standard library package ISQSpaceTime { doc /* * International System of Quantities and Units * Generated on 2022-08-07T14:44:27Z from standard ISO-80000-3:2019 "Space and Time" * see also https://www.iso.org/obp/ui/#iso:std:iso:80000:-3:ed-2:v1:en * * Note 1: In documentation comments, AsciiMath notation (see http://asciimath.org/) is used for mathematical concepts, * with Greek letters in Unicode encoding. In running text, AsciiMath is placed between backticks. * Note 2: For vector and tensor quantities currently the unit and quantity value type for their (scalar) magnitude is * defined, as well as their typical Cartesian 3d VectorMeasurementReference (i.e. coordinate system) * or TensorMeasurementReference. */ private import ScalarValues::Real; private import ScalarValues::String; private import Quantities::*; private import MeasurementReferences::*; private import ISQBase::*; /* ISO-80000-3 item 3-1.1 length */ /* See package ISQBase for the declarations of LengthValue and LengthUnit */ /* ISO-80000-3 item 3-1.2 width, breadth */ attribute width: LengthValue :> scalarQuantities { doc /* * source: item 3-1.2 width, breadth * symbol(s): `b`, `B` * application domain: generic * name: Width (specializes Length) * quantity dimension: L^1 * measurement unit(s): m * tensor order: 0 * definition: minimum length of a straight line segment between two parallel straight lines (in two dimensions) or planes (in three dimensions) that enclose a given geometrical shape * remarks: This quantity is non-negative. */ } alias breadth for width; /* ISO-80000-3 item 3-1.3 height, depth, altitude */ attribute height: LengthValue :> scalarQuantities { doc /* * source: item 3-1.3 height, depth, altitude * symbol(s): `h`, `H` * application domain: generic * name: Height (specializes Length) * quantity dimension: L^1 * measurement unit(s): m * tensor order: 0 * definition: minimum length of a straight line segment between a point and a reference line or reference surface * remarks: This quantity is usually signed. The sign expresses the position of the particular point with respect to the reference line or surface and is chosen by convention. The symbol `H` is often used to denote altitude, i.e. height above sea level. */ } alias depth for height; alias altitude for height; /* ISO-80000-3 item 3-1.4 thickness */ attribute thickness: LengthValue :> scalarQuantities { doc /* * source: item 3-1.4 thickness * symbol(s): `d`, `δ` * application domain: generic * name: Thickness (specializes Length) * quantity dimension: L^1 * measurement unit(s): m * tensor order: 0 * definition: width (item 3-1.2) * remarks: This quantity is non-negative. */ } /* ISO-80000-3 item 3-1.5 diameter */ attribute diameter: LengthValue :> scalarQuantities { doc /* * source: item 3-1.5 diameter * symbol(s): `d`, `D` * application domain: generic * name: Diameter (specializes Length) * quantity dimension: L^1 * measurement unit(s): m * tensor order: 0 * definition: width (item 3-1.2) of a circle, cylinder or sphere * remarks: This quantity is non-negative. */ } /* ISO-80000-3 item 3-1.6 radius */ attribute radius: LengthValue :> scalarQuantities { doc /* * source: item 3-1.6 radius * symbol(s): `r`, `R` * application domain: generic * name: Radius (specializes Length) * quantity dimension: L^1 * measurement unit(s): m * tensor order: 0 * definition: half of a diameter (item 3-1.5) * remarks: This quantity is non-negative. */ } /* ISO-80000-3 item 3-1.7 path length, arc length */ attribute pathLength: LengthValue :> scalarQuantities { doc /* * source: item 3-1.7 path length, arc length * symbol(s): `s` * application domain: generic * name: PathLength (specializes Length) * quantity dimension: L^1 * measurement unit(s): m * tensor order: 0 * definition: length of a rectifiable curve between two of its points * remarks: The differential path length at a given point of a curve is: `ds = sqrt(dx^2 + dy^2 + dz^2)` where `x`, `y`, and `z` denote the Cartesian coordinates (ISO 80000-2) of the particular point. There are curves which are not rectifiable, for example fractal curves. */ } alias arcLength for pathLength; /* ISO-80000-3 item 3-1.8 distance */ attribute distance: LengthValue :> scalarQuantities { doc /* * source: item 3-1.8 distance * symbol(s): `d`, `r` * application domain: generic * name: Distance (specializes Length) * quantity dimension: L^1 * measurement unit(s): m * tensor order: 0 * definition: shortest path length (item 3-1.7) between two points in a metric space * remarks: A metric space might be curved. An example of a curved metric space is the surface of the Earth. In this case, distances are measured along great circles. A metric is not necessarily Euclidean. */ } /* ISO-80000-3 item 3-1.9 radial distance */ attribute radialDistance: LengthValue :> scalarQuantities { doc /* * source: item 3-1.9 radial distance * symbol(s): `r_Q`, `ρ` * application domain: generic * name: RadialDistance (specializes Length) * quantity dimension: L^1 * measurement unit(s): m * tensor order: 0 * definition: distance (item 3-1.8), where one point is located on an axis or within a closed non self-intersecting curve or surface * remarks: The subscript Q denotes the point from which the radial distance is measured. Examples of closed non self-intersecting curves are circles or ellipses. Examples of closed non self-intersecting surfaces are surfaces of spheres or egg-shaped objects. */ } attribute def Spatial3dCoordinateFrame :> '3dCoordinateFrame' { doc /* * Most general spatial 3D coordinate frame */ attribute :>> isBound = true; } attribute def CartesianSpatial3dCoordinateFrame :> Spatial3dCoordinateFrame { doc /* * Cartesian spatial 3D coordinate frame * * source: ISO 80000-2 item 2-17.1 Cartesian coordinates * * The components of a vector expressed on a Cartesian spatial coordinate frame are all LengthValues, and denoted with symbols `x`, `y`, `z`. * * Note 1: The Cartesian basis vectors `vec(e_x)`, `vec(e_y)` and `vec(e_z)` form an orthonormal right-handed coordinate frame. * Note 2: The measurement units for the 3 dimensions are typically the same, but may be different. */ attribute xUnit : LengthUnit = mRefs#(1); attribute yUnit : LengthUnit = mRefs#(2); attribute zUnit : LengthUnit = mRefs#(3); attribute :>> mRefs : LengthUnit[3]; attribute :>> isOrthogonal = true; } readonly attribute universalCartesianSpatial3dCoordinateFrame : CartesianSpatial3dCoordinateFrame[1] { doc /* * A singleton CartesianSpatial3dCoordinateFrame that can be used as a default universal Cartesian 3D coordinate frame. */ attribute :>> mRefs default (SI::m, SI::m, SI::m) { doc /* * By default, the universalCartesianSpatial3dCoordinateFrame uses meters as the units on all three axes. */ } attribute :>> transformation[0..0] { doc /* * The universalCartesianSpatial3dCoordinateFrame is the "top-level" coordinate frame, not nested in any other frame. */ } } attribute def CylindricalSpatial3dCoordinateFrame :> Spatial3dCoordinateFrame { doc /* * Cylindrical spatial 3D coordinate frame * * source: ISO 80000-2 item 2-17.2 cylindrical coordinates * * The components of a (position) vector to a point P in a cylindrical coordinate frame are: * - radialDistance (symbol `ρ`) defined by LengthValue, that is the radial distance from the cylinder axis to P * - azimuth (symbol `φ`) defined by AngularMeasure, that is the angle between the azimuth reference direction and the line segment * from the cylinder axis, in the plane that is orthogonal to the cylinder axis and intersects P * - z coordinate (symbol `z`) defined by LengthValue, the coordinate along the clyinder axis. * * Note 1: The basis vectors `vec(e_ρ)(φ)`, `vec(e_φ)(φ)` and `vec(e_z)` form an orthonormal right-handed coordinate frame, where * `vec(e_φ)` is tangent to the circular arc in the `φ` direction. * Note 2: In order to enable transformation to and from a CartesianSpatial3dCoordinateFrame the `vec(e_x)` Cartesian basis vector is aligned * with the `φ=0` direction in the cylindrical frame, and the `vec(e_z)` Cartesian basis vector is aligned with * the `vec(e_z)` cylindrical basis vector. * Note 3: If `z = 0`, then `ρ` and `φ` are polar coordinates in the XY-plane. * Note 4: See also https://en.wikipedia.org/wiki/Cylindrical_coordinate_system . */ attribute radialDistanceUnit : LengthUnit; attribute azimuthUnit : AngularMeasureUnit; attribute zUnit : LengthUnit; attribute :>> mRefs = (radialDistanceUnit, azimuthUnit, zUnit); attribute :>> isOrthogonal = true; } attribute def SphericalSpatial3dCoordinateFrame :> Spatial3dCoordinateFrame { doc /* * Spherical spatial 3D coordinate frame * * source: ISO 80000-2 item 2-17.3 spherical coordinates * * The components of a (position) vector to a point P specified in a spherical coordinate frame are: * - radialDistance (symbol `r`) defined by LengthValue, that is the distance from the origin to P * - inclination (symbol `θ`) defined by AngularMeasure, that is the angle between the zenith direction and the line segment from origin to P * - azimuth (symbol `φ`) defined by AngularMeasure, that is the angle between the azimuth reference direction and the line segment * from the origin to the orthogonal projection of P on the reference plane, normal to the zenith direction. * * Note 1: The basis vectors `vec(e_r)(θ,φ)`, `vec(e_θ)(θ,φ)` and `vec(e_φ)(φ)` form an orthonormal right-handed frame, where * `vec(e_θ)` and `vec(e_φ)` are tangent to the respective circular arcs in the `θ` and `φ` directions. * Note 2: In order to transform to and from a CartesianSpatial3dCoordinateFrame the `vec(e_x)` Cartesian basis vector is aligned * with the `θ=π/4` and `φ=0` direction in the spherical frame, and the `vec(e_z)` Cartesian basis vector is aligned * with the `θ=0` zenith direction in the spherical frame. * Note 3: If `θ = π/4`, then `ρ` and `φ` are polar coordinates in the XY-plane. * Note 4: See also https://en.wikipedia.org/wiki/Spherical_coordinate_system . */ attribute radialDistanceUnit : LengthUnit; attribute inclinationUnit : AngularMeasureUnit; attribute azimuthUnit : AngularMeasureUnit; attribute :>> mRefs = (radialDistanceUnit, inclinationUnit, azimuthUnit); attribute :>> isOrthogonal = true; } attribute def PlanetarySpatial3dCoordinateFrame :> Spatial3dCoordinateFrame { doc /* * Planetary spatial 3D coordinate frame * * A planetary spatial 3D coordinate frame is a generalization for any planet of the geographic coordinate frame and geocentric coordinate * for Earth. In such coordinate frames, typically the origin is located at the planet's centre of gravity, and the surface of the planet * is approximated by a reference ellipsoid centred on the origin, with its major axes oriented along the south to north pole vector and * the equatorial plane. * * The components of a (position) vector to a point P specified in a planetary coordinate frame are: * - latitude (symbol `lat` or `φ`) defined by AngularMeasure, that is the angle between the equatorial plane and the vector from * the origin to P, similar to the inclination in a spherical spatial coordinate frame. Typically, the zero reference latitude is chosen * for positions in the equatorial plane, with positive latitude for positions in the northern hemisphere and negative latitude for positions * in the southern hemisphere. * - longitude (symbol `long` or `λ`) defined by AngularMeasure, that is the angle between a reference meridian and the meridian * passing through P, similar to the azimuth of a spherical spatial coordinate frame. The convention is to connotate positive longitude * with eastward direction and negative longitude with westward direction. The reference meridian for `long=0` is chosen to pass * through a particular feature of the planet, e.g., for Earth typically the position of the British Royal Observatory in Greenwich, UK. * - altitude (symbol `h`) defined by LengthValue, that is the distance between P and the reference ellipsoid * in the normal direction to the ellipsoid. Positive altitude specifies a position above the reference ellipsoid surface, * while a negative value specifies a position below. * * Note 1: The reference meridian is also called prime meridian. * Note 2: The basis vectors `vec(e_φ)(φ)`, `vec(e_λ)(λ)` and `vec(e_h)(φ,λ)` form an orthonormal right-handed frame, where * `vec(e_φ)` and `vec(e_λ)` are tangent to the reference ellipsoid in the respective latitude and longitude directions, * and `vec(e_h)` is normal to the reference ellipsoid. * Note 3: In order to transform to and from a CartesianSpatial3dCoordinateFrame the `vec(e_x)` Cartesian basis vector is aligned * with the `φ=0` and `λ=0` direction in the planetary frame, and the `vec(e_z)` Cartesian basis vector is aligned * with the `λ=π/2` (north pole) direction in the planetary frame. * Note 4: See also https://en.wikipedia.org/wiki/Planetary_coordinate_system . */ attribute latitudeUnit : AngularMeasureUnit; attribute longitudeUnit : AngularMeasureUnit; attribute altitudeUnit : LengthUnit; attribute :>> mRefs = (longitudeUnit, latitudeUnit, altitudeUnit); attribute :>> isOrthogonal = true; } attribute def Position3dVector :> '3dVectorQuantityValue' { doc /* * source: item 3-1.10 position vector * symbol(s): `vec(r)` * application domain: generic * name: PositionVector * quantity dimension: L^1 * measurement unit(s): m * tensor order: 1 * definition: vector (ISO 80000-2) quantity from the origin of a coordinate system to a point in space * remarks: Position vectors are so-called bounded vectors, i.e. their magnitude (ISO 80000-2) and direction depend on the particular coordinate system used. */ attribute :>> isBound = true; attribute :>> mRef: Spatial3dCoordinateFrame[1]; } attribute position3dVector: Position3dVector :> vectorQuantities; attribute def CartesianPosition3dVector :> Position3dVector { attribute x : LengthValue = num#(1) [mRef.mRefs#(1)]; attribute y : LengthValue = num#(2) [mRef.mRefs#(2)]; attribute z : LengthValue = num#(3) [mRef.mRefs#(3)]; attribute :>> mRef : CartesianSpatial3dCoordinateFrame[1]; } attribute cartesianPosition3dVector : CartesianPosition3dVector :> position3dVector; attribute def CylindricalPosition3dVector :> Position3dVector { attribute <'ρ'> radialDistance : LengthValue = num#(1) [mRef.mRefs#(1)]; attribute <'φ'> azimuth : AngularMeasureUnit = num#(2) [mRef.mRefs#(2)]; attribute height : LengthValue = num#(3) [mRef.mRefs#(3)]; attribute :>> mRef : CylindricalSpatial3dCoordinateFrame[1]; } attribute cylindricalPosition3dVector : CylindricalPosition3dVector :> position3dVector; attribute def SphericalPosition3dVector :> Position3dVector { attribute radialDistance : LengthValue = num#(1) [mRef.mRefs#(1)]; attribute <'θ'> inclination : AngularMeasureUnit = num#(2) [mRef.mRefs#(2)]; attribute <'φ'> azimuth : AngularMeasureUnit = num#(3) [mRef.mRefs#(3)]; attribute :>> mRef : SphericalSpatial3dCoordinateFrame[1]; } attribute sphericalPosition3dVector : SphericalPosition3dVector :> position3dVector; attribute def PlanetaryPosition3dVector :> Position3dVector { attribute latitude : AngularMeasureUnit = num#(1) [mRef.mRefs#(1)]; attribute longitude : AngularMeasureUnit = num#(2) [mRef.mRefs#(2)]; attribute altitude : LengthValue = num#(3) [mRef.mRefs#(3)]; attribute :>> mRef : PlanetarySpatial3dCoordinateFrame[1]; } attribute planetaryPosition3dVector : PlanetaryPosition3dVector :> position3dVector; /* ISO-80000-3 item 3-1.11 displacement */ abstract attribute def Displacement3dVector :> '3dVectorQuantityValue' { doc /* * source: item 3-1.11 displacement * symbol(s): `vec(Δr)` * application domain: generic * name: Displacement * quantity dimension: L^1 * measurement unit(s): m * tensor order: 1 * definition: vector (ISO 80000-2) quantity between any two points in space * remarks: Displacement vectors are so-called free vectors, i.e. their magnitude (ISO 80000-2) and direction do not depend on a particular coordinate system. The magnitude of this vector is also called displacement. */ attribute :>> isBound = false; attribute :>> mRef: Spatial3dCoordinateFrame[1]; } attribute displacement3dVector: Displacement3dVector :> vectorQuantities; attribute def CartesianDisplacement3dVector :> Displacement3dVector { attribute x : LengthValue = num#(1) [mRef.mRefs#(1)]; attribute y : LengthValue = num#(2) [mRef.mRefs#(2)]; attribute z : LengthValue = num#(3) [mRef.mRefs#(3)]; attribute :>> mRef: CartesianSpatial3dCoordinateFrame[1]; } attribute cartesianDisplacement3dVector: CartesianDisplacement3dVector :> displacement3dVector; attribute def CylindricalDisplacement3dVector :> Displacement3dVector { attribute <'ρ'> radialDistance : LengthValue = num#(1) [mRef.mRefs#(1)]; attribute <'φ'> azimuth : AngularMeasureUnit = num#(2) [mRef.mRefs#(2)]; attribute height : LengthValue = num#(3) [mRef.mRefs#(3)]; attribute :>> mRef: CylindricalSpatial3dCoordinateFrame[1]; } attribute cylindricalDisplacement3dVector: CylindricalDisplacement3dVector :> displacement3dVector; attribute def SphericalDisplacement3dVector :> Displacement3dVector { attribute radialDistance : LengthValue = num#(1) [mRef.mRefs#(1)]; attribute <'θ'> inclination : AngularMeasureUnit = num#(2) [mRef.mRefs#(2)]; attribute <'φ'> azimuth : AngularMeasureUnit = num#(3) [mRef.mRefs#(3)]; attribute :>> mRef: SphericalSpatial3dCoordinateFrame[1]; } attribute sphericalDisplacement3dVector: SphericalDisplacement3dVector :> displacement3dVector; /* ISO-80000-3 item 3-1.12 radius of curvature */ attribute radiusOfCurvature: LengthValue :> scalarQuantities { doc /* * source: item 3-1.12 radius of curvature * symbol(s): `ρ` * application domain: generic * name: RadiusOfCurvature (specializes Length) * quantity dimension: L^1 * measurement unit(s): m * tensor order: 0 * definition: radius (item 3-1.6) of the osculating circle of a planar curve at a particular point of the curve * remarks: The radius of curvature is only defined for curves which are at least twice continuously differentiable. */ } /* ISO-80000-3 item 3-2 curvature */ attribute def CurvatureValue :> ScalarQuantityValue { doc /* * source: item 3-2 curvature * symbol(s): `κ` * application domain: generic * name: Curvature * quantity dimension: L^-1 * measurement unit(s): m^-1 * tensor order: 0 * definition: inverse of the radius of curvature (item 3-1.12) * remarks: The curvature is given by: `κ = 1/ρ` where `ρ` denotes the radius of curvature (item 3-1.12). */ attribute :>> num: Real; attribute :>> mRef: CurvatureUnit[1]; } attribute curvature: CurvatureValue[*] nonunique :> scalarQuantities; attribute def CurvatureUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; } attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; } } /* ISO-80000-3 item 3-3 area */ attribute def AreaValue :> ScalarQuantityValue { doc /* * source: item 3-3 area * symbol(s): `A`, `S` * application domain: generic * name: Area * quantity dimension: L^2 * measurement unit(s): m^2 * tensor order: 0 * definition: extent of a two-dimensional geometrical shape * remarks: The surface element at a given point of a surface is given by: `dA = g du dv` where `u` and `v` denote the Gaussian surface coordinates and `g` denotes the determinant of the metric tensor (ISO 80000-2) at the particular point. The symbol `dσ` is also used for the surface element. */ attribute :>> num: Real; attribute :>> mRef: AreaUnit[1]; } attribute area: AreaValue[*] nonunique :> scalarQuantities; attribute def AreaUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; } attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; } } /* ISO-80000-3 item 3-4 volume */ attribute def VolumeValue :> ScalarQuantityValue { doc /* * source: item 3-4 volume * symbol(s): `V`, `(S)` * application domain: generic * name: Volume * quantity dimension: L^3 * measurement unit(s): m^3 * tensor order: 0 * definition: extent of a three-dimensional geometrical shape * remarks: The volume element in Euclidean space is given by: `dV = dx dy dz` where `dx`, `dy`, and `dz` denote the differentials of the Cartesian coordinates (ISO 80000-2). The symbol `dτ` is also used for the volume element. */ attribute :>> num: Real; attribute :>> mRef: VolumeUnit[1]; } attribute volume: VolumeValue[*] nonunique :> scalarQuantities; attribute def VolumeUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 3; } attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; } } /* ISO-80000-3 item 3-5 angular measure, plane angle */ attribute def AngularMeasureValue :> ScalarQuantityValue { doc /* * source: item 3-5 angular measure, plane angle * symbol(s): `α`, `β`, `γ` * application domain: generic * name: AngularMeasure * quantity dimension: 1 * measurement unit(s): rad, 1 * tensor order: 0 * definition: measure of a geometric figure, called plane angle, formed by two rays, called the sides of the plane angle, emanating from a common point, called the vertex of the plane angle * remarks: The angular measure is given by: `α = s/r` where `s` denotes the arc length (item 3-1.7) of the included arc of a circle, centred at the vertex of the plane angle, and `r` the radius (item 3-1.6) of that circle. Other symbols are also used. */ attribute :>> num: Real; attribute :>> mRef: AngularMeasureUnit[1]; } attribute angularMeasure: AngularMeasureValue[*] nonunique :> scalarQuantities; attribute def AngularMeasureUnit :> DimensionOneUnit { } alias PlaneAngleUnit for AngularMeasureUnit; alias PlaneAngleValue for AngularMeasureValue; alias planeAngle for angularMeasure; /* ISO-80000-3 item 3-6 rotational displacement, angular displacement */ attribute rotationalDisplacement: AngularMeasureValue :> scalarQuantities { doc /* * source: item 3-6 rotational displacement, angular displacement * symbol(s): `ϑ`, `φ` * application domain: generic * name: RotationalDisplacement (specializes AngularMeasure) * quantity dimension: 1 * measurement unit(s): rad, 1 * tensor order: 0 * definition: quotient of the traversed circular path length (item 3-1.7) of a point in space during a rotation and its distance (item 3-1.8) from the axis or centre of rotation * remarks: The rotational displacement is given by: `φ = s/r` where `s` denotes the traversed path length (item 3-1.7) along the periphery of a circle, centred at the vertex of the plane angle, and `r` the radius (item 3-1.6) of that circle. The rotational displacement is signed. The sign denotes the direction of rotation and is chosen by convention. Other symbols are also used. */ } alias angularDisplacement for rotationalDisplacement; /* ISO-80000-3 item 3-7 phase angle */ attribute phaseAngle: AngularMeasureValue :> scalarQuantities { doc /* * source: item 3-7 phase angle * symbol(s): `φ`, `ϕ` * application domain: generic * name: PhaseAngle (specializes AngularMeasure) * quantity dimension: 1 * measurement unit(s): rad, 1 * tensor order: 0 * definition: angular measure (item 3-5) between the positive real axis and the radius of the polar representation of the complex number in the complex plane * remarks: The phase angle (often imprecisely referred to as the "phase") is the argument of a complex number. Other symbols are also used. */ } /* ISO-80000-3 item 3-8 solid angular measure */ attribute def SolidAngularMeasureValue :> ScalarQuantityValue { doc /* * source: item 3-8 solid angular measure * symbol(s): `Ω` * application domain: generic * name: SolidAngularMeasure * quantity dimension: 1 * measurement unit(s): sr, 1 * tensor order: 0 * definition: measure of a conical geometric figure, called solid angle, formed by all rays, originating from a common point, called the vertex of the solid angle, and passing through the points of a closed, non-self-intersecting curve in space considered as the border of a surface * remarks: The differential solid angular measure expressed in spherical coordinates (ISO 80000-2) is given by: `dΩ = A/r^2 * sin(θ * dθ * dφ)` where `A` is area, `r` is radius, `θ` and `φ` are spherical coordinates. */ attribute :>> num: Real; attribute :>> mRef: SolidAngularMeasureUnit[1]; } attribute solidAngularMeasure: SolidAngularMeasureValue[*] nonunique :> scalarQuantities; attribute def SolidAngularMeasureUnit :> DimensionOneUnit { } /* ISO-80000-3 item 3-9 duration, time */ /* See package ISQBase for the declarations of DurationValue and DurationUnit */ alias TimeUnit for DurationUnit; alias TimeValue for DurationValue; alias time for duration; /* ISO-80000-3 item 3-10.1 velocity */ attribute def CartesianVelocity3dVector :> '3dVectorQuantityValue' { doc /* * source: item 3-10.1 velocity * symbol(s): `vec(v)`, `u,v,w` * application domain: generic * name: Velocity * quantity dimension: L^1*T^-1 * measurement unit(s): m/s, m*s^-1 * tensor order: 1 * definition: vector (ISO 80000-2) quantity giving the rate of change of a position vector (item 3-1.10) * remarks: The velocity vector is given by: `vec(v) = (d vec(r)) / (dt)` where `vec(r)` denotes the position vector (item 3-1.10) and `t` the duration (item 3-9). When the general symbol `vec(v)` is not used for the velocity, the symbols `u`, `v`, `w` may be used for the components (ISO 80000-2) of the velocity. */ attribute :>> isBound = false; attribute :>> mRef: CartesianVelocity3dCoordinateFrame[1]; } attribute cartesianVelocity3dVector: CartesianVelocity3dVector :> vectorQuantities; attribute def CartesianVelocity3dCoordinateFrame :> '3dCoordinateFrame' { attribute :>> isBound = false; attribute :>> isOrthogonal = true; attribute :>> mRefs: SpeedUnit[3]; } /* ISO-80000-3 item 3-10.2 speed */ attribute def SpeedValue :> ScalarQuantityValue { doc /* * source: item 3-10.2 speed * symbol(s): `v` * application domain: generic * name: Speed * quantity dimension: L^1*T^-1 * measurement unit(s): m/s, m*s^-1 * tensor order: 0 * definition: magnitude (ISO 80000-2) of the velocity (item 3-10.1) * remarks: None. */ attribute :>> num: Real; attribute :>> mRef: SpeedUnit[1]; } attribute speed: SpeedValue[*] nonunique :> scalarQuantities; attribute def SpeedUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF); } } /* ISO-80000-3 item 3-11 acceleration */ attribute def AccelerationValue :> ScalarQuantityValue { doc /* * source: item 3-11 acceleration (magnitude) * symbol(s): `a` * application domain: generic * name: Acceleration * quantity dimension: L^1*T^-2 * measurement unit(s): m*s^-2 * tensor order: 0 * definition: vector (ISO 80000-2) quantity giving the rate of change of velocity (item 3-10) * remarks: The acceleration vector is given by: `vec(a) = (d vec(v))/(dt)` where `vec(v)` denotes the velocity (item 3-10.1) and `t` the duration (item 3-9). The magnitude (ISO 80000-2) of the acceleration of free fall is usually denoted by `g`. */ attribute :>> num: Real; attribute :>> mRef: AccelerationUnit[1]; } attribute acceleration: AccelerationValue[*] nonunique :> scalarQuantities; attribute def AccelerationUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF); } } attribute def CartesianAcceleration3dVector :> '3dVectorQuantityValue' { doc /* * source: item 3-11 acceleration (vector) * symbol(s): `vec(a)` * application domain: generic * name: Acceleration * quantity dimension: L^1*T^-2 * measurement unit(s): m*s^-2 * tensor order: 1 * definition: vector (ISO 80000-2) quantity giving the rate of change of velocity (item 3-10) * remarks: The acceleration vector is given by: `vec(a) = (d vec(v))/(dt)` where `vec(v)` denotes the velocity (item 3-10.1) and `t` the duration (item 3-9). The magnitude (ISO 80000-2) of the acceleration of free fall is usually denoted by `g`. */ attribute :>> isBound = false; attribute :>> mRef: CartesianAcceleration3dCoordinateFrame[1]; } attribute cartesianAcceleration3dVector: CartesianAcceleration3dVector :> vectorQuantities; attribute def CartesianAcceleration3dCoordinateFrame :> VectorMeasurementReference { attribute :>> dimensions = 3; attribute :>> isBound = false; attribute :>> isOrthogonal = true; attribute :>> mRefs: AccelerationUnit[3]; } /* ISO-80000-3 item 3-12 angular velocity */ attribute def AngularVelocityValue :> ScalarQuantityValue { doc /* * source: item 3-12 angular velocity (magnitude) * symbol(s): `ω` * application domain: generic * name: AngularVelocity * quantity dimension: T^-1 * measurement unit(s): rad*s^-1, s^-1 * tensor order: 0 * definition: vector (ISO 80000-2) quantity giving the rate of change of the rotational displacement (item 3-6) as its magnitude (ISO 80000-2) and with a direction equal to the direction of the axis of rotation * remarks: The angular velocity vector is given by: `vec(ω) = (d φ) / (dt) vec(u)` where `φ` denotes the angular displacement (item 3-6), `t` the duration (item 3-9), and `vec(u)` the unit vector (ISO 80000-2) along the axis of rotation in the direction for which the rotation corresponds to a right-hand spiral. */ attribute :>> num: Real; attribute :>> mRef: AngularVelocityUnit[1]; } attribute angularVelocity: AngularVelocityValue[*] nonunique :> scalarQuantities; attribute def AngularVelocityUnit :> DerivedUnit { private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; } attribute :>> quantityDimension { :>> quantityPowerFactors = durationPF; } } attribute def Cartesian3dAngularVelocityVector :> VectorQuantityValue { doc /* * source: item 3-12 angular velocity (vector) * symbol(s): `vec(ω)` * application domain: generic * name: AngularVelocity * quantity dimension: T^-1 * measurement unit(s): rad*s^-1, s^-1 * tensor order: 1 * definition: vector (ISO 80000-2) quantity giving the rate of change of the rotational displacement (item 3-6) as its magnitude (ISO 80000-2) and with a direction equal to the direction of the axis of rotation * remarks: The angular velocity vector is given by: `vec(ω) = (d φ) / (dt) vec(u)` where `φ` denotes the angular displacement (item 3-6), `t` the duration (item 3-9), and `vec(u)` the unit vector (ISO 80000-2) along the axis of rotation in the direction for which the rotation corresponds to a right-hand spiral. */ attribute :>> isBound = false; attribute :>> num: Real[3]; attribute :>> mRef: Cartesian3dAngularVelocityCoordinateFrame[1]; } attribute angularVelocityVector: Cartesian3dAngularVelocityVector :> vectorQuantities; attribute def Cartesian3dAngularVelocityCoordinateFrame :> VectorMeasurementReference { attribute :>> dimensions = 3; attribute :>> isBound = false; attribute :>> isOrthogonal = true; attribute :>> mRefs: AngularVelocityUnit[3]; } /* ISO-80000-3 item 3-13 angular acceleration */ attribute def AngularAccelerationValue :> ScalarQuantityValue { doc /* * source: item 3-13 angular acceleration (magnitude) * symbol(s): `α` * application domain: generic * name: AngularAcceleration * quantity dimension: T^-2 * measurement unit(s): rad*s^-2, s^-2 * tensor order: 0 * definition: vector (ISO 80000-2) quantity giving the rate of change of angular velocity (item 3-12) * remarks: The angular acceleration vector is given by: `vec α = (d vec(ω))/(dt)` Where `vec(ω)` denotes the angular velocity (item 3-12) and `t` the duration (item 3-9). */ attribute :>> num: Real; attribute :>> mRef: AngularAccelerationUnit[1]; } attribute angularAcceleration: AngularAccelerationValue[*] nonunique :> scalarQuantities; attribute def AngularAccelerationUnit :> DerivedUnit { private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; } attribute :>> quantityDimension { :>> quantityPowerFactors = durationPF; } } attribute def Cartesian3dAngularAccelerationVector :> VectorQuantityValue { doc /* * source: item 3-13 angular acceleration (vector) * symbol(s): `vec(α)` * application domain: generic * name: AngularAcceleration * quantity dimension: T^-2 * measurement unit(s): rad*s^-2, s^-2 * tensor order: 1 * definition: vector (ISO 80000-2) quantity giving the rate of change of angular velocity (item 3-12) * remarks: The angular acceleration vector is given by: `vec α = (d vec(ω))/(dt)` Where `vec(ω)` denotes the angular velocity (item 3-12) and `t` the duration (item 3-9). */ attribute :>> isBound = false; attribute :>> num: Real[3]; attribute :>> mRef: Cartesian3dAngularAccelerationCoordinateFrame[1]; } attribute angularAccelerationVector: Cartesian3dAngularAccelerationVector :> vectorQuantities; attribute def Cartesian3dAngularAccelerationCoordinateFrame :> VectorMeasurementReference { attribute :>> dimensions = 3; attribute :>> isBound = false; attribute :>> isOrthogonal = true; attribute :>> mRefs: AngularAccelerationUnit[3]; } /* ISO-80000-3 item 3-14 period duration, period */ attribute periodDuration: DurationValue :> scalarQuantities { doc /* * source: item 3-14 period duration, period * symbol(s): `T` * application domain: generic * name: PeriodDuration (specializes Duration) * quantity dimension: T^1 * measurement unit(s): s * tensor order: 0 * definition: duration (item 3-9) of one cycle of a periodic event * remarks: A periodic event is an event that occurs regularly with a fixed time interval. */ } alias period for periodDuration; /* ISO-80000-3 item 3-15 time constant */ attribute timeConstant: DurationValue :> scalarQuantities { doc /* * source: item 3-15 time constant * symbol(s): `τ`, `T` * application domain: generic * name: TimeConstant (specializes Duration) * quantity dimension: T^1 * measurement unit(s): s * tensor order: 0 * definition: parameter characterizing the response to a step input of a first-order, linear time-invariant system * remarks: If a quantity is a function of the duration (item 3-9) expressed by: `F(t) prop e^(-t/τ)` where `t` denotes the duration (item 3-9), then `τ` denotes the time constant. Here the time constant `τ` applies to an exponentially decaying quantity. */ } /* ISO-80000-3 item 3-16 rotation */ attribute rotation: CountValue :> scalarQuantities { doc /* * source: item 3-16 rotation * symbol(s): `N` * application domain: generic * name: Rotation (specializes Count) * quantity dimension: 1 * measurement unit(s): 1 * tensor order: 0 * definition: number of revolutions * remarks: `N` is the number (not necessarily an integer) of revolutions, for example, of a rotating body about a given axis. Its value is given by: `N = φ/(2 π)` where `φ` denotes the measure of rotational displacement (item 3-6). */ } /* ISO-80000-3 item 3-17.1 frequency */ attribute def FrequencyValue :> ScalarQuantityValue { doc /* * source: item 3-17.1 frequency * symbol(s): `f`, `ν` * application domain: generic * name: Frequency * quantity dimension: T^-1 * measurement unit(s): Hz, s^-1 * tensor order: 0 * definition: inverse of period duration (item 3-14) * remarks: The frequency is given by: `f = 1/T` where `T` denotes the period duration (item 3-14). */ attribute :>> num: Real; attribute :>> mRef: FrequencyUnit[1]; } attribute frequency: FrequencyValue[*] nonunique :> scalarQuantities; attribute def FrequencyUnit :> DerivedUnit { private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; } attribute :>> quantityDimension { :>> quantityPowerFactors = durationPF; } } /* ISO-80000-3 item 3-17.2 rotational frequency */ attribute rotationalFrequency: FrequencyValue :> scalarQuantities { doc /* * source: item 3-17.2 rotational frequency * symbol(s): `n` * application domain: generic * name: RotationalFrequency (specializes Frequency) * quantity dimension: T^-1 * measurement unit(s): s^-1 * tensor order: 0 * definition: duration (item 3-9) of one cycle of a periodic event * remarks: The rotational frequency is given by: `n = (dN) / (dt)` where `N` denotes the rotation (item 3-16) and `t` is the duration (item 3-9). */ } /* ISO-80000-3 item 3-18 angular frequency */ attribute def AngularFrequencyValue :> ScalarQuantityValue { doc /* * source: item 3-18 angular frequency * symbol(s): `ω` * application domain: generic * name: AngularFrequency * quantity dimension: T^-1 * measurement unit(s): rad*s^-1, s^-1 * tensor order: 0 * definition: rate of change of the phase angle (item 3-7) * remarks: The angular frequency is given by: `ω = 2 π f` where `f` denotes the frequency (item 3-17.1). */ attribute :>> num: Real; attribute :>> mRef: AngularFrequencyUnit[1]; } attribute angularFrequency: AngularFrequencyValue[*] nonunique :> scalarQuantities; attribute def AngularFrequencyUnit :> DerivedUnit { private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; } attribute :>> quantityDimension { :>> quantityPowerFactors = durationPF; } } /* ISO-80000-3 item 3-19 wavelength */ attribute wavelength: LengthValue :> scalarQuantities { doc /* * source: item 3-19 wavelength * symbol(s): `λ` * application domain: generic * name: Wavelength (specializes Length) * quantity dimension: L^1 * measurement unit(s): m * tensor order: 0 * definition: length (item 3-1.1) of the repetition interval of a wave * remarks: None. */ } /* ISO-80000-3 item 3-20 repetency, wavenumber */ attribute def RepetencyValue :> ScalarQuantityValue { doc /* * source: item 3-20 repetency, wavenumber * symbol(s): `σ`, `ṽ` * application domain: generic * name: Repetency * quantity dimension: L^-1 * measurement unit(s): m^-1 * tensor order: 0 * definition: inverse of the wavelength (item 3-19) * remarks: The repetency is given by: `σ = 1 / λ` where `λ` denotes the wavelength (item 3-19). */ attribute :>> num: Real; attribute :>> mRef: RepetencyUnit[1]; } attribute repetency: RepetencyValue[*] nonunique :> scalarQuantities; attribute def RepetencyUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; } attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; } } alias WavenumberUnit for RepetencyUnit; alias WavenumberValue for RepetencyValue; alias wavenumber for repetency; /* ISO-80000-3 item 3-21 wave vector */ attribute def Cartesian3dWaveVector :> VectorQuantityValue { doc /* * source: item 3-21 wave vector * symbol(s): `vec(k)` * application domain: generic * name: WaveVector * quantity dimension: L^-1 * measurement unit(s): m^-1 * tensor order: 1 * definition: vector normal to the surfaces of constant phase angle (item 3-7) of a wave, with the magnitude (ISO 80000-2) of repetency (item 3-20) * remarks: None. */ attribute :>> isBound = false; attribute :>> num: Real[3]; attribute :>> mRef: Cartesian3dWaveCoordinateFrame[1]; } attribute waveVector: Cartesian3dWaveVector :> vectorQuantities; attribute def Cartesian3dWaveCoordinateFrame :> VectorMeasurementReference { attribute :>> dimensions = 3; attribute :>> isBound = false; attribute :>> isOrthogonal = true; attribute :>> mRefs: RepetencyUnit[3]; } /* ISO-80000-3 item 3-22 angular repetency, angular wavenumber */ attribute def AngularRepetencyValue :> ScalarQuantityValue { doc /* * source: item 3-22 angular repetency, angular wavenumber * symbol(s): `k` * application domain: generic * name: AngularRepetency * quantity dimension: L^-1 * measurement unit(s): m^-1 * tensor order: 0 * definition: magnitude (ISO 80000-2) of the wave vector (item 3-21) * remarks: The angular repetency is given by: `κ = (2 π)/λ` where `λ` denotes the wavelength (item 3-19). */ attribute :>> num: Real; attribute :>> mRef: AngularRepetencyUnit[1]; } attribute angularRepetency: AngularRepetencyValue[*] nonunique :> scalarQuantities; attribute def AngularRepetencyUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; } attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; } } alias AngularWavenumberUnit for AngularRepetencyUnit; alias AngularWavenumberValue for AngularRepetencyValue; alias angularWavenumber for angularRepetency; /* ISO-80000-3 item 3-23.1 phase velocity, phase speed */ attribute def PhaseVelocityValue :> ScalarQuantityValue { doc /* * source: item 3-23.1 phase velocity, phase speed * symbol(s): `c`, `v`, `(ν)`, `c_φ`, `v_φ`, `(ν_φ)` * application domain: generic * name: PhaseVelocity * quantity dimension: L^1*T^-1 * measurement unit(s): m*s^-1 * tensor order: 0 * definition: speed with which the phase angle (item 3-7) of a wave propagates in space * remarks: The phase velocity is given by: `c = ω/κ` where `ω` denotes the angular frequency (item 3-18) and `k` the angular repetency (item 3-22). If phase velocities of electromagnetic waves and other phase velocities are both involved, then `c` should be used for the former and `υ` for the latter. Phase velocity can also be written as `c = λ f`. */ attribute :>> num: Real; attribute :>> mRef: PhaseVelocityUnit[1]; } attribute phaseVelocity: PhaseVelocityValue[*] nonunique :> scalarQuantities; attribute def PhaseVelocityUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF); } } alias PhaseSpeedUnit for PhaseVelocityUnit; alias PhaseSpeedValue for PhaseVelocityValue; alias phaseSpeed for phaseVelocity; /* ISO-80000-3 item 3-23.2 group velocity, group speed */ attribute groupVelocity: SpeedValue :> scalarQuantities { doc /* * source: item 3-23.2 group velocity, group speed * symbol(s): `c_g`, `v_g`, `(ν_g)` * application domain: generic * name: GroupVelocity (specializes Speed) * quantity dimension: L^1*T^-1 * measurement unit(s): m*s^-1 * tensor order: 0 * definition: speed with which the envelope of a wave propagates in space * remarks: The group velocity is given by: `c_g = (d ω)/ (dk)` where `ω` denotes the angular frequency (item 3-18) and `k` the angular repetency (item 3-22). */ } alias groupSpeed for groupVelocity; /* ISO-80000-3 item 3-24 damping coefficient */ attribute def DampingCoefficientValue :> ScalarQuantityValue { doc /* * source: item 3-24 damping coefficient * symbol(s): `δ` * application domain: generic * name: DampingCoefficient * quantity dimension: T^-1 * measurement unit(s): s^-1 * tensor order: 0 * definition: inverse of the time constant (item 3-15) of an exponentially varying quantity * remarks: None. */ attribute :>> num: Real; attribute :>> mRef: DampingCoefficientUnit[1]; } attribute dampingCoefficient: DampingCoefficientValue[*] nonunique :> scalarQuantities; attribute def DampingCoefficientUnit :> DerivedUnit { private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; } attribute :>> quantityDimension { :>> quantityPowerFactors = durationPF; } } /* ISO-80000-3 item 3-25 logarithmic decrement */ attribute def LogarithmicDecrementValue :> DimensionOneValue { doc /* * source: item 3-25 logarithmic decrement * symbol(s): `Λ` * application domain: generic * name: LogarithmicDecrement (specializes DimensionOneQuantity) * quantity dimension: 1 * measurement unit(s): 1 * tensor order: 0 * definition: product of damping coefficient (item 3-24) and period duration (item 3-14) * remarks: None. */ } attribute logarithmicDecrement: LogarithmicDecrementValue :> scalarQuantities; /* ISO-80000-3 item 3-26.1 attenuation, extinction */ attribute def AttenuationValue :> ScalarQuantityValue { doc /* * source: item 3-26.1 attenuation, extinction * symbol(s): `α` * application domain: generic * name: Attenuation * quantity dimension: L^-1 * measurement unit(s): m^-1 * tensor order: 0 * definition: gradual decrease in magnitude (ISO 80000-2) of any kind of flux through a medium * remarks: If a quantity is a function of distance (item 3-1.8) expressed by: `f(x) prop e^(-α x)` where `x` denotes distance (item 3-1.8), then `α` denotes attenuation. The inverse of attenuation is called attenuation length. */ attribute :>> num: Real; attribute :>> mRef: AttenuationUnit[1]; } attribute attenuation: AttenuationValue[*] nonunique :> scalarQuantities; attribute def AttenuationUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; } attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; } } alias ExtinctionUnit for AttenuationUnit; alias ExtinctionValue for AttenuationValue; alias extinction for attenuation; /* ISO-80000-3 item 3-26.2 phase coefficient */ attribute def PhaseCoefficientValue :> ScalarQuantityValue { doc /* * source: item 3-26.2 phase coefficient * symbol(s): `β` * application domain: generic * name: PhaseCoefficient * quantity dimension: L^-1 * measurement unit(s): rad/m, m^-1 * tensor order: 0 * definition: change of phase angle (item 3-7) with the length (item 3-1.1) along the path travelled by a plane wave * remarks: If a quantity is a function of distance expressed by: `f(x) prop cos(β(x-x_0))` where `x` denotes distance (item 3-1.8), then `β` denotes the phase coefficient. */ attribute :>> num: Real; attribute :>> mRef: PhaseCoefficientUnit[1]; } attribute phaseCoefficient: PhaseCoefficientValue[*] nonunique :> scalarQuantities; attribute def PhaseCoefficientUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; } attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; } } /* ISO-80000-3 item 3-26.3 propagation coefficient */ attribute def PropagationCoefficientValue :> ScalarQuantityValue { doc /* * source: item 3-26.3 propagation coefficient * symbol(s): `γ` * application domain: generic * name: PropagationCoefficient * quantity dimension: L^-1 * measurement unit(s): m^-1 * tensor order: 0 * definition: measure of the change of amplitude and phase angle (item 3-7) of a plane wave propagating in a given direction * remarks: The propagation coefficient is given by: `γ = α + iβ` where `α` denotes attenuation (item 3-26.1) and `β` the phase coefficient (item 3-26.2) of a plane wave. */ attribute :>> num: Real; attribute :>> mRef: PropagationCoefficientUnit[1]; } attribute propagationCoefficient: PropagationCoefficientValue[*] nonunique :> scalarQuantities; attribute def PropagationCoefficientUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; } attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; } } }