standard library package ISQMechanics { doc /* * International System of Quantities and Units * Generated on 2022-08-07T14:44:27Z from standard ISO-80000-4:2019 "Mechanics" * see also https://www.iso.org/obp/ui/#iso:std:iso:80000:-4:ed-2:v1:en * * Note 1: In documentation comments, AsciiMath notation (see http://asciimath.org/) is used for mathematical concepts, * with Greek letters in Unicode encoding. In running text, AsciiMath is placed between backticks. * Note 2: For vector and tensor quantities currently the unit and quantity value type for their (scalar) magnitude is * defined, as well as their typical Cartesian 3d VectorMeasurementReference (i.e. coordinate system) * or TensorMeasurementReference. */ private import ScalarValues::Real; private import Quantities::*; private import MeasurementReferences::*; private import ISQBase::*; /* Quantity definitions referenced from other ISQ packages */ private import ISQThermodynamics::EnergyValue; /* ISO-80000-4 item 4-1 mass */ /* See package ISQBase for the declarations of MassValue and MassUnit */ /* ISO-80000-4 item 4-2 mass density, density */ attribute def MassDensityValue :> ScalarQuantityValue { doc /* * source: item 4-2 mass density, density * symbol(s): `ρ`, `ρ_m` * application domain: generic * name: MassDensity * quantity dimension: L^-3*M^1 * measurement unit(s): kg*m^-3 * tensor order: 0 * definition: quantity representing the spatial distribution of mass of a continuous material: `ρ(vec(r)) = (dm)/(dV)` where `m` is mass of the material contained in an infinitesimal domain at point `vec(r)` and `V` is volume of this domain * remarks: None. */ attribute :>> num: Real; attribute :>> mRef: MassDensityUnit[1]; } attribute massDensity: MassDensityValue[*] nonunique :> scalarQuantities; attribute def MassDensityUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -3; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF); } } alias DensityUnit for MassDensityUnit; alias DensityValue for MassDensityValue; alias density for massDensity; /* ISO-80000-4 item 4-3 specific volume */ attribute def SpecificVolumeValue :> ScalarQuantityValue { doc /* * source: item 4-3 specific volume * symbol(s): `v` * application domain: generic * name: SpecificVolume * quantity dimension: L^3*M^-1 * measurement unit(s): kg^-1*m^3 * tensor order: 0 * definition: reciprocal of mass density `ρ` (item 4-2): `v = 1/ρ` * remarks: None. */ attribute :>> num: Real; attribute :>> mRef: SpecificVolumeUnit[1]; } attribute specificVolume: SpecificVolumeValue[*] nonunique :> scalarQuantities; attribute def SpecificVolumeUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 3; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF); } } /* ISO-80000-4 item 4-4 relative mass density, relative density */ attribute def RelativeMassDensityValue :> DimensionOneValue { doc /* * source: item 4-4 relative mass density, relative density * symbol(s): `d` * application domain: generic * name: RelativeMassDensity (specializes DimensionOneQuantity) * quantity dimension: 1 * measurement unit(s): 1 * tensor order: 0 * definition: quotient of mass density of a substance `ρ` and mass density of a reference substance `ρ_0` : `d = ρ/ρ_0` * remarks: Conditions and material should be specified for the reference substance. */ } attribute relativeMassDensity: RelativeMassDensityValue :> scalarQuantities; alias relativeDensity for relativeMassDensity; /* ISO-80000-4 item 4-5 surface mass density, surface density */ attribute def SurfaceMassDensityValue :> ScalarQuantityValue { doc /* * source: item 4-5 surface mass density, surface density * symbol(s): `ρ_A` * application domain: generic * name: SurfaceMassDensity * quantity dimension: L^-2*M^1 * measurement unit(s): kg*m^-2 * tensor order: 0 * definition: quantity representing the areal distribution of mass of a continuous material: `ρ_A(vec(r)) = (dm)/(dA)` where `m` is the mass of the material at position `vec(r)` and `A` is area * remarks: The name "grammage" should not be used for this quantity. */ attribute :>> num: Real; attribute :>> mRef: SurfaceMassDensityUnit[1]; } attribute surfaceMassDensity: SurfaceMassDensityValue[*] nonunique :> scalarQuantities; attribute def SurfaceMassDensityUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -2; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF); } } alias SurfaceDensityUnit for SurfaceMassDensityUnit; alias SurfaceDensityValue for SurfaceMassDensityValue; alias surfaceDensity for surfaceMassDensity; /* ISO-80000-4 item 4-6 linear mass density, linear density */ attribute def LinearMassDensityValue :> ScalarQuantityValue { doc /* * source: item 4-6 linear mass density, linear density * symbol(s): `ρ_I` * application domain: generic * name: LinearMassDensity * quantity dimension: L^-1*M^1 * measurement unit(s): kg*m^-1 * tensor order: 0 * definition: quantity representing the linear distribution of mass of a continuous material: `ρ_I(vec(r)) = (dm)/(dI)` where `m` is the mass of the material at position `vec(r)` and `l` is length * remarks: None. */ attribute :>> num: Real; attribute :>> mRef: LinearMassDensityUnit[1]; } attribute linearMassDensity: LinearMassDensityValue[*] nonunique :> scalarQuantities; attribute def LinearMassDensityUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF); } } alias LinearDensityUnit for LinearMassDensityUnit; alias LinearDensityValue for LinearMassDensityValue; alias linearDensity for linearMassDensity; /* ISO-80000-4 item 4-7 moment of inertia */ attribute def MomentOfInertiaValue :> ScalarQuantityValue { doc /* * source: item 4-7 moment of inertia (magnitude) * symbol(s): `J` * application domain: generic * name: MomentOfInertia * quantity dimension: L^2*M^1 * measurement unit(s): kg*m^2 * tensor order: 0 * definition: tensor (ISO 80000-2) quantity representing rotational inertia of a rigid body relative to a fixed centre of rotation expressed by the tensor product: `vec(L) = vec(vec(J)) vec(ω)` where `vec(L)` is angular momentum (item 4-11) of the body relative to the reference point and `vec(ω)` is its angular velocity (ISO 80000-3) * remarks: The calculation of the value requires an integration. */ attribute :>> num: Real; attribute :>> mRef: MomentOfInertiaUnit[1]; } attribute momentOfInertia: MomentOfInertiaValue[*] nonunique :> scalarQuantities; attribute def MomentOfInertiaUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF); } } attribute def Cartesian3dMomentOfInertiaTensor :> TensorQuantityValue { doc /* * source: item 4-7 moment of inertia (tensor) * symbol(s): `vec(vec(J))` * application domain: generic * name: MomentOfInertia * quantity dimension: L^2*M^1 * measurement unit(s): kg*m^2 * tensor order: 2 * definition: tensor (ISO 80000-2) quantity representing rotational inertia of a rigid body relative to a fixed centre of rotation expressed by the tensor product: `vec(L) = vec(vec(J)) vec(ω)` where `vec(L)` is angular momentum (item 4-11) of the body relative to the reference point and `vec(ω)` is its angular velocity (ISO 80000-3) * remarks: The calculation of the value requires an integration. */ attribute :>> isBound = false; attribute :>> num: Real[9]; attribute :>> mRef: Cartesian3dMomentOfInertiaMeasurementReference[1]; } attribute momentOfInertiaTensor: Cartesian3dMomentOfInertiaTensor :> tensorQuantities; attribute def Cartesian3dMomentOfInertiaMeasurementReference :> TensorMeasurementReference { attribute :>> dimensions = (3, 3); attribute :>> isBound = false; attribute :>> mRefs: MomentOfInertiaUnit[9]; } /* ISO-80000-4 item 4-8 momentum */ attribute def MomentumValue :> ScalarQuantityValue { doc /* * source: item 4-8 momentum (magnitude) * symbol(s): `p` * application domain: generic * name: Momentum * quantity dimension: L^1*M^1*T^-1 * measurement unit(s): kg*m*s^-1 * tensor order: 0 * definition: product of mass `m` (item 4-1) of a body and velocity `vec(v)` (ISO 80000-3) of its centre of mass: `vec(p) = m vec(v)` * remarks: None. */ attribute :>> num: Real; attribute :>> mRef: MomentumUnit[1]; } attribute momentum: MomentumValue[*] nonunique :> scalarQuantities; attribute def MomentumUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 1; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); } } attribute def Cartesian3dMomentumVector :> VectorQuantityValue { doc /* * source: item 4-8 momentum (vector) * symbol(s): `vec(p)` * application domain: generic * name: Momentum * quantity dimension: L^1*M^1*T^-1 * measurement unit(s): kg*m*s^-1 * tensor order: 1 * definition: product of mass `m` (item 4-1) of a body and velocity `vec(v)` (ISO 80000-3) of its centre of mass: `vec(p) = m vec(v)` * remarks: None. */ attribute :>> isBound = false; attribute :>> num: Real[3]; attribute :>> mRef: Cartesian3dMomentumCoordinateFrame[1]; } attribute momentumVector: Cartesian3dMomentumVector :> vectorQuantities; attribute def Cartesian3dMomentumCoordinateFrame :> VectorMeasurementReference { attribute :>> dimensions = 3; attribute :>> isBound = false; attribute :>> isOrthogonal = true; attribute :>> mRefs: MomentumUnit[3]; } /* ISO-80000-4 item 4-9.1 force */ attribute def ForceValue :> ScalarQuantityValue { doc /* * source: item 4-9.1 force (magnitude) * symbol(s): `F` * application domain: generic * name: Force * quantity dimension: L^1*M^1*T^-2 * measurement unit(s): N, kg*m*s^-2 * tensor order: 0 * definition: vector (ISO 80000-2) quantity describing interaction between bodies or particles * remarks: None. */ attribute :>> num: Real; attribute :>> mRef: ForceUnit[1]; } attribute force: ForceValue[*] nonunique :> scalarQuantities; attribute def ForceUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 1; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); } } attribute def Cartesian3dForceVector :> VectorQuantityValue { doc /* * source: item 4-9.1 force (vector) * symbol(s): `vec(F)` * application domain: generic * name: Force * quantity dimension: L^1*M^1*T^-2 * measurement unit(s): N, kg*m*s^-2 * tensor order: 1 * definition: vector (ISO 80000-2) quantity describing interaction between bodies or particles * remarks: None. */ attribute :>> isBound = false; attribute :>> num: Real[3]; attribute :>> mRef: Cartesian3dForceCoordinateFrame[1]; } attribute forceVector: Cartesian3dForceVector :> vectorQuantities; attribute def Cartesian3dForceCoordinateFrame :> VectorMeasurementReference { attribute :>> dimensions = 3; attribute :>> isBound = false; attribute :>> isOrthogonal = true; attribute :>> mRefs: ForceUnit[3]; } /* ISO-80000-4 item 4-9.2 weight */ attribute def Cartesian3dWeightVector :> VectorQuantityValue { doc /* * source: item 4-9.2 weight * symbol(s): `vec(F_g)` * application domain: generic * name: Weight (specializes Force) * quantity dimension: L^1*M^1*T^-2 * measurement unit(s): N, kg*m*s^-2 * tensor order: 1 * definition: force (item 4-9.1) acting on a body in the gravitational field of Earth: `vec(F_g) = m vec(g)` where `m` (item 4-1) is the mass of the body and `vec(g)` is the local acceleration of free fall (ISO 80000-3) * remarks: In colloquial language, the name "weight" continues to be used where "mass" is meant. This practice should be avoided. Weight is an example of a gravitational force. Weight comprises not only the local gravitational force but also the local centrifugal force due to the rotation of the Earth. */ attribute :>> isBound = false; attribute :>> num: Real[3]; attribute :>> mRef: Cartesian3dForceCoordinateFrame[1]; } attribute weightVector: Cartesian3dWeightVector :> vectorQuantities; /* ISO-80000-4 item 4-9.3 static friction force, static friction */ attribute def Cartesian3dStaticFrictionForceVector :> VectorQuantityValue { doc /* * source: item 4-9.3 static friction force, static friction * symbol(s): `vec(F_s)` * application domain: generic * name: StaticFrictionForce (specializes Force) * quantity dimension: L^1*M^1*T^-2 * measurement unit(s): N, kg*m*s^-2 * tensor order: 1 * definition: force (item 4-9.1) resisting the motion before a body starts to slide on a surface * remarks: For the static friction coefficient, see item 4-23.1. */ attribute :>> isBound = false; attribute :>> num: Real[3]; attribute :>> mRef: Cartesian3dForceCoordinateFrame[1]; } attribute staticFrictionForceVector: Cartesian3dStaticFrictionForceVector :> vectorQuantities; alias staticFrictionVector for staticFrictionForceVector; /* ISO-80000-4 item 4-9.4 kinetic friction force, dynamic friction force */ attribute def Cartesian3dKineticFrictionForceVector :> VectorQuantityValue { doc /* * source: item 4-9.4 kinetic friction force, dynamic friction force * symbol(s): `vec(F_μ)` * application domain: generic * name: KineticFrictionForce (specializes Force) * quantity dimension: L^1*M^1*T^-2 * measurement unit(s): N, kg*m*s^-2 * tensor order: 1 * definition: force (item 4-9.1) resisting the motion when a body slides on a surface * remarks: For the kinetic friction factor, see item 4-23.2. */ attribute :>> isBound = false; attribute :>> num: Real[3]; attribute :>> mRef: Cartesian3dForceCoordinateFrame[1]; } attribute kineticFrictionForceVector: Cartesian3dKineticFrictionForceVector :> vectorQuantities; alias dynamicFrictionForceVector for kineticFrictionForceVector; /* ISO-80000-4 item 4-9.5 rolling resistance, rolling drag, rolling friction force */ attribute def Cartesian3dRollingResistanceVector :> VectorQuantityValue { doc /* * source: item 4-9.5 rolling resistance, rolling drag, rolling friction force * symbol(s): `vec(F_"rr")` * application domain: generic * name: RollingResistance (specializes Force) * quantity dimension: L^1*M^1*T^-2 * measurement unit(s): N, kg*m*s^-2 * tensor order: 1 * definition: force (item 4-9.1) resisting the motion when a body rolls on a surface * remarks: For the rolling resistance factor, see item 4-23.3. */ attribute :>> isBound = false; attribute :>> num: Real[3]; attribute :>> mRef: Cartesian3dForceCoordinateFrame[1]; } attribute rollingResistanceVector: Cartesian3dRollingResistanceVector :> vectorQuantities; alias rollingDragVector for rollingResistanceVector; alias rollingFrictionForceVector for rollingResistanceVector; /* ISO-80000-4 item 4-9.6 drag force */ attribute def Cartesian3dDragForceVector :> VectorQuantityValue { doc /* * source: item 4-9.6 drag force * symbol(s): `vec(F_D)` * application domain: generic * name: DragForce (specializes Force) * quantity dimension: L^1*M^1*T^-2 * measurement unit(s): N, kg*m*s^-2 * tensor order: 1 * definition: force (item 4-9.1) resisting the motion of a body in a fluid * remarks: For the drag coefficient, see item 4-23.4. */ attribute :>> isBound = false; attribute :>> num: Real[3]; attribute :>> mRef: Cartesian3dForceCoordinateFrame[1]; } attribute dragForceVector: Cartesian3dDragForceVector :> vectorQuantities; /* ISO-80000-4 item 4-10 impulse */ attribute def ImpulseValue :> ScalarQuantityValue { doc /* * source: item 4-10 impulse (magnitude) * symbol(s): `I` * application domain: generic * name: Impulse * quantity dimension: L^1*M^1*T^-1 * measurement unit(s): N*s, kg*m*s^-1 * tensor order: 0 * definition: vector (ISO 80000-2) quantity describing the effect of force acting during a time interval: `vec(I) = int_(t_1)^(t_2) vec(F)*dt` where `vec(F)` is force (item 4-9.1), `t` is time (ISO 80000-3) and `[t_1, t_2]` is considered time interval * remarks: For a time interval `[t_1, t_2]`, `vec(I)(t_1, t_2) = vec(p)(t_1) - vec(p)(t_2) = vec(Δp)` where `vec(p)` is momentum (item 4-8). */ attribute :>> num: Real; attribute :>> mRef: ImpulseUnit[1]; } attribute impulse: ImpulseValue[*] nonunique :> scalarQuantities; attribute def ImpulseUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 1; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); } } attribute def Cartesian3dImpulseVector :> VectorQuantityValue { doc /* * source: item 4-10 impulse (vector) * symbol(s): `vec(I)` * application domain: generic * name: Impulse * quantity dimension: L^1*M^1*T^-1 * measurement unit(s): N*s, kg*m*s^-1 * tensor order: 1 * definition: vector (ISO 80000-2) quantity describing the effect of force acting during a time interval: `vec(I) = int_(t_1)^(t_2) vec(F)*dt` where `vec(F)` is force (item 4-9.1), `t` is time (ISO 80000-3) and `[t_1, t_2]` is considered time interval * remarks: For a time interval `[t_1, t_2]`, `vec(I)(t_1, t_2) = vec(p)(t_1) - vec(p)(t_2) = vec(Δp)` where `vec(p)` is momentum (item 4-8). */ attribute :>> isBound = false; attribute :>> num: Real[3]; attribute :>> mRef: Cartesian3dImpulseCoordinateFrame[1]; } attribute impulseVector: Cartesian3dImpulseVector :> vectorQuantities; attribute def Cartesian3dImpulseCoordinateFrame :> VectorMeasurementReference { attribute :>> dimensions = 3; attribute :>> isBound = false; attribute :>> isOrthogonal = true; attribute :>> mRefs: ImpulseUnit[3]; } /* ISO-80000-4 item 4-11 angular momentum */ attribute def AngularMomentumValue :> ScalarQuantityValue { doc /* * source: item 4-11 angular momentum (magnitude) * symbol(s): `L` * application domain: generic * name: AngularMomentum * quantity dimension: L^2*M^1*T^-1 * measurement unit(s): kg*m^2*s^-1 * tensor order: 0 * definition: vector (ISO 80000-2) quantity described by the vector product: `vec(L) = vec(r) xx vec(p)` where `vec(r)` is position vector (ISO 80000-3) with respect to the axis of rotation and `vec(p)` is momentum (item 4-8) * remarks: None. */ attribute :>> num: Real; attribute :>> mRef: AngularMomentumUnit[1]; } attribute angularMomentum: AngularMomentumValue[*] nonunique :> scalarQuantities; attribute def AngularMomentumUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); } } attribute def Cartesian3dAngularMomentumVector :> VectorQuantityValue { doc /* * source: item 4-11 angular momentum (vector) * symbol(s): `vec(L)` * application domain: generic * name: AngularMomentum * quantity dimension: L^2*M^1*T^-1 * measurement unit(s): kg*m^2*s^-1 * tensor order: 1 * definition: vector (ISO 80000-2) quantity described by the vector product: `vec(L) = vec(r) xx vec(p)` where `vec(r)` is position vector (ISO 80000-3) with respect to the axis of rotation and `vec(p)` is momentum (item 4-8) * remarks: None. */ attribute :>> isBound = false; attribute :>> num: Real[3]; attribute :>> mRef: Cartesian3dAngularMomentumCoordinateFrame[1]; } attribute angularMomentumVector: Cartesian3dAngularMomentumVector :> vectorQuantities; attribute def Cartesian3dAngularMomentumCoordinateFrame :> VectorMeasurementReference { attribute :>> dimensions = 3; attribute :>> isBound = false; attribute :>> isOrthogonal = true; attribute :>> mRefs: AngularMomentumUnit[3]; } /* ISO-80000-4 item 4-12.1 moment of force */ attribute def MomentOfForceValue :> ScalarQuantityValue { doc /* * source: item 4-12.1 moment of force (magnitude) * symbol(s): `M` * application domain: generic * name: MomentOfForce * quantity dimension: L^2*M^1*T^-2 * measurement unit(s): N*m, kg*m^2*s^-2 * tensor order: 0 * definition: vector (ISO 80000-2) quantity described by the vector product: `vec(M) = vec(r) xx vec(F)` where `vec(r)` is position vector (ISO 80000-3) with respect to the axis of rotation and `vec(F)` is force (item 4-9.1) * remarks: The bending moment of force is denoted by `vec(M)_b`. */ attribute :>> num: Real; attribute :>> mRef: MomentOfForceUnit[1]; } attribute momentOfForce: MomentOfForceValue[*] nonunique :> scalarQuantities; attribute def MomentOfForceUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); } } attribute def Cartesian3dMomentOfForceVector :> VectorQuantityValue { doc /* * source: item 4-12.1 moment of force (vector) * symbol(s): `vec(M)` * application domain: generic * name: MomentOfForce * quantity dimension: L^2*M^1*T^-2 * measurement unit(s): N*m, kg*m^2*s^-2 * tensor order: 1 * definition: vector (ISO 80000-2) quantity described by the vector product: `vec(M) = vec(r) xx vec(F)` where `vec(r)` is position vector (ISO 80000-3) with respect to the axis of rotation and `vec(F)` is force (item 4-9.1) * remarks: The bending moment of force is denoted by `vec(M)_b`. */ attribute :>> isBound = false; attribute :>> num: Real[3]; attribute :>> mRef: Cartesian3dMomentOfForceCoordinateFrame[1]; } attribute momentOfForceVector: Cartesian3dMomentOfForceVector :> vectorQuantities; attribute def Cartesian3dMomentOfForceCoordinateFrame :> VectorMeasurementReference { attribute :>> dimensions = 3; attribute :>> isBound = false; attribute :>> isOrthogonal = true; attribute :>> mRefs: MomentOfForceUnit[3]; } /* ISO-80000-4 item 4-12.2 torque */ attribute def TorqueValue :> ScalarQuantityValue { doc /* * source: item 4-12.2 torque * symbol(s): `T`, `M_Q` * application domain: generic * name: Torque * quantity dimension: L^2*M^1*T^-2 * measurement unit(s): N*m, kg*m^2*s^-2 * tensor order: 0 * definition: quantity described by the scalar product: `T = vec(M)*vec(e_Q)` where `vec(M)` is moment of force (item 4-12.1) and `vec(e_Q)` is unit vector of direction with respect to which the torque is considered * remarks: For example, torque is the twisting moment of force with respect to the longitudinal axis of a beam or shaft. */ attribute :>> num: Real; attribute :>> mRef: TorqueUnit[1]; } attribute torque: TorqueValue[*] nonunique :> scalarQuantities; attribute def TorqueUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); } } /* ISO-80000-4 item 4-13 angular impulse */ attribute def AngularImpulseValue :> ScalarQuantityValue { doc /* * source: item 4-13 angular impulse (magnitude) * symbol(s): `H` * application domain: generic * name: AngularImpulse * quantity dimension: L^2*M^1*T^-1 * measurement unit(s): N*m*s, kg*m^2*s^-1 * tensor order: 0 * definition: vector (ISO 80000-2) quantity describing the effect of moment of force during a time interval: `vec(H)(t_1; t_2) = int_(t_1)^(t_2) vec(M) dt` where `vec(M)` is moment of force (item 4-12.1), `t` is time (ISO 80000-3) and `[t_1, t_2]` is considered time interval * remarks: For a time interval `[t_1, t_2]`, `vec(H)(t_1, t_2) = vec(L)(t_1) - vec(L)(t_2) = vec(ΔL)` where `vec(L)` is angular momentum. */ attribute :>> num: Real; attribute :>> mRef: AngularImpulseUnit[1]; } attribute angularImpulse: AngularImpulseValue[*] nonunique :> scalarQuantities; attribute def AngularImpulseUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); } } attribute def Cartesian3dAngularImpulseVector :> VectorQuantityValue { doc /* * source: item 4-13 angular impulse (vector) * symbol(s): `vec(H)` * application domain: generic * name: AngularImpulse * quantity dimension: L^2*M^1*T^-1 * measurement unit(s): N*m*s, kg*m^2*s^-1 * tensor order: 1 * definition: vector (ISO 80000-2) quantity describing the effect of moment of force during a time interval: `vec(H)(t_1; t_2) = int_(t_1)^(t_2) vec(M) dt` where `vec(M)` is moment of force (item 4-12.1), `t` is time (ISO 80000-3) and `[t_1, t_2]` is considered time interval * remarks: For a time interval `[t_1, t_2]`, `vec(H)(t_1, t_2) = vec(L)(t_1) - vec(L)(t_2) = vec(ΔL)` where `vec(L)` is angular momentum. */ attribute :>> isBound = false; attribute :>> num: Real[3]; attribute :>> mRef: Cartesian3dAngularImpulseCoordinateFrame[1]; } attribute angularImpulseVector: Cartesian3dAngularImpulseVector :> vectorQuantities; attribute def Cartesian3dAngularImpulseCoordinateFrame :> VectorMeasurementReference { attribute :>> dimensions = 3; attribute :>> isBound = false; attribute :>> isOrthogonal = true; attribute :>> mRefs: AngularImpulseUnit[3]; } /* ISO-80000-4 item 4-14.1 pressure */ attribute def PressureValue :> ScalarQuantityValue { doc /* * source: item 4-14.1 pressure * symbol(s): `p` * application domain: generic * name: Pressure * quantity dimension: L^-1*M^1*T^-2 * measurement unit(s): Pa, N*m^-2, kg*m^-1*s^-2 * tensor order: 0 * definition: quotient of the component of a force normal to a surface and its area: `p = (vec(e_n) * vec(F)) / A` where `vec(e_n)` is unit vector of the surface normal, `vec(F)` is force (item 4-9.1) and `A` is area (ISO 80000-3) * remarks: None. */ attribute :>> num: Real; attribute :>> mRef: PressureUnit[1]; } attribute pressure: PressureValue[*] nonunique :> scalarQuantities; attribute def PressureUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); } } /* ISO-80000-4 item 4-14.2 gauge pressure */ attribute gaugePressure: PressureValue :> scalarQuantities { doc /* * source: item 4-14.2 gauge pressure * symbol(s): `p_e` * application domain: generic * name: GaugePressure (specializes Pressure) * quantity dimension: L^-1*M^1*T^-2 * measurement unit(s): Pa, N*m^-2, kg*m^-1*s^-2 * tensor order: 0 * definition: pressure `p` (item 4-14.1) decremented by ambient pressure `p_amb` : `p_e = p - p_amb` * remarks: Often, `p_amb` is chosen as a standard pressure. Gauge pressure is positive or negative. */ } /* ISO-80000-4 item 4-15 stress */ attribute def StressValue :> ScalarQuantityValue { doc /* * source: item 4-15 stress (magnitude) * symbol(s): `σ` * application domain: generic * name: Stress * quantity dimension: L^-1*M^1*T^-2 * measurement unit(s): Pa, N*m^-2, kg*m^-1*s^-2 * tensor order: 0 * definition: tensor (ISO 80000-2) quantity representing state of tension of matter * remarks: Stress tensor is symmetric and has three normal-stress and three shear-stress (Cartesian) components. */ attribute :>> num: Real; attribute :>> mRef: StressUnit[1]; } attribute stress: StressValue[*] nonunique :> scalarQuantities; attribute def StressUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); } } attribute def Cartesian3dStressTensor :> TensorQuantityValue { doc /* * source: item 4-15 stress (tensor) * symbol(s): `vec(vec(σ))` * application domain: generic * name: Stress * quantity dimension: L^-1*M^1*T^-2 * measurement unit(s): Pa, N*m^-2, kg*m^-1*s^-2 * tensor order: 2 * definition: tensor (ISO 80000-2) quantity representing state of tension of matter * remarks: Stress tensor is symmetric and has three normal-stress and three shear-stress (Cartesian) components. */ attribute :>> isBound = false; attribute :>> num: Real[9]; attribute :>> mRef: Cartesian3dStressMeasurementReference[1]; } attribute stressTensor: Cartesian3dStressTensor :> tensorQuantities; attribute def Cartesian3dStressMeasurementReference :> TensorMeasurementReference { attribute :>> dimensions = (3, 3); attribute :>> isBound = false; attribute :>> mRefs: StressUnit[9]; } /* ISO-80000-4 item 4-16.1 normal stress */ attribute def NormalStressValue :> ScalarQuantityValue { doc /* * source: item 4-16.1 normal stress * symbol(s): `σ_n`, `σ` * application domain: generic * name: NormalStress * quantity dimension: L^-1*M^1*T^-2 * measurement unit(s): Pa, N*m^-2, kg*m^-1*s^-2 * tensor order: 0 * definition: scalar (ISO 80000-2) quantity describing surface action of a force into a body equal to: `σ_n = (d F_n)/(dA)` where `F_n` is the normal component of force (item 4-9.1) and `A` is the area (ISO 80000-3) of the surface element * remarks: A couple of mutually opposite forces of magnitude `F` acting on the opposite surfaces of a slice (layer) of homogenous solid matter normal to it, and evenly distributed, cause a constant normal stress `σ_n = F A` in the slice (layer). */ attribute :>> num: Real; attribute :>> mRef: NormalStressUnit[1]; } attribute normalStress: NormalStressValue[*] nonunique :> scalarQuantities; attribute def NormalStressUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); } } /* ISO-80000-4 item 4-16.2 shear stress */ attribute def ShearStressValue :> ScalarQuantityValue { doc /* * source: item 4-16.2 shear stress * symbol(s): `τ_s`, `τ` * application domain: generic * name: ShearStress * quantity dimension: L^-1*M^1*T^-2 * measurement unit(s): Pa, N*m^-2, kg*m^-1*s^-2 * tensor order: 0 * definition: scalar (ISO 80000-2) quantity describing surface action of a force into a body equal to: `τ_s = (d F_t)/(dA)` where `F_t` is the tangential component of force (item 4-9.1) and `A` is the area (ISO 80000-3) of the surface element * remarks: A couple of mutually opposite forces of magnitude `F` acting on the opposite surfaces of a slice (layer) of homogenous solid matter parallel to it, and evenly distributed, cause a constant shear stress `τ = F/A` in the slice (layer). */ attribute :>> num: Real; attribute :>> mRef: ShearStressUnit[1]; } attribute shearStress: ShearStressValue[*] nonunique :> scalarQuantities; attribute def ShearStressUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); } } /* ISO-80000-4 item 4-17.1 strain */ attribute def StrainValue :> ScalarQuantityValue { doc /* * source: item 4-17.1 strain (magnitude) * symbol(s): `ε` * application domain: generic * name: Strain * quantity dimension: 1 * measurement unit(s): 1 * tensor order: 0 * definition: tensor (ISO 80000-2) quantity representing the deformation of matter caused by stress * remarks: Strain tensor is symmetric and has three linear-strain and three shear strain (Cartesian) components. */ attribute :>> num: Real; attribute :>> mRef: StrainUnit[1]; } attribute strain: StrainValue[*] nonunique :> scalarQuantities; attribute def StrainUnit :> DimensionOneUnit { } attribute def Cartesian3dStrainTensor :> TensorQuantityValue { doc /* * source: item 4-17.1 strain (tensor) * symbol(s): `vec(vec(ε))` * application domain: generic * name: Strain * quantity dimension: 1 * measurement unit(s): 1 * tensor order: 2 * definition: tensor (ISO 80000-2) quantity representing the deformation of matter caused by stress * remarks: Strain tensor is symmetric and has three linear-strain and three shear strain (Cartesian) components. */ attribute :>> isBound = false; attribute :>> num: Real[9]; attribute :>> mRef: Cartesian3dStrainMeasurementReference[1]; } attribute strainTensor: Cartesian3dStrainTensor :> tensorQuantities; attribute def Cartesian3dStrainMeasurementReference :> TensorMeasurementReference { attribute :>> dimensions = (3, 3); attribute :>> isBound = false; attribute :>> mRefs: StrainUnit[9]; } /* ISO-80000-4 item 4-17.2 relative linear strain */ attribute def RelativeLinearStrainValue :> DimensionOneValue { doc /* * source: item 4-17.2 relative linear strain * symbol(s): `ε`, `(e)` * application domain: generic * name: RelativeLinearStrain (specializes DimensionOneQuantity) * quantity dimension: 1 * measurement unit(s): 1 * tensor order: 0 * definition: quotient of change in length `Δl` (ISO 80000-3) of an object and its length `l` (ISO 80000-3): `ε = (Δl)/l` * remarks: None. */ } attribute relativeLinearStrain: RelativeLinearStrainValue :> scalarQuantities; /* ISO-80000-4 item 4-17.3 shear strain */ attribute def ShearStrainValue :> DimensionOneValue { doc /* * source: item 4-17.3 shear strain * symbol(s): `γ` * application domain: generic * name: ShearStrain (specializes DimensionOneQuantity) * quantity dimension: 1 * measurement unit(s): 1 * tensor order: 0 * definition: quotient of parallel displacement `Δx` (ISO 80000-3) of two surfaces of a layer and the thickness `d` (ISO 80000-3) of the layer: `γ = (Δx)/d` * remarks: None. */ } attribute shearStrain: ShearStrainValue :> scalarQuantities; /* ISO-80000-4 item 4-17.4 relative volume strain */ attribute def RelativeVolumeStrainValue :> DimensionOneValue { doc /* * source: item 4-17.4 relative volume strain * symbol(s): `θ` * application domain: generic * name: RelativeVolumeStrain (specializes DimensionOneQuantity) * quantity dimension: 1 * measurement unit(s): 1 * tensor order: 0 * definition: quotient of change in volume `ΔV` (ISO 80000-3) of an object and its volume `V_0` (ISO 80000-3): `θ = (ΔV)/V_0` * remarks: None. */ } attribute relativeVolumeStrain: RelativeVolumeStrainValue :> scalarQuantities; /* ISO-80000-4 item 4-18 Poisson number */ attribute def PoissonNumberValue :> DimensionOneValue { doc /* * source: item 4-18 Poisson number * symbol(s): `μ`, `(v)` * application domain: generic * name: PoissonNumber (specializes DimensionOneQuantity) * quantity dimension: 1 * measurement unit(s): 1 * tensor order: 0 * definition: quotient of change in width `Δb` (width is defined in ISO 80000-3) and change in length `Δl` (length is defined in ISO 80000-3) of an object: `μ = (Δb)/(Δl)` * remarks: None. */ } attribute poissonNumber: PoissonNumberValue :> scalarQuantities; /* ISO-80000-4 item 4-19.1 modulus of elasticity, Young modulus */ attribute def ModulusOfElasticityValue :> ScalarQuantityValue { doc /* * source: item 4-19.1 modulus of elasticity, Young modulus * symbol(s): `E`, `E_m`, `Y` * application domain: generic * name: ModulusOfElasticity * quantity dimension: L^-1*M^1*T^-2 * measurement unit(s): Pa, N*m^-2, kg*m^-1*s^-2 * tensor order: 0 * definition: quotient of normal stress `σ` (item 4-16.1) and relative linear strain `ε` (item 4-17.2): `E = σ/ε` * remarks: Conditions should be specified (e.g. adiabatic or isothermal process). */ attribute :>> num: Real; attribute :>> mRef: ModulusOfElasticityUnit[1]; } attribute modulusOfElasticity: ModulusOfElasticityValue[*] nonunique :> scalarQuantities; attribute def ModulusOfElasticityUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); } } alias YoungModulusUnit for ModulusOfElasticityUnit; alias YoungModulusValue for ModulusOfElasticityValue; alias youngModulus for modulusOfElasticity; /* ISO-80000-4 item 4-19.2 modulus of rigidity, shear modulus */ attribute def ModulusOfRigidityValue :> ScalarQuantityValue { doc /* * source: item 4-19.2 modulus of rigidity, shear modulus * symbol(s): `G` * application domain: generic * name: ModulusOfRigidity * quantity dimension: L^-1*M^1*T^-2 * measurement unit(s): Pa, N*m^-2, kg*m^-1*s^-2 * tensor order: 0 * definition: quotient of shear stress `τ` (item 4-16.2) and shear strain `γ` (item 4-17.3): `G = τ/γ` * remarks: Conditions should be specified (e.g. isentropic or isothermal process). */ attribute :>> num: Real; attribute :>> mRef: ModulusOfRigidityUnit[1]; } attribute modulusOfRigidity: ModulusOfRigidityValue[*] nonunique :> scalarQuantities; attribute def ModulusOfRigidityUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); } } alias ShearModulusUnit for ModulusOfRigidityUnit; alias ShearModulusValue for ModulusOfRigidityValue; alias shearModulus for modulusOfRigidity; /* ISO-80000-4 item 4-19.3 modulus of compression, bulk modulus */ attribute def ModulusOfCompressionValue :> ScalarQuantityValue { doc /* * source: item 4-19.3 modulus of compression, bulk modulus * symbol(s): `K`, `K_m`, `B` * application domain: generic * name: ModulusOfCompression * quantity dimension: L^-1*M^1*T^-2 * measurement unit(s): Pa, N*m^-2, kg*m^-1*s^-2 * tensor order: 0 * definition: negative of the quotient of pressure `p` (item 4-14.1) and relative volume strain `θ` (item 4-17.4): `K = -(p/θ)` * remarks: Conditions should be specified (e.g. isentropic or isothermal process). */ attribute :>> num: Real; attribute :>> mRef: ModulusOfCompressionUnit[1]; } attribute modulusOfCompression: ModulusOfCompressionValue[*] nonunique :> scalarQuantities; attribute def ModulusOfCompressionUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); } } alias BulkModulusUnit for ModulusOfCompressionUnit; alias BulkModulusValue for ModulusOfCompressionValue; alias bulkModulus for modulusOfCompression; /* ISO-80000-4 item 4-20 compressibility */ attribute def CompressibilityValue :> ScalarQuantityValue { doc /* * source: item 4-20 compressibility * symbol(s): `ϰ` * application domain: generic * name: Compressibility * quantity dimension: L^1*M^-1*T^2 * measurement unit(s): Pa^-1, kg^-1*m*s^2 * tensor order: 0 * definition: negative relative change of volume `V` (ISO 80000-3) of an object under pressure `p` (item 4-14.1) expressed by: `ϰ = -(1/V)(dV)/(dp)` * remarks: Conditions should be specified (e.g. isentropic or isothermal process). See also ISO 80000-5. */ attribute :>> num: Real; attribute :>> mRef: CompressibilityUnit[1]; } attribute compressibility: CompressibilityValue[*] nonunique :> scalarQuantities; attribute def CompressibilityUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 1; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 2; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); } } /* ISO-80000-4 item 4-21.1 second axial moment of area */ attribute def SecondAxialMomentOfAreaValue :> ScalarQuantityValue { doc /* * source: item 4-21.1 second axial moment of area * symbol(s): `I_a` * application domain: generic * name: SecondAxialMomentOfArea * quantity dimension: L^4 * measurement unit(s): m^4 * tensor order: 0 * definition: geometrical characteristic of a shape of a body equal to: `I_a = int int_M r_Q^2 dA` where `M` is the two-dimensional domain of the cross-section of a plane and considered body, `r_Q` is radial distance (ISO 80000-3) from a Q-axis in the plane of the surface considered and `A` is area (ISO 80000-3) * remarks: This quantity is often referred to wrongly as "moment of inertia" (item 4-7). The subscript, `a`, may be omitted when there is no risk of confusion. */ attribute :>> num: Real; attribute :>> mRef: SecondAxialMomentOfAreaUnit[1]; } attribute secondAxialMomentOfArea: SecondAxialMomentOfAreaValue[*] nonunique :> scalarQuantities; attribute def SecondAxialMomentOfAreaUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 4; } attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; } } /* ISO-80000-4 item 4-21.2 second polar moment of area */ attribute def SecondPolarMomentOfAreaValue :> ScalarQuantityValue { doc /* * source: item 4-21.2 second polar moment of area * symbol(s): `I_p` * application domain: generic * name: SecondPolarMomentOfArea * quantity dimension: L^4 * measurement unit(s): m^4 * tensor order: 0 * definition: geometrical characteristic of a shape of a body equal to: `I_p = int int_M r_Q^2 * dA` where `M` is the two-dimensional domain of the cross-section of a plane and considered body, `r_Q` is radial distance (ISO 80000-3) from a Q-axis perpendicular to the plane of the surface considered and `A` is area (ISO 80000-3) * remarks: This quantity is often referred to wrongly as "moment of inertia" (item 4-7). The subscript, `p`, may be omitted when there is no risk of confusion. */ attribute :>> num: Real; attribute :>> mRef: SecondPolarMomentOfAreaUnit[1]; } attribute secondPolarMomentOfArea: SecondPolarMomentOfAreaValue[*] nonunique :> scalarQuantities; attribute def SecondPolarMomentOfAreaUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 4; } attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; } } /* ISO-80000-4 item 4-22 section modulus */ attribute def SectionModulusValue :> ScalarQuantityValue { doc /* * source: item 4-22 section modulus * symbol(s): `Z`, `(W)` * application domain: generic * name: SectionModulus * quantity dimension: L^3 * measurement unit(s): m^3 * tensor order: 0 * definition: geometrical characteristic of a shape of a body equal to: `Z = I_a/r_(Q_max)` where `I_a` is the second axial moment of area (item 4-21.1) and `r_(Q,max)` is the maximum radial distance (ISO 80000-3) of any point in the surface considered from the Q-axis with respect to which `I_a` is defined * remarks: None. */ attribute :>> num: Real; attribute :>> mRef: SectionModulusUnit[1]; } attribute sectionModulus: SectionModulusValue[*] nonunique :> scalarQuantities; attribute def SectionModulusUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 3; } attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; } } /* ISO-80000-4 item 4-23.1 static friction coefficient, static friction factor, coefficient of static friction */ attribute def StaticFrictionCoefficientValue :> DimensionOneValue { doc /* * source: item 4-23.1 static friction coefficient, static friction factor, coefficient of static friction * symbol(s): `μ_s`, `(f_s)` * application domain: generic * name: StaticFrictionCoefficient (specializes DimensionOneQuantity) * quantity dimension: 1 * measurement unit(s): 1 * tensor order: 0 * definition: proportionality factor between the maximum magnitude of the tangential component `F_max` of the static friction force (item 4-9.3) and the magnitude of the normal component `N` of the contact force (item 4-9.1) between two bodies at relative rest with respect to each other: `F_max = μ_s * N` * remarks: When it is not necessary to distinguish between dynamic friction factor and static friction factor, the name friction factor may be used for both. */ } attribute staticFrictionCoefficient: StaticFrictionCoefficientValue :> scalarQuantities; alias staticFrictionFactor for staticFrictionCoefficient; alias coefficientOfStaticFriction for staticFrictionCoefficient; /* ISO-80000-4 item 4-23.2 kinetic friction factor, dynamic friction factor */ attribute def KineticFrictionFactorValue :> DimensionOneValue { doc /* * source: item 4-23.2 kinetic friction factor, dynamic friction factor * symbol(s): `μ`, `(f)` * application domain: generic * name: KineticFrictionFactor (specializes DimensionOneQuantity) * quantity dimension: 1 * measurement unit(s): 1 * tensor order: 0 * definition: proportionality factor between the magnitudes of the kinetic friction force, `F_μ` (item 4-9.4) and the normal component `N` of the contact force (item 4-9.1): `F_μ = μ * N` * remarks: When it is not necessary to distinguish between dynamic friction factor and static friction factor, the name friction factor may be used for both. The dynamic friction factor `µ` is independent in first approximation of the contact surface. */ } attribute kineticFrictionFactor: KineticFrictionFactorValue :> scalarQuantities; alias dynamicFrictionFactor for kineticFrictionFactor; /* ISO-80000-4 item 4-23.3 rolling resistance factor */ attribute def RollingResistanceFactorValue :> DimensionOneValue { doc /* * source: item 4-23.3 rolling resistance factor * symbol(s): `C_"rr"` * application domain: generic * name: RollingResistanceFactor (specializes DimensionOneQuantity) * quantity dimension: 1 * measurement unit(s): 1 * tensor order: 0 * definition: proportionality factor between the magnitude of the tangential component `F` and the magnitude of the normal component `N` of the force applied to a body rolling on a surface at constant speed: `F = C_(rr)*N` * remarks: Also known as rolling resistance coefficient, RRC. */ } attribute rollingResistanceFactor: RollingResistanceFactorValue :> scalarQuantities; /* ISO-80000-4 item 4-23.4 drag coefficient, drag factor */ attribute def DragCoefficientValue :> DimensionOneValue { doc /* * source: item 4-23.4 drag coefficient, drag factor * symbol(s): `C_D` * application domain: generic * name: DragCoefficient (specializes DimensionOneQuantity) * quantity dimension: 1 * measurement unit(s): 1 * tensor order: 0 * definition: factor proportional to magnitude `F_D` of the drag force (item 4-9.6) of a body moving in a fluid, dependent on the shape and speed `v` (ISO 80000-3) of a body: `F_D = 1/2 * C_D * ρ * v^2 * A` where `ρ` is mass density (item 4-2) of the fluid and `A` is cross-section area (ISO 80000-3) of the body * remarks: None. */ } attribute dragCoefficient: DragCoefficientValue :> scalarQuantities; alias dragFactor for dragCoefficient; /* ISO-80000-4 item 4-24 dynamic viscosity, viscosity */ attribute def DynamicViscosityValue :> ScalarQuantityValue { doc /* * source: item 4-24 dynamic viscosity, viscosity * symbol(s): `η` * application domain: generic * name: DynamicViscosity * quantity dimension: L^-1*M^1*T^-1 * measurement unit(s): Pa*s, kg*m^-1*s^-1 * tensor order: 0 * definition: for laminar flows, proportionality constant between shear stress `τ_(xz)` (item 4-16.2) in a fluid moving with a velocity `v_x` (ISO 80000-3) and gradient `(d v_x)/dz` perpendicular to the plane of shear: `τ_(xz) = η (d v_x)/(dz)` * remarks: None. */ attribute :>> num: Real; attribute :>> mRef: DynamicViscosityUnit[1]; } attribute dynamicViscosity: DynamicViscosityValue[*] nonunique :> scalarQuantities; attribute def DynamicViscosityUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); } } alias ViscosityUnit for DynamicViscosityUnit; alias ViscosityValue for DynamicViscosityValue; alias viscosity for dynamicViscosity; /* ISO-80000-4 item 4-25 kinematic viscosity */ attribute def KinematicViscosityValue :> ScalarQuantityValue { doc /* * source: item 4-25 kinematic viscosity * symbol(s): `v` * application domain: generic * name: KinematicViscosity * quantity dimension: L^2*T^-1 * measurement unit(s): m^2*s^-1 * tensor order: 0 * definition: quotient of dynamic viscosity `η` (item 4-24) and mass density `ρ` (item 4-2) of a fluid: `v = η/ρ` * remarks: None. */ attribute :>> num: Real; attribute :>> mRef: KinematicViscosityUnit[1]; } attribute kinematicViscosity: KinematicViscosityValue[*] nonunique :> scalarQuantities; attribute def KinematicViscosityUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF); } } /* ISO-80000-4 item 4-26 surface tension */ attribute def SurfaceTensionValue :> ScalarQuantityValue { doc /* * source: item 4-26 surface tension * symbol(s): `γ`, `σ` * application domain: generic * name: SurfaceTension * quantity dimension: M^1*T^-2 * measurement unit(s): N*m^-1, kg*s^-2 * tensor order: 0 * definition: magnitude of a force acting against the enlargement of area portion of a surface separating a liquid from its surrounding * remarks: The concept of surface energy is closely related to surface tension and has the same dimension. */ attribute :>> num: Real; attribute :>> mRef: SurfaceTensionUnit[1]; } attribute surfaceTension: SurfaceTensionValue[*] nonunique :> scalarQuantities; attribute def SurfaceTensionUnit :> DerivedUnit { private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; } attribute :>> quantityDimension { :>> quantityPowerFactors = (massPF, durationPF); } } /* ISO-80000-4 item 4-27.1 power */ attribute def PowerValue :> ScalarQuantityValue { doc /* * source: item 4-27.1 power * symbol(s): `P` * application domain: generic * name: Power * quantity dimension: L^2*M^1*T^-3 * measurement unit(s): W, J*s^-1, kg*m^2*s^-3 * tensor order: 0 * definition: quotient of energy (ISO 80000-5) and duration (ISO 80000-3) * remarks: None. */ attribute :>> num: Real; attribute :>> mRef: PowerUnit[1]; } attribute power: PowerValue[*] nonunique :> scalarQuantities; attribute def PowerUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -3; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); } } /* ISO-80000-4 item 4-27 mechanical power */ attribute mechanicalPower: PowerValue :> scalarQuantities { doc /* * source: item 4-27 mechanical power * symbol(s): `P` * application domain: mechanics * name: MechanicalPower (specializes Power) * quantity dimension: L^2*M^1*T^-3 * measurement unit(s): W, N*m*s^-1, kg*m^2*s^-3 * tensor order: 0 * definition: scalar product of force `vec(F)` (item 4-9.1) acting to a body and its velocity `vec(v)` (ISO 80000-3): `P = vec(F) * vec(v)` * remarks: None. */ } /* ISO-80000-4 item 4-28.1 potential energy */ attribute potentialEnergy: EnergyValue :> scalarQuantities { doc /* * source: item 4-28.1 potential energy * symbol(s): `V`, `E_p` * application domain: generic * name: PotentialEnergy (specializes Energy) * quantity dimension: L^2*M^1*T^-2 * measurement unit(s): J, kg*m^2*s^-2 * tensor order: 0 * definition: for conservative force `vec(F)`, scalar additive quantity obeying condition `vec(F) = -nabla F`, if it exists * remarks: For the definition of energy, see ISO 80000-5. A force is conservative when the force field is irrotational, i.e. `rot(F) = 0` , or `vec(F)` is perpendicular to the speed of the body to ensure `vec(F) * d vec(r) = 0` . */ } /* ISO-80000-4 item 4-28.2 kinetic energy */ attribute kineticEnergy: EnergyValue :> scalarQuantities { doc /* * source: item 4-28.2 kinetic energy * symbol(s): `T`, `E_k` * application domain: generic * name: KineticEnergy (specializes Energy) * quantity dimension: L^2*M^1*T^-2 * measurement unit(s): J, kg*m^2*s^-2 * tensor order: 0 * definition: scalar (ISO 80000-2) quantity characterizing a moving body expressed by: `T = 1/2 m v^2` where `m` is mass (item 4-1) of the body and `v` is its speed (ISO 80000-3) * remarks: For the definition of energy, see ISO 80000-5. */ } /* ISO-80000-4 item 4-28.3 mechanical energy */ attribute mechanicalEnergy: EnergyValue :> scalarQuantities { doc /* * source: item 4-28.3 mechanical energy * symbol(s): `E`, `W` * application domain: generic * name: MechanicalEnergy (specializes Energy) * quantity dimension: L^2*M^1*T^-2 * measurement unit(s): J, kg*m^2*s^-2 * tensor order: 0 * definition: sum of kinetic energy `T` (item 4-28.2) and potential energy `V` (item 4-28.1): `E = T+V` * remarks: The symbols `E` and `W` are also used for other kinds of energy. This definition is understood in a classical way and it does not include thermal motion. */ } /* ISO-80000-4 item 4-28.4 mechanical work, work */ attribute mechanicalWork: EnergyValue :> scalarQuantities { doc /* * source: item 4-28.4 mechanical work, work * symbol(s): `A`, `W` * application domain: generic * name: MechanicalWork (specializes Energy) * quantity dimension: L^2*M^1*T^-2 * measurement unit(s): J, kg*m^2*s^-2 * tensor order: 0 * definition: process quantity describing the total action of a force `vec(F)` (item 4-9.1) along a continuous curve `Γ` in three-dimensional space with infinitesimal displacement (ISO 80000-3) `dvec(r)`, as a line integral of their scalar product: `A = int_Γ vec(F) * d vec(r)` * remarks: The definition covers the case `A = -int_Γ p*dV` where `Γ` is a curve in the phase space and implies that work generally depends upon `Γ`, and that type of process must be defined (e.g. isentropic or isothermic). */ } alias work for mechanicalWork; /* ISO-80000-4 item 4-29 mechanical efficiency */ attribute def MechanicalEfficiencyValue :> DimensionOneValue { doc /* * source: item 4-29 mechanical efficiency * symbol(s): `η` * application domain: mechanics * name: MechanicalEfficiency (specializes DimensionOneQuantity) * quantity dimension: 1 * measurement unit(s): 1 * tensor order: 0 * definition: quotient of output power `P_"out"` (item 4-27) from a system and input power `P_"in"` (item 4-27) to this system: `η = P_"out"/P_"in"` * remarks: The system must be specified. This quantity is often expressed by the unit percent, symbol %. */ } attribute mechanicalEfficiency: MechanicalEfficiencyValue :> scalarQuantities; /* ISO-80000-4 item 4-30.1 mass flow */ attribute def MassFlowValue :> ScalarQuantityValue { doc /* * source: item 4-30.1 mass flow (magnitude) * symbol(s): `j_m` * application domain: generic * name: MassFlow * quantity dimension: L^-2*M^1*T^-1 * measurement unit(s): kg*m^-2*s^-1 * tensor order: 0 * definition: vector (ISO 80000-2) quantity characterizing a flowing fluid by the product of its local mass density `ρ` (item 4-2) and local velocity `vec(v)` (ISO 80000-3): `vec(j_m) = ρ vec(v)` * remarks: None. */ attribute :>> num: Real; attribute :>> mRef: MassFlowUnit[1]; } attribute massFlow: MassFlowValue[*] nonunique :> scalarQuantities; attribute def MassFlowUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -2; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); } } attribute def Cartesian3dMassFlowVector :> VectorQuantityValue { doc /* * source: item 4-30.1 mass flow (vector) * symbol(s): `vec(j_m)` * application domain: generic * name: MassFlow * quantity dimension: L^-2*M^1*T^-1 * measurement unit(s): kg*m^-2*s^-1 * tensor order: 1 * definition: vector (ISO 80000-2) quantity characterizing a flowing fluid by the product of its local mass density `ρ` (item 4-2) and local velocity `vec(v)` (ISO 80000-3): `vec(j_m) = ρ vec(v)` * remarks: None. */ attribute :>> isBound = false; attribute :>> num: Real[3]; attribute :>> mRef: Cartesian3dMassFlowCoordinateFrame[1]; } attribute massFlowVector: Cartesian3dMassFlowVector :> vectorQuantities; attribute def Cartesian3dMassFlowCoordinateFrame :> VectorMeasurementReference { attribute :>> dimensions = 3; attribute :>> isBound = false; attribute :>> isOrthogonal = true; attribute :>> mRefs: MassFlowUnit[3]; } /* ISO-80000-4 item 4-30.2 mass flow rate */ attribute def MassFlowRateValue :> ScalarQuantityValue { doc /* * source: item 4-30.2 mass flow rate * symbol(s): `q_m` * application domain: generic * name: MassFlowRate * quantity dimension: M^1*T^-1 * measurement unit(s): kg*s^-1 * tensor order: 0 * definition: scalar (ISO 80000-2) quantity characterizing the total flow through the two-dimensional domain `A` with normal vector `vec(e)_n` of a flowing fluid with mass flow `vec(j)_m` (item 4-30.1) as an integral: `q_m = int int_A vec(j)_m * vec(e)_n dA` where `dA` is the area (ISO 80000-3) of an element of the two-dimensional domain `A` * remarks: None. */ attribute :>> num: Real; attribute :>> mRef: MassFlowRateUnit[1]; } attribute massFlowRate: MassFlowRateValue[*] nonunique :> scalarQuantities; attribute def MassFlowRateUnit :> DerivedUnit { private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (massPF, durationPF); } } /* ISO-80000-4 item 4-30.3 mass change rate */ attribute def MassChangeRateValue :> ScalarQuantityValue { doc /* * source: item 4-30.3 mass change rate * symbol(s): `q_m` * application domain: generic * name: MassChangeRate * quantity dimension: M^1*T^-1 * measurement unit(s): kg*s^-1 * tensor order: 0 * definition: rate of increment of mass `m` (item 4-1): `q_m = (dm)/(dt)` where `dm` is the infinitesimal mass (item 4-1) increment and `dt` is the infinitesimal duration (ISO 80000-3) * remarks: None. */ attribute :>> num: Real; attribute :>> mRef: MassChangeRateUnit[1]; } attribute massChangeRate: MassChangeRateValue[*] nonunique :> scalarQuantities; attribute def MassChangeRateUnit :> DerivedUnit { private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (massPF, durationPF); } } /* ISO-80000-4 item 4-31 volume flow rate */ attribute def VolumeFlowRateValue :> ScalarQuantityValue { doc /* * source: item 4-31 volume flow rate * symbol(s): `q_v` * application domain: generic * name: VolumeFlowRate * quantity dimension: L^3*T^-1 * measurement unit(s): m^3*s^-1 * tensor order: 0 * definition: scalar (ISO 80000-2) quantity characterizing the total flow through the two-dimensional domain `A` with the normal vector `vec(e)_n` of a flowing fluid with velocity `vec(v)` (ISO 80000-3) as an integral: `q_v = int int_A vec(v) * vec(e)_n dA` where `dA` is the area (ISO 80000-3) of an element of the two-dimensional domain `A` * remarks: None. */ attribute :>> num: Real; attribute :>> mRef: VolumeFlowRateUnit[1]; } attribute volumeFlowRate: VolumeFlowRateValue[*] nonunique :> scalarQuantities; attribute def VolumeFlowRateUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 3; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF); } } /* ISO-80000-4 item 4-32 action quantity */ attribute def ActionQuantityValue :> ScalarQuantityValue { doc /* * source: item 4-32 action quantity * symbol(s): `S` * application domain: generic * name: ActionQuantity * quantity dimension: L^2*M^1*T^-1 * measurement unit(s): J*s, kg*m^2*s^-1 * tensor order: 0 * definition: time integral of energy `E` over a time interval `(t_1, t_2)`: `S = int_(t_1)^(t_2) E dt` * remarks: The energy may be expressed by a Lagrangian or Hamiltonian function. */ attribute :>> num: Real; attribute :>> mRef: ActionQuantityUnit[1]; } attribute actionQuantity: ActionQuantityValue[*] nonunique :> scalarQuantities; attribute def ActionQuantityUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); } } }