuantities; attribute def DisplacementCurrentDensityUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -2; } private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, electricCurrentPF); } } attribute def Cartesian3dDisplacementCurrentDensityVector :> VectorQuantityValue { doc /* * source: item 6-18 displacement current density (vector) * symbol(s): `vec(J_D)` * application domain: generic * name: DisplacementCurrentDensity * quantity dimension: L^-2*I^1 * measurement unit(s): A/m^2 * tensor order: 1 * definition: `vec(J_D) = (del vec(D))/(del t)` where `vec(D)` is electric flux density (item 6-12) and `t` is time (ISO 80000-3, item 3-7) * remarks: See IEC 60050-121, item 121-11-42. */ attribute :>> isBound = false; attribute :>> num: Real[3]; attribute :>> mRef: Cartesian3dDisplacementCurrentDensityCoordinateFrame[1]; } attribute displacementCurrentDensityVector: Cartesian3dDisplacementCurrentDensityVector :> vectorQuantities; attribute def Cartesian3dDisplacementCurrentDensityCoordinateFrame :> VectorMeasurementReference { attribute :>> dimensions = 3; attribute :>> isBound = false; attribute :>> isOrthogonal = true; attribute :>> mRefs: DisplacementCurrentDensityUnit[3]; } /* IEC-80000-6 item 6-19.1 displacement current */ attribute displacementCurrent: ElectricCurrentValue :> scalarQuantities { doc /* * source: item 6-19.1 displacement current * symbol(s): `I_D` * application domain: generic * name: DisplacementCurrent (specializes ElectricCurrent) * quantity dimension: I^1 * measurement unit(s): A * tensor order: 0 * definition: `I = int_S vec(J_D) * vec(e_n) dA` over a surface `S`, where `vec(J_D)` is displacement current density (item 6-18) en `vec(e_n) dA` is the vector surface element (ISO 80000-3 item 3-3) * remarks: See IEC 60050-121, item 121-11-43. */ } /* IEC-80000-6 item 6-19.2 total current */ attribute totalCurrent: ElectricCurrentValue :> scalarQuantities { doc /* * source: item 6-19.2 total current * symbol(s): `I_"tot"`, `I_t` * application domain: generic * name: TotalCurrent (specializes ElectricCurrent) * quantity dimension: I^1 * measurement unit(s): A * tensor order: 0 * definition: `I_(tot) = I + I_D` where `I` is electric current (item 6-1) and `I_D` is displacement current (item 6-19.1) * remarks: See IEC 60050-121, item 121-11-45. */ } /* IEC-80000-6 item 6-20 total current density */ attribute def TotalCurrentDensityValue :> ScalarQuantityValue { doc /* * source: item 6-20 total current density (magnitude) * symbol(s): `J_"tot"`, `J_t` * application domain: generic * name: TotalCurrentDensity * quantity dimension: L^-2*I^1 * measurement unit(s): A/m^2 * tensor order: 0 * definition: `vec(J_(tot)) = vec(J) +vec(J_D)` where `vec(J)` is electric current density (item 6-8) and `vec(J_D)` is displacement current density (item 6-18) * remarks: See IEC 60050-121, item 121-11-44. */ attribute :>> num: Real; attribute :>> mRef: TotalCurrentDensityUnit[1]; } attribute totalCurrentDensity: TotalCurrentDensityValue[*] nonunique :> scalarQuantities; attribute def TotalCurrentDensityUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -2; } private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, electricCurrentPF); } } attribute def Cartesian3dTotalCurrentDensityVector :> VectorQuantityValue { doc /* * source: item 6-20 total current density (vector) * symbol(s): `vec(J_"tot")`, `vec(J_t)` * application domain: generic * name: TotalCurrentDensity * quantity dimension: L^-2*I^1 * measurement unit(s): A/m^2 * tensor order: 1 * definition: `vec(J_(tot)) = vec(J) +vec(J_D)` where `vec(J)` is electric current density (item 6-8) and `vec(J_D)` is displacement current density (item 6-18) * remarks: See IEC 60050-121, item 121-11-44. */ attribute :>> isBound = false; attribute :>> num: Real[3]; attribute :>> mRef: Cartesian3dTotalCurrentDensityCoordinateFrame[1]; } attribute totalCurrentDensityVector: Cartesian3dTotalCurrentDensityVector :> vectorQuantities; attribute def Cartesian3dTotalCurrentDensityCoordinateFrame :> VectorMeasurementReference { attribute :>> dimensions = 3; attribute :>> isBound = false; attribute :>> isOrthogonal = true; attribute :>> mRefs: TotalCurrentDensityUnit[3]; } /* IEC-80000-6 item 6-21 magnetic flux density */ attribute def MagneticFluxDensityValue :> ScalarQuantityValue { doc /* * source: item 6-21 magnetic flux density (magnitude) * symbol(s): `B` * application domain: generic * name: MagneticFluxDensity * quantity dimension: M^1*T^-2*I^-1 * measurement unit(s): T * tensor order: 0 * definition: `vec(F) = q vec(v) xx vec(B)` where `vec(F)` is force (ISO 80000-4, item 4-9.1) and `vec(v)` is velocity (ISO 80000-3, item 3-8.1) of any test particle with electric charge `q` (item 6-2) * remarks: The magnetic flux density has zero divergence, `nabla * vec(B) = 0`. See IEC 60050-121, item 121-11-19. */ attribute :>> num: Real; attribute :>> mRef: MagneticFluxDensityUnit[1]; } attribute magneticFluxDensity: MagneticFluxDensityValue[*] nonunique :> scalarQuantities; attribute def MagneticFluxDensityUnit :> DerivedUnit { private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; } private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = -1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (massPF, durationPF, electricCurrentPF); } } attribute def Cartesian3dMagneticFluxDensityVector :> VectorQuantityValue { doc /* * source: item 6-21 magnetic flux density (vector) * symbol(s): `vec(B)` * application domain: generic * name: MagneticFluxDensity * quantity dimension: M^1*T^-2*I^-1 * measurement unit(s): T * tensor order: 1 * definition: `vec(F) = q vec(v) xx vec(B)` where `vec(F)` is force (ISO 80000-4, item 4-9.1) and `vec(v)` is velocity (ISO 80000-3, item 3-8.1) of any test particle with electric charge `q` (item 6-2) * remarks: The magnetic flux density has zero divergence, `nabla * vec(B) = 0`. See IEC 60050-121, item 121-11-19. */ attribute :>> isBound = false; attribute :>> num: Real[3]; attribute :>> mRef: Cartesian3dMagneticFluxDensityCoordinateFrame[1]; } attribute magneticFluxDensityVector: Cartesian3dMagneticFluxDensityVector :> vectorQuantities; attribute def Cartesian3dMagneticFluxDensityCoordinateFrame :> VectorMeasurementReference { attribute :>> dimensions = 3; attribute :>> isBound = false; attribute :>> isOrthogonal = true; attribute :>> mRefs: MagneticFluxDensityUnit[3]; } /* IEC-80000-6 item 6-22.1 magnetic flux */ attribute def MagneticFluxValue :> ScalarQuantityValue { doc /* * source: item 6-22.1 magnetic flux * symbol(s): `Φ` * application domain: generic * name: MagneticFlux * quantity dimension: L^2*M^1*T^-2*I^-1 * measurement unit(s): Wb * tensor order: 0 * definition: `Φ = int_S vec(B) * vec(e_n) dA` over a surface `S`, where `vec(B)` is magnetic flux density (item 6-21) and `vec(e_n) dA` is vector surface element (ISO 80000-3, item 3-3) * remarks: See IEC 60050-121, item 121-11-21. */ attribute :>> num: Real; attribute :>> mRef: MagneticFluxUnit[1]; } attribute magneticFlux: MagneticFluxValue[*] nonunique :> scalarQuantities; attribute def MagneticFluxUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; } private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = -1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF); } } /* IEC-80000-6 item 6-22.2 linked flux */ attribute def LinkedFluxValue :> ScalarQuantityValue { doc /* * source: item 6-22.2 linked flux * symbol(s): `Ψ_m`, `Ψ` * application domain: generic * name: LinkedFlux * quantity dimension: L^2*M^1*T^-2*I^-1 * measurement unit(s): Wb * tensor order: 0 * definition: `Ψ_m = int_C vec(A) * d vec(r)` where `vec(A)` is magnetic vector potential (item 6-32) and `d vec(r)` is line vector element of the curve `C` * remarks: Line vector element `d vec(r)` is the differential of position vector `vec(r)` (ISO 80000-3, item 3-1.11). See IEC 60050-121, item 121-11-24. */ attribute :>> num: Real; attribute :>> mRef: LinkedFluxUnit[1]; } attribute linkedFlux: LinkedFluxValue[*] nonunique :> scalarQuantities; attribute def LinkedFluxUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; } private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = -1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF); } } /* IEC-80000-6 item 6-23 magnetic moment, magnetic area moment */ attribute def MagneticMomentValue :> ScalarQuantityValue { doc /* * source: item 6-23 magnetic moment, magnetic area moment (magnitude) * symbol(s): `m` * application domain: generic * name: MagneticMoment * quantity dimension: L^2*I^1 * measurement unit(s): A*m^2 * tensor order: 0 * definition: `vec(m) = I vec(e_n) A` where `I` is electric current (item 6-1) in a small closed loop, `vec(e_n)` is a unit vector perpendicular to the loop, and `A` is area (ISO 80000-3, item 3-3) of the loop * remarks: The magnetic moment of a substance within a domain is the vector sum of the magnetic moments of all entities included in the domain. See IEC 60050-121, items 121-11-49 and 121-11-50. */ attribute :>> num: Real; attribute :>> mRef: MagneticMomentUnit[1]; } attribute magneticMoment: MagneticMomentValue[*] nonunique :> scalarQuantities; attribute def MagneticMomentUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; } private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, electricCurrentPF); } } attribute def Cartesian3dMagneticMomentVector :> VectorQuantityValue { doc /* * source: item 6-23 magnetic moment, magnetic area moment (vector) * symbol(s): `vec(m)` * application domain: generic * name: MagneticMoment * quantity dimension: L^2*I^1 * measurement unit(s): A*m^2 * tensor order: 1 * definition: `vec(m) = I vec(e_n) A` where `I` is electric current (item 6-1) in a small closed loop, `vec(e_n)` is a unit vector perpendicular to the loop, and `A` is area (ISO 80000-3, item 3-3) of the loop * remarks: The magnetic moment of a substance within a domain is the vector sum of the magnetic moments of all entities included in the domain. See IEC 60050-121, items 121-11-49 and 121-11-50. */ attribute :>> isBound = false; attribute :>> num: Real[3]; attribute :>> mRef: Cartesian3dMagneticMomentCoordinateFrame[1]; } attribute magneticMomentVector: Cartesian3dMagneticMomentVector :> vectorQuantities; attribute def Cartesian3dMagneticMomentCoordinateFrame :> VectorMeasurementReference { attribute :>> dimensions = 3; attribute :>> isBound = false; attribute :>> isOrthogonal = true; attribute :>> mRefs: MagneticMomentUnit[3]; } alias Cartesian3dMagneticAreaMomentCoordinateFrame for Cartesian3dMagneticMomentCoordinateFrame; alias magneticAreaMomentVector for magneticMomentVector; /* IEC-80000-6 item 6-24 magnetization */ attribute def MagnetizationValue :> ScalarQuantityValue { doc /* * source: item 6-24 magnetization (magnitude) * symbol(s): `M`, `H_i` * application domain: generic * name: Magnetization * quantity dimension: L^-1*I^1 * measurement unit(s): A/m * tensor order: 0 * definition: `vec(M) = (d vec(m)) / (dV)` where `vec(m)` is magnetic moment (item 6-23) of a substance in a domain with volume `V` (ISO 80000-3, item 3-4) * remarks: See IEC 60050-121, item 121-11-52. */ attribute :>> num: Real; attribute :>> mRef: MagnetizationUnit[1]; } attribute magnetization: MagnetizationValue[*] nonunique :> scalarQuantities; attribute def MagnetizationUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; } private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, electricCurrentPF); } } attribute def Cartesian3dMagnetizationVector :> VectorQuantityValue { doc /* * source: item 6-24 magnetization (vector) * symbol(s): `vec(M)`, `vec(H_i)` * application domain: generic * name: Magnetization * quantity dimension: L^-1*I^1 * measurement unit(s): A/m * tensor order: 1 * definition: `vec(M) = (d vec(m)) / (dV)` where `vec(m)` is magnetic moment (item 6-23) of a substance in a domain with volume `V` (ISO 80000-3, item 3-4) * remarks: See IEC 60050-121, item 121-11-52. */ attribute :>> isBound = false; attribute :>> num: Real[3]; attribute :>> mRef: Cartesian3dMagnetizationCoordinateFrame[1]; } attribute magnetizationVector: Cartesian3dMagnetizationVector :> vectorQuantities; attribute def Cartesian3dMagnetizationCoordinateFrame :> VectorMeasurementReference { attribute :>> dimensions = 3; attribute :>> isBound = false; attribute :>> isOrthogonal = true; attribute :>> mRefs: MagnetizationUnit[3]; } /* IEC-80000-6 item 6-25 magnetic field strength, magnetizing field */ attribute def MagneticFieldStrengthValue :> ScalarQuantityValue { doc /* * source: item 6-25 magnetic field strength, magnetizing field (magnitude) * symbol(s): `H` * application domain: generic * name: MagneticFieldStrength * quantity dimension: L^-1*I^1 * measurement unit(s): A/m * tensor order: 0 * definition: `vec(H) = vec(B)/μ_0 - vec(M)` where `vec(B)` is magnetic flux density (item 6-21), `μ_0` is the magnetic constant (item 6-26.1), and `vec(M)` is magnetization (item 6-24) * remarks: The magnetic field strength is related to the total current density `vec(J_(t ot))` (item 6-20) via `rot vec(H) = vec(J_(t ot))`. See IEC 60050-121, item 121-11-56. */ attribute :>> num: Real; attribute :>> mRef: MagneticFieldStrengthUnit[1]; } attribute magneticFieldStrength: MagneticFieldStrengthValue[*] nonunique :> scalarQuantities; attribute def MagneticFieldStrengthUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; } private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, electricCurrentPF); } } attribute def Cartesian3dMagneticFieldStrengthVector :> VectorQuantityValue { doc /* * source: item 6-25 magnetic field strength, magnetizing field (vector) * symbol(s): `vec(H)` * application domain: generic * name: MagneticFieldStrength * quantity dimension: L^-1*I^1 * measurement unit(s): A/m * tensor order: 1 * definition: `vec(H) = vec(B)/μ_0 - vec(M)` where `vec(B)` is magnetic flux density (item 6-21), `μ_0` is the magnetic constant (item 6-26.1), and `vec(M)` is magnetization (item 6-24) * remarks: The magnetic field strength is related to the total current density `vec(J_(t ot))` (item 6-20) via `rot vec(H) = vec(J_(t ot))`. See IEC 60050-121, item 121-11-56. */ attribute :>> isBound = false; attribute :>> num: Real[3]; attribute :>> mRef: Cartesian3dMagneticFieldStrengthCoordinateFrame[1]; } attribute magneticFieldStrengthVector: Cartesian3dMagneticFieldStrengthVector :> vectorQuantities; attribute def Cartesian3dMagneticFieldStrengthCoordinateFrame :> VectorMeasurementReference { attribute :>> dimensions = 3; attribute :>> isBound = false; attribute :>> isOrthogonal = true; attribute :>> mRefs: MagneticFieldStrengthUnit[3]; } alias Cartesian3dMagnetizingFieldCoordinateFrame for Cartesian3dMagneticFieldStrengthCoordinateFrame; alias magnetizingFieldVector for magneticFieldStrengthVector; /* IEC-80000-6 item 6-26.1 magnetic constant, permeability of vacuum */ attribute def MagneticConstantValue :> ScalarQuantityValue { doc /* * source: item 6-26.1 magnetic constant, permeability of vacuum * symbol(s): `μ_0` * application domain: generic * name: MagneticConstant * quantity dimension: L^1*M^1*T^-2*I^-2 * measurement unit(s): H/m * tensor order: 0 * definition: `μ_0 = 4 π * 10^-7` H/m * remarks: For this definition of `μ_0` see item 6-1.a. `μ_0 ~~ 1.256637 * 10^-6` H/m. See IEC 60050-121, item 121-11-14. */ attribute :>> num: Real; attribute :>> mRef: MagneticConstantUnit[1]; } attribute magneticConstant: MagneticConstantValue[*] nonunique :> scalarQuantities; attribute def MagneticConstantUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 1; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; } private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = -2; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF); } } alias PermeabilityOfVacuumUnit for MagneticConstantUnit; alias PermeabilityOfVacuumValue for MagneticConstantValue; alias permeabilityOfVacuum for magneticConstant; /* IEC-80000-6 item 6-26.2 permeability */ attribute def PermeabilityValue :> ScalarQuantityValue { doc /* * source: item 6-26.2 permeability * symbol(s): `μ` * application domain: generic * name: Permeability * quantity dimension: L^1*M^1*T^-2*I^-2 * measurement unit(s): H/m * tensor order: 0 * definition: `vec(B) = μ vec(H)` where `vec(B)` is magnetic flux density (item 6-21) and `vec(H)` is magnetic field strength (item 6-25) * remarks: This definition applies to an isotropic medium. For an anisotropic medium permeability is a second order tensor. See IEC 60050-121, item 121-12-28. */ attribute :>> num: Real; attribute :>> mRef: PermeabilityUnit[1]; } attribute permeability: PermeabilityValue[*] nonunique :> scalarQuantities; attribute def PermeabilityUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 1; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; } private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = -2; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF); } } /* IEC-80000-6 item 6-27 relative permeability */ attribute def RelativePermeabilityValue :> DimensionOneValue { doc /* * source: item 6-27 relative permeability * symbol(s): `μ_r` * application domain: generic * name: RelativePermeability (specializes DimensionOneQuantity) * quantity dimension: 1 * measurement unit(s): 1 * tensor order: 0 * definition: `μ_r = μ / μ_0` where `μ` is permeability (item 6-24) and `μ_0` is the magnetic constant (item 6-26.1) * remarks: See IEC 60050-121, item 121-12-29. */ } attribute relativePermeability: RelativePermeabilityValue :> scalarQuantities; /* IEC-80000-6 item 6-28 magnetic susceptibility */ attribute def MagneticSusceptibilityValue :> DimensionOneValue { doc /* * source: item 6-28 magnetic susceptibility * symbol(s): `κ`, `χ_m` * application domain: generic * name: MagneticSusceptibility (specializes DimensionOneQuantity) * quantity dimension: 1 * measurement unit(s): 1 * tensor order: 0 * definition: `vec(M) = κ vec(H)` where `vec(M)` is magnetization (item 6-24) and `vec(H)` is magnetic field strength (item 6-25) * remarks: `κ = μ_r - 1` This definition applies to an isotropic medium. For an anisotropic medium magnetic susceptibility is a second order tensor. See IEC 60050-121, item 121-12-37. */ } attribute magneticSusceptibility: MagneticSusceptibilityValue :> scalarQuantities; /* IEC-80000-6 item 6-29 magnetic polarization */ attribute def MagneticPolarizationValue :> ScalarQuantityValue { doc /* * source: item 6-29 magnetic polarization (magnitude) * symbol(s): `J_m` * application domain: generic * name: MagneticPolarization * quantity dimension: M^1*T^-2*I^-1 * measurement unit(s): T * tensor order: 0 * definition: `vec(J_m) = μ_0 vec(M)` where `μ_0` is the magnetic constant (item 6-26.1), and `vec(M)` is magnetization (item 6-24) * remarks: See IEC 60050-121, item 121-11-54. */ attribute :>> num: Real; attribute :>> mRef: MagneticPolarizationUnit[1]; } attribute magneticPolarization: MagneticPolarizationValue[*] nonunique :> scalarQuantities; attribute def MagneticPolarizationUnit :> DerivedUnit { private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; } private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = -1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (massPF, durationPF, electricCurrentPF); } } attribute def Cartesian3dMagneticPolarizationVector :> VectorQuantityValue { doc /* * source: item 6-29 magnetic polarization (vector) * symbol(s): `vec(J_m)` * application domain: generic * name: MagneticPolarization * quantity dimension: M^1*T^-2*I^-1 * measurement unit(s): T * tensor order: 1 * definition: `vec(J_m) = μ_0 vec(M)` where `μ_0` is the magnetic constant (item 6-26.1), and `vec(M)` is magnetization (item 6-24) * remarks: See IEC 60050-121, item 121-11-54. */ attribute :>> isBound = false; attribute :>> num: Real[3]; attribute :>> mRef: Cartesian3dMagneticPolarizationCoordinateFrame[1]; } attribute magneticPolarizationVector: Cartesian3dMagneticPolarizationVector :> vectorQuantities; attribute def Cartesian3dMagneticPolarizationCoordinateFrame :> VectorMeasurementReference { attribute :>> dimensions = 3; attribute :>> isBound = false; attribute :>> isOrthogonal = true; attribute :>> mRefs: MagneticPolarizationUnit[3]; } /* IEC-80000-6 item 6-30 magnetic dipole moment */ attribute def MagneticDipoleMomentValue :> ScalarQuantityValue { doc /* * source: item 6-30 magnetic dipole moment (magnitude) * symbol(s): `j_m`, `j` * application domain: generic * name: MagneticDipoleMoment * quantity dimension: L^3*M^1*T^-2*I^-1 * measurement unit(s): Wb*m * tensor order: 0 * definition: `vec(j_m) = μ_0 vec(m)` where `μ_0` is the magnetic constant (item 6-26.1), and `vec(m)` is magnetic moment (item 6-23) * remarks: See IEC 60050-121, item 121-11-55. */ attribute :>> num: Real; attribute :>> mRef: MagneticDipoleMomentUnit[1]; } attribute magneticDipoleMoment: MagneticDipoleMomentValue[*] nonunique :> scalarQuantities; attribute def MagneticDipoleMomentUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 3; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; } private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = -1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF); } } attribute def Cartesian3dMagneticDipoleMomentVector :> VectorQuantityValue { doc /* * source: item 6-30 magnetic dipole moment (vector) * symbol(s): `vec(j_m)`, `vec(j)` * application domain: generic * name: MagneticDipoleMoment * quantity dimension: L^3*M^1*T^-2*I^-1 * measurement unit(s): Wb*m * tensor order: 1 * definition: `vec(j_m) = μ_0 vec(m)` where `μ_0` is the magnetic constant (item 6-26.1), and `vec(m)` is magnetic moment (item 6-23) * remarks: See IEC 60050-121, item 121-11-55. */ attribute :>> isBound = false; attribute :>> num: Real[3]; attribute :>> mRef: Cartesian3dMagneticDipoleMomentCoordinateFrame[1]; } attribute magneticDipoleMomentVector: Cartesian3dMagneticDipoleMomentVector :> vectorQuantities; attribute def Cartesian3dMagneticDipoleMomentCoordinateFrame :> VectorMeasurementReference { attribute :>> dimensions = 3; attribute :>> isBound = false; attribute :>> isOrthogonal = true; attribute :>> mRefs: MagneticDipoleMomentUnit[3]; } /* IEC-80000-6 item 6-31 coercivity */ attribute def CoercivityValue :> ScalarQuantityValue { doc /* * source: item 6-31 coercivity * symbol(s): `H_(c,B)` * application domain: generic * name: Coercivity * quantity dimension: L^-1*I^1 * measurement unit(s): A/m * tensor order: 0 * definition: magnetic field strength (item 6-25) to be applied to bring the magnetic flux density (item 6-21) in a substance from its remaining magnetic flux density to zero * remarks: See IEC 60050-121, item 121-12-69. Also called coercive field strength. */ attribute :>> num: Real; attribute :>> mRef: CoercivityUnit[1]; } attribute coercivity: CoercivityValue[*] nonunique :> scalarQuantities; attribute def CoercivityUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; } private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, electricCurrentPF); } } /* IEC-80000-6 item 6-32 magnetic vector potential */ attribute def MagneticVectorPotentialValue :> ScalarQuantityValue { doc /* * source: item 6-32 magnetic vector potential (magnitude) * symbol(s): `A` * application domain: generic * name: MagneticVectorPotential * quantity dimension: L^1*M^1*T^-2*I^-1 * measurement unit(s): Wb/m * tensor order: 0 * definition: `vec(B) = rot vec(A)` where `vec(B)` is magnetic flux density (item 6-21) * remarks: The magnetic vector potential is not unique since any irrotational vector field can be added to it without changing its rotation. See IEC 60050-121, item 121-11-23. */ attribute :>> num: Real; attribute :>> mRef: MagneticVectorPotentialUnit[1]; } attribute magneticVectorPotential: MagneticVectorPotentialValue[*] nonunique :> scalarQuantities; attribute def MagneticVectorPotentialUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 1; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; } private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = -1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF); } } attribute def Cartesian3dMagneticVectorPotentialVector :> VectorQuantityValue { doc /* * source: item 6-32 magnetic vector potential (vector) * symbol(s): `vec(A)` * application domain: generic * name: MagneticVectorPotential * quantity dimension: L^1*M^1*T^-2*I^-1 * measurement unit(s): Wb/m * tensor order: 1 * definition: `vec(B) = rot vec(A)` where `vec(B)` is magnetic flux density (item 6-21) * remarks: The magnetic vector potential is not unique since any irrotational vector field can be added to it without changing its rotation. See IEC 60050-121, item 121-11-23. */ attribute :>> isBound = true; attribute :>> num: Real[3]; attribute :>> mRef: Cartesian3dMagneticVectorPotentialCoordinateFrame[1]; } attribute magneticVectorPotentialVector: Cartesian3dMagneticVectorPotentialVector :> vectorQuantities; attribute def Cartesian3dMagneticVectorPotentialCoordinateFrame :> VectorMeasurementReference { attribute :>> dimensions = 3; attribute :>> isBound = true; attribute :>> isOrthogonal = true; attribute :>> mRefs: MagneticVectorPotentialUnit[3]; } /* IEC-80000-6 item 6-33 electromagnetic energy density, volumic electromagnetic energy */ attribute def ElectromagneticEnergyDensityValue :> ScalarQuantityValue { doc /* * source: item 6-33 electromagnetic energy density, volumic electromagnetic energy * symbol(s): `w` * application domain: generic * name: ElectromagneticEnergyDensity * quantity dimension: L^-1*M^1*T^-2 * measurement unit(s): J/m^3 * tensor order: 0 * definition: `ω = 1/2*(vec(E)*vec(D) + vec(B) * vec(H))` where `vec(E)` is electric field strength (item 6-10), `vec(D)` is electric flux density (item 6-12), `vec(B)` is magnetic flux density (item 6-21), and `vec(H)` is magnetic field strength (item 6-25) * remarks: See IEC 60050-121, item 121-11-65. */ attribute :>> num: Real; attribute :>> mRef: ElectromagneticEnergyDensityUnit[1]; } attribute electromagneticEnergyDensity: ElectromagneticEnergyDensityValue[*] nonunique :> scalarQuantities; attribute def ElectromagneticEnergyDensityUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); } } alias VolumicElectromagneticEnergyUnit for ElectromagneticEnergyDensityUnit; alias VolumicElectromagneticEnergyValue for ElectromagneticEnergyDensityValue; alias volumicElectromagneticEnergy for electromagneticEnergyDensity; /* IEC-80000-6 item 6-34 Poynting vector */ attribute def PoyntingVectorMagnitudeValue :> ScalarQuantityValue { doc /* * source: item 6-34 Poynting vector (magnitude) * symbol(s): `S` * application domain: generic * name: PoyntingVectorMagnitude * quantity dimension: M^1*T^-3 * measurement unit(s): W/m^2 * tensor order: 0 * definition: `vec(S) = vec(E) xx vec(H)` where `vec(E)` is electric field strength (item 6-10) and `vec(H)` is magnetic field strength (item 6-25) * remarks: See IEC 60050-121, item 121-11-66. */ attribute :>> num: Real; attribute :>> mRef: PoyntingVectorMagnitudeUnit[1]; } attribute poyntingVectorMagnitude: PoyntingVectorMagnitudeValue[*] nonunique :> scalarQuantities; attribute def PoyntingVectorMagnitudeUnit :> DerivedUnit { private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -3; } attribute :>> quantityDimension { :>> quantityPowerFactors = (massPF, durationPF); } } attribute def Cartesian3dPoyntingVector :> VectorQuantityValue { doc /* * source: item 6-34 Poynting vector * symbol(s): `vec(S)` * application domain: generic * name: PoyntingVector * quantity dimension: M^1*T^-3 * measurement unit(s): W/m^2 * tensor order: 1 * definition: `vec(S) = vec(E) xx vec(H)` where `vec(E)` is electric field strength (item 6-10) and `vec(H)` is magnetic field strength (item 6-25) * remarks: See IEC 60050-121, item 121-11-66. */ attribute :>> isBound = false; attribute :>> num: Real[3]; attribute :>> mRef: Cartesian3dPoyntingCoordinateFrame[1]; } attribute poyntingVector: Cartesian3dPoyntingVector :> vectorQuantities; attribute def Cartesian3dPoyntingCoordinateFrame :> VectorMeasurementReference { attribute :>> dimensions = 3; attribute :>> isBound = false; attribute :>> isOrthogonal = true; attribute :>> mRefs: PoyntingVectorMagnitudeUnit[3]; } /* IEC-80000-6 item 6-35.1 phase speed of electromagnetic waves */ attribute def PhaseSpeedOfElectromagneticWavesValue :> ScalarQuantityValue { doc /* * source: item 6-35.1 phase speed of electromagnetic waves * symbol(s): `c` * application domain: generic * name: PhaseSpeedOfElectromagneticWaves * quantity dimension: L^1*T^-1 * measurement unit(s): m/s * tensor order: 0 * definition: `c = ω/k` where `ω` is angular frequency (ISO 80000-3, item 3-16) and `k` is angular wavenumber (ISO 80000-3, item 3-19) * remarks: See ISO 80000-3, item 3-20.1. */ attribute :>> num: Real; attribute :>> mRef: PhaseSpeedOfElectromagneticWavesUnit[1]; } attribute phaseSpeedOfElectromagneticWaves: PhaseSpeedOfElectromagneticWavesValue[*] nonunique :> scalarQuantities; attribute def PhaseSpeedOfElectromagneticWavesUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF); } } /* IEC-80000-6 item 6-35.2 speed of light, light speed */ attribute def SpeedOfLightValue :> ScalarQuantityValue { doc /* * source: item 6-35.2 speed of light, light speed * symbol(s): `c_0` * application domain: generic * name: SpeedOfLight * quantity dimension: L^1*T^-1 * measurement unit(s): m/s * tensor order: 0 * definition: speed of electromagnetic waves in vacuum; `c_0 = 299792458` m/s * remarks: For this value of `c_0` see ISO 80000-3, item 3-1.a. `c_0 = 1/sqrt(ε_0 μ_0)`. See IEC 60050-111, item 111-13-07. */ attribute :>> num: Real; attribute :>> mRef: SpeedOfLightUnit[1]; } attribute speedOfLight: SpeedOfLightValue[*] nonunique :> scalarQuantities; attribute def SpeedOfLightUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF); } } alias LightSpeedUnit for SpeedOfLightUnit; alias LightSpeedValue for SpeedOfLightValue; alias lightSpeed for speedOfLight; /* IEC-80000-6 item 6-36 source voltage, source tension */ attribute def SourceVoltageValue :> ScalarQuantityValue { doc /* * source: item 6-36 source voltage, source tension * symbol(s): `U_s` * application domain: generic * name: SourceVoltage * quantity dimension: L^2*M^1*T^-3*I^-1 * measurement unit(s): V * tensor order: 0 * definition: voltage (item 6-11.3) between the two terminals of a voltage source when there is no electric current (item 6-1) through the source * remarks: The name "electromotive force" with the abbreviation EMF and the symbol `E` is deprecated. See IEC 60050-131, item 131-12-22. */ attribute :>> num: Real; attribute :>> mRef: SourceVoltageUnit[1]; } attribute sourceVoltage: SourceVoltageValue[*] nonunique :> scalarQuantities; attribute def SourceVoltageUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -3; } private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = -1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF); } } alias SourceTensionUnit for SourceVoltageUnit; alias SourceTensionValue for SourceVoltageValue; alias sourceTension for sourceVoltage; /* IEC-80000-6 item 6-37.1 scalar magnetic potential */ attribute scalarMagneticPotential: ElectricCurrentValue :> scalarQuantities { doc /* * source: item 6-37.1 scalar magnetic potential * symbol(s): `V_m`, `φ` * application domain: generic * name: ScalarMagneticPotential (specializes ElectricCurrent) * quantity dimension: I^1 * measurement unit(s): A * tensor order: 0 * definition: for an irrotational magnetic field strength `vec(H) = -nabla V_m` where `vec(H)` is magnetic field strength (item 6-25) * remarks: The magnetic scalar potential is not unique since any constant scalar field can be added to it without changing its gradient. See IEC 60050-121, item 121-11-58. */ } /* IEC-80000-6 item 6-37.2 magnetic tension */ attribute magneticTension: ElectricCurrentValue :> scalarQuantities { doc /* * source: item 6-37.2 magnetic tension * symbol(s): `U_m` * application domain: generic * name: MagneticTension (specializes ElectricCurrent) * quantity dimension: I^1 * measurement unit(s): A * tensor order: 0 * definition: `U_m = int_(vec(r_a) (C))^(vec(r_b)) vec(H) * d(vec(r))` where `vec(H)` is magnetic field strength (item 6-25) and `vec(r)` is position vector (ISO 80000-3, item 3-1.11) along a given curve `C` from point `a` to point `b` * remarks: For an irrotational magnetic field strength this quantity is equal to the magnetic potential difference. See IEC 60050-121, item121-11-57. */ } /* IEC-80000-6 item 6-37.3 magnetomotive force */ attribute def MagnetomotiveForceValue :> ScalarQuantityValue { doc /* * source: item 6-37.3 magnetomotive force * symbol(s): `F_m` * application domain: generic * name: MagnetomotiveForce * quantity dimension: I^1 * measurement unit(s): A * tensor order: 0 * definition: `F_m = oint_C vec(H) * d vec(r)` where `vec(H)` is magnetic field strength (item 6-25) and `vec(r)` is position vector (ISO 80000-3, item 3-1 .11) along a closed curve `C` * remarks: This quantity name is under consideration . Compare remark to item 6-36. See IEC 60050-121, item 121-11-60. */ attribute :>> num: Real; attribute :>> mRef: MagnetomotiveForceUnit[1]; } attribute magnetomotiveForce: MagnetomotiveForceValue[*] nonunique :> scalarQuantities; attribute def MagnetomotiveForceUnit :> DerivedUnit { private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 1; } attribute :>> quantityDimension { :>> quantityPowerFactors = electricCurrentPF; } } /* IEC-80000-6 item 6-37.4 current linkage */ attribute currentLinkage: ElectricCurrentValue :> scalarQuantities { doc /* * source: item 6-37.4 current linkage * symbol(s): `Θ` * application domain: generic * name: CurrentLinkage (specializes ElectricCurrent) * quantity dimension: I^1 * measurement unit(s): A * tensor order: 0 * definition: net electric current (item 6-1) through a surface delimited by a closed loop * remarks: When `Θ` results from `N` (item 6-38) equal electric currents `I` (item 6-1 ), then `Θ = N I`. See IEC 60050-121 , item 121 -11-46. */ } /* IEC-80000-6 item 6-38 number of turns in a winding */ attribute numberOfTurnsInAWinding: CountValue :> scalarQuantities { doc /* * source: item 6-38 number of turns in a winding * symbol(s): `N` * application domain: generic * name: NumberOfTurnsInAWinding (specializes Count) * quantity dimension: 1 * measurement unit(s): 1 * tensor order: 0 * definition: number of turns in a winding (same as the quantity name) * remarks: N may be non-integer number, see ISO 80000-3, item 3-14. */ } /* IEC-80000-6 item 6-39 reluctance */ attribute def ReluctanceValue :> ScalarQuantityValue { doc /* * source: item 6-39 reluctance * symbol(s): `R_m`, `R` * application domain: generic * name: Reluctance * quantity dimension: L^-2*M^-1*T^2*I^2 * measurement unit(s): H^-1 * tensor order: 0 * definition: `R_m = U_m/Φ` where `U_m` is magnetic tension (item 6-37.2) and `Φ` is magnetic flux (item 6-22 .1) * remarks: See IEC 60050-131 , item 131-12-28. */ attribute :>> num: Real; attribute :>> mRef: ReluctanceUnit[1]; } attribute reluctance: ReluctanceValue[*] nonunique :> scalarQuantities; attribute def ReluctanceUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -2; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 2; } private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 2; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF); } } /* IEC-80000-6 item 6-40 permeance */ attribute def PermeanceValue :> ScalarQuantityValue { doc /* * source: item 6-40 permeance * symbol(s): `Λ` * application domain: generic * name: Permeance * quantity dimension: L^2*M^1*T^-2*I^-2 * measurement unit(s): H * tensor order: 0 * definition: `Λ = 1/R_m` where `R_m` is reluctance (item 6-39) * remarks: See IEC 60050-131 , item 131-12-29. */ attribute :>> num: Real; attribute :>> mRef: PermeanceUnit[1]; } attribute permeance: PermeanceValue[*] nonunique :> scalarQuantities; attribute def PermeanceUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; } private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = -2; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF); } } /* IEC-80000-6 item 6-41.1 inductance, self inductance */ attribute def InductanceValue :> ScalarQuantityValue { doc /* * source: item 6-41.1 inductance, self inductance * symbol(s): `L`, `L_m` * application domain: generic * name: Inductance * quantity dimension: L^2*M^1*T^-2*I^-2 * measurement unit(s): H * tensor order: 0 * definition: `L = Ψ / I` where `I` is an electric current (item 6-1) in a thin conducting loop and `Ψ` is the linked flux (item 6-22.2) caused by that electric current * remarks: The name "self inductance" is used for the quantity associated to mutual inductance when `n = m`. See IEC 60050-131 , items 131-12-19 and 131 -12-35. */ attribute :>> num: Real; attribute :>> mRef: InductanceUnit[1]; } attribute inductance: InductanceValue[*] nonunique :> scalarQuantities; attribute def InductanceUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; } private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = -2; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF); } } alias SelfInductanceUnit for InductanceUnit; alias SelfInductanceValue for InductanceValue; alias selfInductance for inductance; /* IEC-80000-6 item 6-41.2 mutual inductance */ attribute mutualInductance: InductanceValue :> scalarQuantities { doc /* * source: item 6-41.2 mutual inductance * symbol(s): `L_(mn)` * application domain: generic * name: MutualInductance (specializes Inductance) * quantity dimension: L^2*M^1*T^-2*I^-2 * measurement unit(s): H * tensor order: 0 * definition: `L_(mn) = Ψ_m / I_n` where `I_n` is an electric current (item 6-1) in a thin conducting loop `n` and `Ψ_m` is the linked flux (item 6-22.2) caused by that electric current in another loop `m` * remarks: `L_(mn) = L_(nm)`. For two loops , the symbol `M` is used for `L_(12)`. See IEC 60050-131, items 131-12-36. */ } /* IEC-80000-6 item 6-42.1 coupling factor */ attribute def CouplingFactorValue :> DimensionOneValue { doc /* * source: item 6-42.1 coupling factor * symbol(s): `k` * application domain: generic * name: CouplingFactor (specializes DimensionOneQuantity) * quantity dimension: 1 * measurement unit(s): 1 * tensor order: 0 * definition: for inductive coupling between two inductive elements `k = |L_(mn)| / sqrt(L_m L_n)` where `L_m` and `L_n` are their self inductances (item 6-41 .1 ), and `L_(mn)` is their mutual inductance (item 6-41.2) * remarks: See IEC 60050-131 , item 131-12-41. */ } attribute couplingFactor: CouplingFactorValue :> scalarQuantities; /* IEC-80000-6 item 6-42.2 leakage factor */ attribute def LeakageFactorValue :> DimensionOneValue { doc /* * source: item 6-42.2 leakage factor * symbol(s): `σ` * application domain: generic * name: LeakageFactor (specializes DimensionOneQuantity) * quantity dimension: 1 * measurement unit(s): 1 * tensor order: 0 * definition: `σ = 1 - k^2` where `k` is the coupling factor (item 6-42 .1) * remarks: See IEC 60050-131 , item 131-12-42. */ } attribute leakageFactor: LeakageFactorValue :> scalarQuantities; /* IEC-80000-6 item 6-43 conductivity */ attribute def ConductivityValue :> ScalarQuantityValue { doc /* * source: item 6-43 conductivity * symbol(s): `σ`, `γ` * application domain: generic * name: Conductivity * quantity dimension: L^-3*M^-1*T^3*I^2 * measurement unit(s): S/m * tensor order: 0 * definition: `vec(J) = σ vec(E)` where `vec(J)` is electric current density (item 6-8) and `vec(E)` is electric field strength (item 6-10) * remarks: This definition applies to an isotropic medium. For an anisotropic medium `σ` is a second order tensor. `κ` is used in electrochemistry. See IEC 60050-121 , item 121-12-03. */ attribute :>> num: Real; attribute :>> mRef: ConductivityUnit[1]; } attribute conductivity: ConductivityValue[*] nonunique :> scalarQuantities; attribute def ConductivityUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -3; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 3; } private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 2; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF); } } /* IEC-80000-6 item 6-44 resistivity */ attribute def ResistivityValue :> ScalarQuantityValue { doc /* * source: item 6-44 resistivity * symbol(s): `ρ` * application domain: generic * name: Resistivity * quantity dimension: L^3*M^1*T^-3*I^-2 * measurement unit(s): Ω*m * tensor order: 0 * definition: `ρ = 1/σ` if is exists, where `σ` is conductivity (item 6-43) * remarks: See IEC 60050-121, item 121-12-04. */ attribute :>> num: Real; attribute :>> mRef: ResistivityUnit[1]; } attribute resistivity: ResistivityValue[*] nonunique :> scalarQuantities; attribute def ResistivityUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 3; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -3; } private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = -2; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF); } } /* IEC-80000-6 item 6-45 electric power, instantaneous power */ attribute electricPower: PowerValue :> scalarQuantities { doc /* * source: item 6-45 electric power, instantaneous power * symbol(s): `p` * application domain: generic * name: ElectricPower (specializes Power) * quantity dimension: L^2*M^1*T^-3 * measurement unit(s): W * tensor order: 0 * definition: `p = ui` where `u` is instantaneous voltage (item 6-11 .3) and `i` is instantaneous electric current (item 6-1) * remarks: See IEC 60050-131 , item 131-11-30. */ } alias instantaneousPower for electricPower; /* IEC-80000-6 item 6-46 resistance */ attribute def ResistanceValue :> ScalarQuantityValue { doc /* * source: item 6-46 resistance * symbol(s): `R` * application domain: generic * name: Resistance * quantity dimension: L^2*M^1*T^-3*I^-2 * measurement unit(s): Ω * tensor order: 0 * definition: for resistive component `R = u i` where `u` is instantaneous voltage (item 6-11.3) and `i` is instantaneous electric current (item 6-1) * remarks: For alternating current, see item 6-51.2. See IEC 60050-131, item 131-12-04. */ attribute :>> num: Real; attribute :>> mRef: ResistanceUnit[1]; } attribute resistance: ResistanceValue[*] nonunique :> scalarQuantities; attribute def ResistanceUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -3; } private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = -2; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF); } } /* IEC-80000-6 item 6-47 conductance */ attribute def ConductanceValue :> ScalarQuantityValue { doc /* * source: item 6-47 conductance * symbol(s): `G` * application domain: generic * name: Conductance * quantity dimension: L^-2*M^-1*T^3*I^2 * measurement unit(s): S * tensor order: 0 * definition: for resistive component `G = 1/R` where `R` is resistance (item 6-46) * remarks: For alternating current, see item 6-52.2. See IEC 60050-131, item 131-12-06. */ attribute :>> num: Real; attribute :>> mRef: ConductanceUnit[1]; } attribute conductance: ConductanceValue[*] nonunique :> scalarQuantities; attribute def ConductanceUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -2; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 3; } private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 2; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF); } } /* IEC-80000-6 item 6-48 phase difference */ attribute def PhaseDifferenceValue :> ScalarQuantityValue { doc /* * source: item 6-48 phase difference * symbol(s): `φ` * application domain: generic * name: PhaseDifference * quantity dimension: 1 * measurement unit(s): rad * tensor order: 0 * definition: `φ = φ_u - φ_i` where `φ_u` is the initial phase of the voltage (item 6-11 .3) and `φ_i` is the initial phase of the electric current (item 6-1) * remarks: When `u = hat(U) cos(ωt - φ_u)`, `i = hat(I) cos(ωt - φ_i)` where `u` is the voltage (item 6-11 . 3) and `i` is the electric current (item 6-1 ), `ω` is angular frequency (ISO 80000-3, item 3-16) and `t` is time (ISO 80000-3, item 3-7), then `φ` is phase difference. For phase angle, see items 6-49 and 6-50. */ attribute :>> num: Real; attribute :>> mRef: PhaseDifferenceUnit[1]; } attribute phaseDifference: PhaseDifferenceValue[*] nonunique :> scalarQuantities; attribute def PhaseDifferenceUnit :> DimensionOneUnit { } /* IEC-80000-6 item 6-49 electric current phasor */ attribute electricCurrentPhasor: ElectricCurrentValue :> scalarQuantities { doc /* * source: item 6-49 electric current phasor * symbol(s): `underline(I)` * application domain: generic * name: ElectricCurrentPhasor (specializes ElectricCurrent) * quantity dimension: I^1 * measurement unit(s): A * tensor order: 0 * definition: when `i = hat(I) cos(ωt + α)`, where `i` is the electric current (item 6-1 ), `ω` is angular frequency (ISO 80000-3, item 3-16), `t` is time (ISO 80000-3, item 3-7), and `α` is initial phase (ISO 80000-3, item 3-5), then `underline(l) = I e^(jα)` * remarks: `underline(l)` is the complex representation of the electric current `i = hat(I) cos(ωt + α)`. `j` is the imaginary unit. */ } /* IEC-80000-6 item 6-50 voltage phasor */ attribute voltagePhasor: ElectricPotentialDifferenceValue :> scalarQuantities { doc /* * source: item 6-50 voltage phasor * symbol(s): `underline(U)` * application domain: generic * name: VoltagePhasor (specializes ElectricPotentialDifference) * quantity dimension: L^2*M^1*T^-3*I^-1 * measurement unit(s): V * tensor order: 0 * definition: when `u = hat(U) cos(ωt + α)`, where `u` is the voltage (item 6-11.3 ), `ω` is angular frequency (ISO 80000-3, item 3-16), `t` is time (ISO 80000-3, item 3-7), and `α` is initial phase (ISO 80000-3, item 3-5), then `underline(U) = U e^(jα)` * remarks: `underline(U)` is the complex representation of the voltage `u = hat(U) cos(ωt + α)`. `j` is the imaginary unit. */ } /* IEC-80000-6 item 6-51.1 impedance, complex impedance */ attribute def ImpedanceValue :> ScalarQuantityValue { doc /* * source: item 6-51.1 impedance, complex impedance * symbol(s): `underline(Z)` * application domain: generic * name: Impedance * quantity dimension: L^2*M^1*T^-3*I^-2 * measurement unit(s): Ω * tensor order: 0 * definition: `underline(Z) = underline(U)/underline(I)` where `underline(U)` is the voltage phasor (item 6-50), and `underline(I)` is the electric current phasor (item 6-49) * remarks: `underline(Z) = R + jX`, where `R` is resistance (item 6-51.2) and `X` is reactance (item 6-51 .3). `j` is the imaginary unit. `underline(Z) = |underline(Z)| e^(jφ)`. See IEC 60050-131 , item 131-12-43. */ attribute :>> num: Real; attribute :>> mRef: ImpedanceUnit[1]; } attribute impedance: ImpedanceValue[*] nonunique :> scalarQuantities; attribute def ImpedanceUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -3; } private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = -2; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF); } } alias ComplexImpedanceUnit for ImpedanceUnit; alias ComplexImpedanceValue for ImpedanceValue; alias complexImpedance for impedance; /* IEC-80000-6 item 6-51.2 resistance to alternating current */ attribute def ResistanceToAlternatingCurrentValue :> ScalarQuantityValue { doc /* * source: item 6-51.2 resistance to alternating current * symbol(s): `R` * application domain: generic * name: ResistanceToAlternatingCurrent * quantity dimension: L^2*M^1*T^-3*I^-2 * measurement unit(s): Ω * tensor order: 0 * definition: `R = "Re" underline(Z)` where `underline(Z)`, is impedance (item 6-5.1) and `"Re"` denotes the real part * remarks: See IEC 60050-131, item 131-12-45. */ attribute :>> num: Real; attribute :>> mRef: ResistanceToAlternatingCurrentUnit[1]; } attribute resistanceToAlternatingCurrent: ResistanceToAlternatingCurrentValue[*] nonunique :> scalarQuantities; attribute def ResistanceToAlternatingCurrentUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -3; } private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = -2; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF); } } /* IEC-80000-6 item 6-51.3 reactance */ attribute def ReactanceValue :> ScalarQuantityValue { doc /* * source: item 6-51.3 reactance * symbol(s): `X` * application domain: generic * name: Reactance * quantity dimension: L^2*M^1*T^-3*I^-2 * measurement unit(s): Ω * tensor order: 0 * definition: `X = "Im" underline(Z)` where `underline(Z)`, is impedance (item 6-5.1) and `"Im"` denotes the imaginary part * remarks: `X = ωL - 1/(ωC)`. See IEC 60050-131 , item 131-12-46. */ attribute :>> num: Real; attribute :>> mRef: ReactanceUnit[1]; } attribute reactance: ReactanceValue[*] nonunique :> scalarQuantities; attribute def ReactanceUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -3; } private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = -2; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF); } } /* IEC-80000-6 item 6-51.4 modulus of impedance */ attribute def ModulusOfImpedanceValue :> ScalarQuantityValue { doc /* * source: item 6-51.4 modulus of impedance * symbol(s): `Z` * application domain: generic * name: ModulusOfImpedance * quantity dimension: L^2*M^1*T^-3*I^-2 * measurement unit(s): Ω * tensor order: 0 * definition: `Z = |underline(Z)|` where `underline(Z)` is impedance (item 6-51.1) * remarks: See IEC 60050-131 , item 131-12-44. Apparent impedance is defined more generally as the quotient of rms voltage and rms electric current; it is often denoted by `Z`. */ attribute :>> num: Real; attribute :>> mRef: ModulusOfImpedanceUnit[1]; } attribute modulusOfImpedance: ModulusOfImpedanceValue[*] nonunique :> scalarQuantities; attribute def ModulusOfImpedanceUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -3; } private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = -2; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF); } } /* IEC-80000-6 item 6-52.1 admittance, complex admittance */ attribute def AdmittanceValue :> ScalarQuantityValue { doc /* * source: item 6-52.1 admittance, complex admittance * symbol(s): `underline(Y)` * application domain: generic * name: Admittance * quantity dimension: L^-2*M^-1*T^3*I^2 * measurement unit(s): S * tensor order: 0 * definition: `underline(Y) = 1/underline(Z)` where `underline(Z)` is impedance (item 6-51.1) * remarks: `underline(Y) = G + jB`, where `G` is conductance (item 6-52 .2) and `B` is susceptance (item 6-52 .3). `j` is the imaginary unit. `underline(Y) = |underline(Y)| e^-(jφ)`. See IEC 60050-131, item 131 -12-51. */ attribute :>> num: Real; attribute :>> mRef: AdmittanceUnit[1]; } attribute admittance: AdmittanceValue[*] nonunique :> scalarQuantities; attribute def AdmittanceUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -2; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 3; } private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 2; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF); } } alias ComplexAdmittanceUnit for AdmittanceUnit; alias ComplexAdmittanceValue for AdmittanceValue; alias complexAdmittance for admittance; /* IEC-80000-6 item 6-52.2 conductance for alternating current */ attribute conductanceForAlternatingCurrent: ConductanceValue :> scalarQuantities { doc /* * source: item 6-52.2 conductance for alternating current * symbol(s): `G` * application domain: generic * name: ConductanceForAlternatingCurrent (specializes Conductance) * quantity dimension: L^-2*M^-1*T^3*I^2 * measurement unit(s): S * tensor order: 0 * definition: `G = "Re" underline(Y)` where I is admittance (item 6-52.1) * remarks: See IEC 60050-131, item 131-12-53. */ } /* IEC-80000-6 item 6-52.3 susceptance */ attribute def SusceptanceValue :> ScalarQuantityValue { doc /* * source: item 6-52.3 susceptance * symbol(s): `B` * application domain: generic * name: Susceptance * quantity dimension: L^-2*M^-1*T^3*I^2 * measurement unit(s): S * tensor order: 0 * definition: `B = "Im" underline(Y)` where `underline(Y)` is admittance (item 6-52.1) * remarks: See IEC 60050-131, item 131-12-54. */ attribute :>> num: Real; attribute :>> mRef: SusceptanceUnit[1]; } attribute susceptance: SusceptanceValue[*] nonunique :> scalarQuantities; attribute def SusceptanceUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -2; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 3; } private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 2; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF); } } /* IEC-80000-6 item 6-52.4 modulus of admittance */ attribute def ModulusOfAdmittanceValue :> ScalarQuantityValue { doc /* * source: item 6-52.4 modulus of admittance * symbol(s): `Y` * application domain: generic * name: ModulusOfAdmittance * quantity dimension: L^-2*M^-1*T^3*I^2 * measurement unit(s): S * tensor order: 0 * definition: `Y = |underline(Y)|` where `underline(Y)` is admittance (item 6-52.1) * remarks: Apparent admittance is defined more generally as the quotient of rms electric current voltage and rms voltage; it is often denoted by `Y`. */ attribute :>> num: Real; attribute :>> mRef: ModulusOfAdmittanceUnit[1]; } attribute modulusOfAdmittance: ModulusOfAdmittanceValue[*] nonunique :> scalarQuantities; attribute def ModulusOfAdmittanceUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -2; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 3; } private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 2; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF); } } /* IEC-80000-6 item 6-53 quality factor */ attribute def QualityFactorValue :> DimensionOneValue { doc /* * source: item 6-53 quality factor * symbol(s): `Q` * application domain: generic * name: QualityFactor (specializes DimensionOneQuantity) * quantity dimension: 1 * measurement unit(s): 1 * tensor order: 0 * definition: for non-radiating systems, if `underline(Z) = R + jX`, then `Q = |X|/R` where `underline(Z)` is impedance (item 6-51. 1), `R` is resistance (item 6-51 .2), and `X` is reactance (item 6-51.3) * remarks: None. */ } attribute qualityFactor: QualityFactorValue :> scalarQuantities; /* IEC-80000-6 item 6-54 loss factor */ attribute def LossFactorValue :> DimensionOneValue { doc /* * source: item 6-54 loss factor * symbol(s): `d` * application domain: generic * name: LossFactor (specializes DimensionOneQuantity) * quantity dimension: 1 * measurement unit(s): 1 * tensor order: 0 * definition: `d = 1/Q` where `Q` quality factor (item 6-53) * remarks: It is also named dissipation factor. */ } attribute lossFactor: LossFactorValue :> scalarQuantities; /* IEC-80000-6 item 6-55 loss angle */ attribute lossAngle: AngularMeasureValue :> scalarQuantities { doc /* * source: item 6-55 loss angle * symbol(s): `δ` * application domain: generic * name: LossAngle (specializes AngularMeasure) * quantity dimension: 1 * measurement unit(s): rad * tensor order: 0 * definition: `δ = arctan d` where `d` is loss factor (item 6-54) * remarks: See IEC 60050-131 , item 131-12-49. */ } /* IEC-80000-6 item 6-56 active power */ attribute activePower: PowerValue :> scalarQuantities { doc /* * source: item 6-56 active power * symbol(s): `P` * application domain: generic * name: ActivePower (specializes Power) * quantity dimension: L^2*M^1*T^-3 * measurement unit(s): W * tensor order: 0 * definition: `P = 1/T int_0^T p dt` where `T` is the period (ISO 80000-3, item 3-12) and `p` is instantaneous power (item 6-45) * remarks: In complex notation, `P = "Re" underline(S)` where `underline(S)` is complex power (item 6-59). */ } /* IEC-80000-6 item 6-57 apparent power */ attribute apparentPower: PowerValue :> scalarQuantities { doc /* * source: item 6-57 apparent power * symbol(s): ``, `underline(S)`, `` * application domain: generic * name: ApparentPower (specializes Power) * quantity dimension: L^2*M^1*T^-3 * measurement unit(s): V*A * tensor order: 0 * definition: `|underline(S)| = U I` where `U` is rms value of voltage (item 6-11.3 and `I` is rms value of electric current (item 6-1) * remarks: `U = sqrt(1/T int_0^T u^2 dt)` and `I = sqrt(1/T int_0^T i^2 dt)`. When `u = sqrt 2 U cos(ωt)` and `i = sqrt 2 I cos(ωt - φ)`, then `P = U I cos(φ)`, `Q = U I sin(φ)` and `λ = cos(φ)` . See IEC 60050-131, item 131-11-41 . */ } /* IEC-80000-6 item 6-58 power factor */ attribute def PowerFactorValue :> DimensionOneValue { doc /* * source: item 6-58 power factor * symbol(s): `λ` * application domain: generic * name: PowerFactor (specializes DimensionOneQuantity) * quantity dimension: 1 * measurement unit(s): 1 * tensor order: 0 * definition: `λ = |P|/|S|` where `P` is active power (item 6-56) and `S` is apparent power (item 6-57) * remarks: See I EC 60050-131, item 131-11-46. */ } attribute powerFactor: PowerFactorValue :> scalarQuantities; /* IEC-80000-6 item 6-59 complex power */ attribute complexPower: PowerValue :> scalarQuantities { doc /* * source: item 6-59 complex power * symbol(s): `underline(S)` * application domain: generic * name: ComplexPower (specializes Power) * quantity dimension: L^2*M^1*T^-3 * measurement unit(s): V*A * tensor order: 0 * definition: `underline(S) = underline(U) * underline(I)^"*"` where `underline(U)` is voltage phasor (item 6-50) and `underline(I)^"*"` is the complex conjugate of the current phasor (item 6-49) * remarks: `underline(S) = P + jQ` where `P` is active power (item 6-56) and `Q` is reactive power (item 6-60). See IEC 60050-131, item 131-11-39. */ } /* IEC-80000-6 item 6-60 reactive power */ attribute reactivePower: PowerValue :> scalarQuantities { doc /* * source: item 6-60 reactive power * symbol(s): `Q` * application domain: generic * name: ReactivePower (specializes Power) * quantity dimension: L^2*M^1*T^-3 * measurement unit(s): V*A, var * tensor order: 0 * definition: `Q = "Im" underline(S)` where `underline(S)` is complex power (item 6-59) * remarks: See IEC 60050-131, item 131-11-44. */ } /* IEC-80000-6 item 6-61 non-active power */ attribute nonActivePower: PowerValue :> scalarQuantities { doc /* * source: item 6-61 non-active power * symbol(s): `Q'` * application domain: generic * name: NonActivePower (specializes Power) * quantity dimension: L^2*M^1*T^-3 * measurement unit(s): V*A * tensor order: 0 * definition: `Q' = sqrt(|underline(S)|^2 - P^2)` where `|underline(S)|` is apparent power (item 6-57) and `P` is active power (item 6-56) * remarks: See IEC 60050-131, item 131-11-43. */ } /* IEC-80000-6 item 6-62 active energy */ attribute activeEnergy: EnergyValue :> scalarQuantities { doc /* * source: item 6-62 active energy * symbol(s): `W` * application domain: generic * name: ActiveEnergy (specializes Energy) * quantity dimension: L^2*M^1*T^-2 * measurement unit(s): J, W*h * tensor order: 0 * definition: `W = int_(t_1)^(t_2) p dt` where `p` is instantaneous power (item 6-45), and the integral interval is the time interval from `t_1` to `t_2` * remarks: None. */ } }