standard library package ISQThermodynamics { doc /* * International System of Quantities and Units * Generated on 2022-08-07T14:44:27Z from standard ISO-80000-5:2019 "Thermodynamics" * see also https://www.iso.org/obp/ui/#iso:std:iso:80000:-5:ed-2:v1:en * * Note 1: In documentation comments, AsciiMath notation (see http://asciimath.org/) is used for mathematical concepts, * with Greek letters in Unicode encoding. In running text, AsciiMath is placed between backticks. * Note 2: For vector and tensor quantities currently the unit and quantity value type for their (scalar) magnitude is * defined, as well as their typical Cartesian 3d VectorMeasurementReference (i.e. coordinate system) * or TensorMeasurementReference. */ private import ScalarValues::Real; private import Quantities::*; private import MeasurementReferences::*; private import ISQBase::*; /* Quantity definitions referenced from other ISQ packages */ /* ISO-80000-5 item 5-1 thermodynamic temperature, temperature */ /* See package ISQBase for the declarations of ThermodynamicTemperatureValue and ThermodynamicTemperatureUnit */ alias TemperatureUnit for ThermodynamicTemperatureUnit; alias TemperatureValue for ThermodynamicTemperatureValue; alias temperature for thermodynamicTemperature; /* ISO-80000-5 item 5-2 Celsius temperature */ attribute def CelsiusTemperatureValue :> ScalarQuantityValue { doc /* * source: item 5-2 Celsius temperature * symbol(s): `t`, `θ` * application domain: generic * name: CelsiusTemperature * quantity dimension: Θ^1 * measurement unit(s): °C * tensor order: 0 * definition: temperature difference from the thermodynamic temperature of the ice point is called the Celsius temperature t, which is defined by the quantity equation: `t = T - T_0` where `T` is thermodynamic temperature (item 5-1) and `T_0 = 273,15 K` * remarks: The unit degree Celsius is a special name for the kelvin for use in stating values of Celsius temperature. The unit degree Celsius is by definition equal in magnitude to the kelvin. A difference or interval of temperature may be expressed in kelvin or in degrees Celsius. The thermodynamic temperature `T_0` is 0,01 K below the thermodynamic temperature of the triple point of water. The symbol °C for the degree Celsius shall be preceded by a space (see ISO 80000-1). Prefixes are not allowed in combination with the unit °C. */ attribute :>> num: Real; attribute :>> mRef: CelsiusTemperatureUnit[1]; } attribute celsiusTemperature: CelsiusTemperatureValue[*] nonunique :> scalarQuantities; attribute def CelsiusTemperatureUnit :> DerivedUnit { private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = 1; } attribute :>> quantityDimension { :>> quantityPowerFactors = thermodynamicTemperaturePF; } } /* ISO-80000-5 item 5-3.1 linear expansion coefficient */ attribute def LinearExpansionCoefficientValue :> ScalarQuantityValue { doc /* * source: item 5-3.1 linear expansion coefficient * symbol(s): `α_l` * application domain: generic * name: LinearExpansionCoefficient * quantity dimension: Θ^-1 * measurement unit(s): K^-1 * tensor order: 0 * definition: relative change of length with temperature: `α_l = 1/l * (dl)/(dT)` where l is length (ISO 80000-3) and `T` is thermodynamic temperature (item 5-1) * remarks: The subscripts in the symbols may be omitted when there is no risk of confusion. */ attribute :>> num: Real; attribute :>> mRef: LinearExpansionCoefficientUnit[1]; } attribute linearExpansionCoefficient: LinearExpansionCoefficientValue[*] nonunique :> scalarQuantities; attribute def LinearExpansionCoefficientUnit :> DerivedUnit { private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; } attribute :>> quantityDimension { :>> quantityPowerFactors = thermodynamicTemperaturePF; } } /* ISO-80000-5 item 5-3.2 cubic expansion coefficient */ attribute def CubicExpansionCoefficientValue :> ScalarQuantityValue { doc /* * source: item 5-3.2 cubic expansion coefficient * symbol(s): `α_V`, `γ` * application domain: generic * name: CubicExpansionCoefficient * quantity dimension: Θ^-1 * measurement unit(s): K^-1 * tensor order: 0 * definition: relative change of volume with temperature: `α_V = 1/V * (dV)/(dT)` where `V` is volume (ISO 80000-3) and `T` is thermodynamic temperature (item 5-1) * remarks: Also called volumetric expansion coefficient. The subscripts in the symbols may be omitted when there is no risk of confusion. */ attribute :>> num: Real; attribute :>> mRef: CubicExpansionCoefficientUnit[1]; } attribute cubicExpansionCoefficient: CubicExpansionCoefficientValue[*] nonunique :> scalarQuantities; attribute def CubicExpansionCoefficientUnit :> DerivedUnit { private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; } attribute :>> quantityDimension { :>> quantityPowerFactors = thermodynamicTemperaturePF; } } /* ISO-80000-5 item 5-3.3 relative pressure coefficient */ attribute def RelativePressureCoefficientValue :> ScalarQuantityValue { doc /* * source: item 5-3.3 relative pressure coefficient * symbol(s): `α_p` * application domain: generic * name: RelativePressureCoefficient * quantity dimension: Θ^-1 * measurement unit(s): K^-1 * tensor order: 0 * definition: relative change of pressure with temperature at constant volume: `α_p = 1/p * ((partial p)/(partial T))_V` where `p` is pressure (ISO 80000-4), `T` is thermodynamic temperature (item 5-1), and `V` is volume (ISO 80000-3) * remarks: The subscripts in the symbols may be omitted when there is no risk of confusion. */ attribute :>> num: Real; attribute :>> mRef: RelativePressureCoefficientUnit[1]; } attribute relativePressureCoefficient: RelativePressureCoefficientValue[*] nonunique :> scalarQuantities; attribute def RelativePressureCoefficientUnit :> DerivedUnit { private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; } attribute :>> quantityDimension { :>> quantityPowerFactors = thermodynamicTemperaturePF; } } /* ISO-80000-5 item 5-4 pressure coefficient */ attribute def PressureCoefficientValue :> ScalarQuantityValue { doc /* * source: item 5-4 pressure coefficient * symbol(s): `β` * application domain: generic * name: PressureCoefficient * quantity dimension: L^-1*M^1*T^-2*Θ^-1 * measurement unit(s): Pa/K, kg*m^-1*s^-2*K^-1 * tensor order: 0 * definition: change of pressure with temperature at constant volume: `β = ((partial p)/(partial T))_V` where `p` is pressure (ISO 80000-4), `T` is thermodynamic temperature (item 5-1), and `V` is volume (ISO 80000-3) * remarks: None. */ attribute :>> num: Real; attribute :>> mRef: PressureCoefficientUnit[1]; } attribute pressureCoefficient: PressureCoefficientValue[*] nonunique :> scalarQuantities; attribute def PressureCoefficientUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; } private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, thermodynamicTemperaturePF); } } /* ISO-80000-5 item 5-5.1 isothermal compressibility */ attribute def IsothermalCompressibilityValue :> ScalarQuantityValue { doc /* * source: item 5-5.1 isothermal compressibility * symbol(s): `ϰ_T` * application domain: generic * name: IsothermalCompressibility * quantity dimension: L^1*M^-1*T^2 * measurement unit(s): Pa^-1, kg^-1*m*s^2 * tensor order: 0 * definition: negative relative change of volume with pressure at constant temperature: `ϰ_T = -1/V * ((partial V)/(partial p))_T` where `V` is volume (ISO 80000-3), `p` is pressure (ISO 80000-4), and `T` is thermodynamic temperature (item 5-1) * remarks: The subscripts in the symbols may be omitted when there is no risk of confusion. */ attribute :>> num: Real; attribute :>> mRef: IsothermalCompressibilityUnit[1]; } attribute isothermalCompressibility: IsothermalCompressibilityValue[*] nonunique :> scalarQuantities; attribute def IsothermalCompressibilityUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 1; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 2; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); } } /* ISO-80000-5 item 5-5.2 isentropic compressibility */ attribute def IsentropicCompressibilityValue :> ScalarQuantityValue { doc /* * source: item 5-5.2 isentropic compressibility * symbol(s): `ϰ_S` * application domain: generic * name: IsentropicCompressibility * quantity dimension: L^1*M^-1*T^2 * measurement unit(s): Pa^-1, kg^-1*m*s^2 * tensor order: 0 * definition: negative relative change of volume with pressure at constant entropy: `ϰ_S = -1/V * ((partial V)/(partial p))_S` where `V` is volume (ISO 80000-3), `p` is pressure (ISO 80000-4), and `S` is entropy (item 5-18) * remarks: The subscripts in the symbols may be omitted when there is no risk of confusion. */ attribute :>> num: Real; attribute :>> mRef: IsentropicCompressibilityUnit[1]; } attribute isentropicCompressibility: IsentropicCompressibilityValue[*] nonunique :> scalarQuantities; attribute def IsentropicCompressibilityUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 1; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 2; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); } } /* ISO-80000-5 item 5-6.1 heat, amount of heat */ attribute heat: EnergyValue :> scalarQuantities { doc /* * source: item 5-6.1 heat, amount of heat * symbol(s): `Q` * application domain: generic * name: Heat (specializes Energy) * quantity dimension: L^2*M^1*T^-2 * measurement unit(s): J, kg*m^2*s^-2 * tensor order: 0 * definition: difference between the increase in the internal energy (item 5-20.2) of a system and the work (ISO 80000-4) done on the system, provided that the amounts of substances within the system are not changed * remarks: The heat transferred in an isothermal phase transformation should be expressed as the change in the appropriate state functions, e.g. `T ΔS`, where `T` is thermodynamic temperature (item 5-1) and `S` is entropy (item 5-18), or `ΔH`, where `H` is enthalpy (item 5-20.3). NOTE A supply of heat can correspond to an increase in thermodynamic temperature or to other effects, such as phase change or chemical processes; see item 5-6.2. */ } alias amountOfHeat for heat; /* ISO-80000-5 item 5-6.2 latent heat */ attribute latentHeat: EnergyValue :> scalarQuantities { doc /* * source: item 5-6.2 latent heat * symbol(s): `Q` * application domain: generic * name: LatentHeat (specializes Energy) * quantity dimension: L^2*M^1*T^-2 * measurement unit(s): J, kg*m^2*s^-2 * tensor order: 0 * definition: energy released or absorbed by a system during a constant-temperature process * remarks: Examples of latent heat are latent heat of fusion (melting) and latent heat of vaporization (boiling). */ } /* ISO-80000-5 item 5-7 heat flow rate */ attribute def HeatFlowRateValue :> ScalarQuantityValue { doc /* * source: item 5-7 heat flow rate * symbol(s): `dot(Q)` * application domain: generic * name: HeatFlowRate * quantity dimension: L^2*M^1*T^-3 * measurement unit(s): W, J/s, kg*m^2*s^-3 * tensor order: 0 * definition: time rate at which heat (item 5-6.1) crosses a given surface * remarks: None. */ attribute :>> num: Real; attribute :>> mRef: HeatFlowRateUnit[1]; } attribute heatFlowRate: HeatFlowRateValue[*] nonunique :> scalarQuantities; attribute def HeatFlowRateUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -3; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); } } /* ISO-80000-5 item 5-8 density of heat flow rate */ attribute def DensityOfHeatFlowRateValue :> ScalarQuantityValue { doc /* * source: item 5-8 density of heat flow rate * symbol(s): `q`, `φ` * application domain: generic * name: DensityOfHeatFlowRate * quantity dimension: M^1*T^-3 * measurement unit(s): W/m^2, kg*s^-3 * tensor order: 0 * definition: quotient of heat flow rate and area: `q = dot Q / A` where `dot Q` is heat flow rate (item 5-7) and A is area (ISO 80000-3) of a given surface * remarks: None. */ attribute :>> num: Real; attribute :>> mRef: DensityOfHeatFlowRateUnit[1]; } attribute densityOfHeatFlowRate: DensityOfHeatFlowRateValue[*] nonunique :> scalarQuantities; attribute def DensityOfHeatFlowRateUnit :> DerivedUnit { private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -3; } attribute :>> quantityDimension { :>> quantityPowerFactors = (massPF, durationPF); } } /* ISO-80000-5 item 5-9 thermal conductivity */ attribute def ThermalConductivityValue :> ScalarQuantityValue { doc /* * source: item 5-9 thermal conductivity * symbol(s): `λ_l`, `(ϰ)` * application domain: generic * name: ThermalConductivity * quantity dimension: L^1*M^1*T^-3*Θ^-1 * measurement unit(s): W/(m*K), kg*m*s^-3*K^-1 * tensor order: 0 * definition: quotient of density of heat flow rate (item 5-8) and thermodynamic temperature gradient that has the same direction as the heat flow * remarks: None. */ attribute :>> num: Real; attribute :>> mRef: ThermalConductivityUnit[1]; } attribute thermalConductivity: ThermalConductivityValue[*] nonunique :> scalarQuantities; attribute def ThermalConductivityUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 1; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -3; } private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, thermodynamicTemperaturePF); } } /* ISO-80000-5 item 5-10.1 coefficient of heat transfer */ attribute def CoefficientOfHeatTransferValue :> ScalarQuantityValue { doc /* * source: item 5-10.1 coefficient of heat transfer * symbol(s): `K`, `(k)` * application domain: generic * name: CoefficientOfHeatTransfer * quantity dimension: M^1*T^-3*Θ^-1 * measurement unit(s): W/(m^2*K), kg*s^-3*K^-1 * tensor order: 0 * definition: quotient of density of heat flow rate (item 5-8) and thermodynamic temperature (item 5-1) difference * remarks: In building technology, the coefficient of heat transfer is often called thermal transmittance, with the symbol U (no longer recommended). See remark to item 5-13. */ attribute :>> num: Real; attribute :>> mRef: CoefficientOfHeatTransferUnit[1]; } attribute coefficientOfHeatTransfer: CoefficientOfHeatTransferValue[*] nonunique :> scalarQuantities; attribute def CoefficientOfHeatTransferUnit :> DerivedUnit { private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -3; } private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (massPF, durationPF, thermodynamicTemperaturePF); } } /* ISO-80000-5 item 5-10.2 surface coefficient of heat transfer */ attribute def SurfaceCoefficientOfHeatTransferValue :> ScalarQuantityValue { doc /* * source: item 5-10.2 surface coefficient of heat transfer * symbol(s): `h`, `(α)` * application domain: generic * name: SurfaceCoefficientOfHeatTransfer * quantity dimension: M^1*T^-3*Θ^-1 * measurement unit(s): W/(m^2*K), kg*s^-3*K^-1 * tensor order: 0 * definition: quotient of density of heat flow rate and the difference of the temperature at the surface and a reference temperature: `h = q / (T_s - T_r)` where q is density of heat flow rate (item 5-8), `T_s` is the thermodynamic temperature (item 5-1) at the surface, and `T_r` is a reference thermodynamic temperature characterizing the adjacent surroundings * remarks: None. */ attribute :>> num: Real; attribute :>> mRef: SurfaceCoefficientOfHeatTransferUnit[1]; } attribute surfaceCoefficientOfHeatTransfer: SurfaceCoefficientOfHeatTransferValue[*] nonunique :> scalarQuantities; attribute def SurfaceCoefficientOfHeatTransferUnit :> DerivedUnit { private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -3; } private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (massPF, durationPF, thermodynamicTemperaturePF); } } /* ISO-80000-5 item 5-11 thermal insulance, coefficient of thermal insulance */ attribute def ThermalInsulanceValue :> ScalarQuantityValue { doc /* * source: item 5-11 thermal insulance, coefficient of thermal insulance * symbol(s): `M` * application domain: generic * name: ThermalInsulance * quantity dimension: M^-1*T^3*Θ^1 * measurement unit(s): m^2*K/W, kg^-1*s^3*K * tensor order: 0 * definition: inverse of coefficient of heat transfer `K`: `M = 1/K` where `K` is coefficient of heat transfer (item 5-10.1) * remarks: In building technology, this quantity is often called thermal resistance, with the symbol R. */ attribute :>> num: Real; attribute :>> mRef: ThermalInsulanceUnit[1]; } attribute thermalInsulance: ThermalInsulanceValue[*] nonunique :> scalarQuantities; attribute def ThermalInsulanceUnit :> DerivedUnit { private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 3; } private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = 1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (massPF, durationPF, thermodynamicTemperaturePF); } } alias CoefficientOfThermalInsulanceUnit for ThermalInsulanceUnit; alias CoefficientOfThermalInsulanceValue for ThermalInsulanceValue; alias coefficientOfThermalInsulance for thermalInsulance; /* ISO-80000-5 item 5-12 thermal resistance */ attribute def ThermalResistanceValue :> ScalarQuantityValue { doc /* * source: item 5-12 thermal resistance * symbol(s): `R` * application domain: generic * name: ThermalResistance * quantity dimension: L^-2*M^-1*T^3*Θ^1 * measurement unit(s): K/W, kg^-1*m^-2*s^3*K * tensor order: 0 * definition: quotient of thermodynamic temperature (item 5-1) difference and heat flow rate (item 5-7) * remarks: See remark to item 5-11. */ attribute :>> num: Real; attribute :>> mRef: ThermalResistanceUnit[1]; } attribute thermalResistance: ThermalResistanceValue[*] nonunique :> scalarQuantities; attribute def ThermalResistanceUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -2; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 3; } private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = 1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, thermodynamicTemperaturePF); } } /* ISO-80000-5 item 5-13 thermal conductance */ attribute def ThermalConductanceValue :> ScalarQuantityValue { doc /* * source: item 5-13 thermal conductance * symbol(s): `G`, `(H)` * application domain: generic * name: ThermalConductance * quantity dimension: L^2*M^1*T^-3*Θ^-1 * measurement unit(s): W/K, kg*m^2*s^-3*K^-1 * tensor order: 0 * definition: inverse of thermal resistance `R`: `G = 1/R` where `R` is thermal resistance (item 5-12) * remarks: See remark to item 5-11. This quantity is also called heat transfer coefficient. See item 5-10.1. */ attribute :>> num: Real; attribute :>> mRef: ThermalConductanceUnit[1]; } attribute thermalConductance: ThermalConductanceValue[*] nonunique :> scalarQuantities; attribute def ThermalConductanceUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -3; } private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, thermodynamicTemperaturePF); } } /* ISO-80000-5 item 5-14 thermal diffusivity */ attribute def ThermalDiffusivityValue :> ScalarQuantityValue { doc /* * source: item 5-14 thermal diffusivity * symbol(s): `a` * application domain: generic * name: ThermalDiffusivity * quantity dimension: L^2*T^-1 * measurement unit(s): m^2*s^-1 * tensor order: 0 * definition: quotient of thermal conductivity and the product of mass density and specific heat capacity: `a = λ / (ρ C_p)` where `λ` is thermal conductivity (item 5-9), `ρ` is mass density (ISO 80000-4), and `c_p` is specific heat capacity at constant pressure (item 5-16.2) * remarks: None. */ attribute :>> num: Real; attribute :>> mRef: ThermalDiffusivityUnit[1]; } attribute thermalDiffusivity: ThermalDiffusivityValue[*] nonunique :> scalarQuantities; attribute def ThermalDiffusivityUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF); } } /* ISO-80000-5 item 5-15 heat capacity */ attribute def HeatCapacityValue :> ScalarQuantityValue { doc /* * source: item 5-15 heat capacity * symbol(s): `C` * application domain: generic * name: HeatCapacity * quantity dimension: L^2*M^1*T^-2*Θ^-1 * measurement unit(s): J/K, kg*m^2*s^-2*K^-1 * tensor order: 0 * definition: derivative of added heat with respect to thermodynamic temperature of a system: `C = (dQ)/(dT)` where `Q` is amount of heat (item 5-6.1) and `T` is thermodynamic temperature (item 5-1) * remarks: Heat capacity is not completely defined unless specified as seen in items 5-16.2, 5-16.3 and 5-16.4. */ attribute :>> num: Real; attribute :>> mRef: HeatCapacityUnit[1]; } attribute heatCapacity: HeatCapacityValue[*] nonunique :> scalarQuantities; attribute def HeatCapacityUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; } private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, thermodynamicTemperaturePF); } } /* ISO-80000-5 item 5-16.1 specific heat capacity */ attribute def SpecificHeatCapacityValue :> ScalarQuantityValue { doc /* * source: item 5-16.1 specific heat capacity * symbol(s): `c` * application domain: generic * name: SpecificHeatCapacity * quantity dimension: L^2*T^-2*Θ^-1 * measurement unit(s): J/(kg*K), m^2*s^-2*K^-1 * tensor order: 0 * definition: quotient of heat capacity and mass: `c = C/m` where `C` is heat capacity (item 5-15) and `m` is mass (ISO 80000-4) * remarks: For the corresponding quantities related to the amount of substance, see ISO 80000-9. */ attribute :>> num: Real; attribute :>> mRef: SpecificHeatCapacityUnit[1]; } attribute specificHeatCapacity: SpecificHeatCapacityValue[*] nonunique :> scalarQuantities; attribute def SpecificHeatCapacityUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; } private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF, thermodynamicTemperaturePF); } } /* ISO-80000-5 item 5-16.2 specific heat capacity at constant pressure */ attribute def SpecificHeatCapacityAtConstantPressureValue :> ScalarQuantityValue { doc /* * source: item 5-16.2 specific heat capacity at constant pressure * symbol(s): `c_p` * application domain: generic * name: SpecificHeatCapacityAtConstantPressure * quantity dimension: L^2*T^-2*Θ^-1 * measurement unit(s): J/(kg*K), m^2*s^-2*K^-1 * tensor order: 0 * definition: specific heat capacity (item 5-16.1) at constant pressure (ISO 80000-4) * remarks: Also called specific isobaric heat capacity. */ attribute :>> num: Real; attribute :>> mRef: SpecificHeatCapacityAtConstantPressureUnit[1]; } attribute specificHeatCapacityAtConstantPressure: SpecificHeatCapacityAtConstantPressureValue[*] nonunique :> scalarQuantities; attribute def SpecificHeatCapacityAtConstantPressureUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; } private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF, thermodynamicTemperaturePF); } } /* ISO-80000-5 item 5-16.3 specific heat capacity at constant volume */ attribute def SpecificHeatCapacityAtConstantVolumeValue :> ScalarQuantityValue { doc /* * source: item 5-16.3 specific heat capacity at constant volume * symbol(s): `c_V` * application domain: generic * name: SpecificHeatCapacityAtConstantVolume * quantity dimension: L^2*T^-2*Θ^-1 * measurement unit(s): J/(kg*K), m^2*s^-2*K^-1 * tensor order: 0 * definition: specific heat capacity (item 5-16.1) at constant volume (ISO 80000-3) * remarks: Also called specific isochoric heat capacity. */ attribute :>> num: Real; attribute :>> mRef: SpecificHeatCapacityAtConstantVolumeUnit[1]; } attribute specificHeatCapacityAtConstantVolume: SpecificHeatCapacityAtConstantVolumeValue[*] nonunique :> scalarQuantities; attribute def SpecificHeatCapacityAtConstantVolumeUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; } private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF, thermodynamicTemperaturePF); } } /* ISO-80000-5 item 5-16.4 specific heat capacity at saturated vapour pressure */ attribute def SpecificHeatCapacityAtSaturatedVapourPressureValue :> ScalarQuantityValue { doc /* * source: item 5-16.4 specific heat capacity at saturated vapour pressure * symbol(s): `c_"sat"` * application domain: generic * name: SpecificHeatCapacityAtSaturatedVapourPressure * quantity dimension: L^2*T^-2*Θ^-1 * measurement unit(s): J/(kg*K), m^2*s^-2*K^-1 * tensor order: 0 * definition: specific heat capacity (item 5-16.1) at saturated vapour pressure (ISO 80000-4) * remarks: None. */ attribute :>> num: Real; attribute :>> mRef: SpecificHeatCapacityAtSaturatedVapourPressureUnit[1]; } attribute specificHeatCapacityAtSaturatedVapourPressure: SpecificHeatCapacityAtSaturatedVapourPressureValue[*] nonunique :> scalarQuantities; attribute def SpecificHeatCapacityAtSaturatedVapourPressureUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; } private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF, thermodynamicTemperaturePF); } } /* ISO-80000-5 item 5-17.1 ratio of specific heat capacities */ attribute def RatioOfSpecificHeatCapacitiesValue :> DimensionOneValue { doc /* * source: item 5-17.1 ratio of specific heat capacities * symbol(s): `γ` * application domain: generic * name: RatioOfSpecificHeatCapacities (specializes DimensionOneQuantity) * quantity dimension: 1 * measurement unit(s): 1 * tensor order: 0 * definition: quotient of specific heat capacity at constant pressure and specific heat capacity at constant volume: `γ = c_p/c_V` where `c_p` is specific heat capacity at constant pressure (item 5-16.2) and `c_V` is specific heat capacity at constant volume (item 5-16.3) * remarks: This quantity can also be expressed by `γ = C_p/C_V` where `C_p` is heat capacity at constant pressure and `C_V` is heat capacity at constant volume. */ } attribute ratioOfSpecificHeatCapacities: RatioOfSpecificHeatCapacitiesValue :> scalarQuantities; /* ISO-80000-5 item 5-17.2 isentropic exponent, isentropic expansion factor */ attribute def IsentropicExponentValue :> DimensionOneValue { doc /* * source: item 5-17.2 isentropic exponent, isentropic expansion factor * symbol(s): `ϰ` * application domain: generic * name: IsentropicExponent (specializes DimensionOneQuantity) * quantity dimension: 1 * measurement unit(s): 1 * tensor order: 0 * definition: the negative of relative pressure change, divided by relative volume change, at constant entropy: `ϰ = -V/p * ((partial p)/(partial V))_S` where `V` is volume (ISO 80000-3), `p` is pressure (ISO 80000-4), and `S` is entropy (item 5-18) * remarks: For an ideal gas, `ϰ` is equal to `γ` (item 5-17.1). */ } attribute isentropicExponent: IsentropicExponentValue :> scalarQuantities; alias isentropicExpansionFactor for isentropicExponent; /* ISO-80000-5 item 5-18 entropy */ attribute def EntropyValue :> ScalarQuantityValue { doc /* * source: item 5-18 entropy * symbol(s): `S` * application domain: generic * name: Entropy * quantity dimension: L^2*M^1*T^-2*Θ^-1 * measurement unit(s): J/K, kg*m^2*s^-2*K^-1 * tensor order: 0 * definition: natural logarithm of number of equally probable microscopic configurations in a macroscopic system, multiplied by the Boltzmann constant: `S = k lnW` where `W` is number of configurations and `k` is the Boltzmann constant (ISO 80000-1) * remarks: None. */ attribute :>> num: Real; attribute :>> mRef: EntropyUnit[1]; } attribute entropy: EntropyValue[*] nonunique :> scalarQuantities; attribute def EntropyUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; } private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, thermodynamicTemperaturePF); } } /* ISO-80000-5 item 5-19 specific entropy */ attribute def SpecificEntropyValue :> ScalarQuantityValue { doc /* * source: item 5-19 specific entropy * symbol(s): `s` * application domain: generic * name: SpecificEntropy * quantity dimension: L^2*T^-2*Θ^-1 * measurement unit(s): J/(kg*K), m^2*s^-2*K^-1 * tensor order: 0 * definition: quotient of entropy and mass: `s = S/m` where `S` is entropy (item 5-18) and `m` is mass (ISO 80000-4) * remarks: For the corresponding quantity related to amount of substance, see ISO 80000-9. */ attribute :>> num: Real; attribute :>> mRef: SpecificEntropyUnit[1]; } attribute specificEntropy: SpecificEntropyValue[*] nonunique :> scalarQuantities; attribute def SpecificEntropyUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; } private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF, thermodynamicTemperaturePF); } } /* ISO-80000-5 item 5-20.1 energy */ attribute def EnergyValue :> ScalarQuantityValue { doc /* * source: item 5-20.1 energy * symbol(s): `E` * application domain: thermodynamics * name: Energy * quantity dimension: L^2*M^1*T^-2 * measurement unit(s): J, kg*m^2*s^-2 * tensor order: 0 * definition: ability of a system to do work (ISO 80000-4) * remarks: Energy exists in different forms that are mutually transformable into each other, either totally or partially. In contrast to internal energy (item 5-20.2), energy is not a state function. */ attribute :>> num: Real; attribute :>> mRef: EnergyUnit[1]; } attribute energy: EnergyValue[*] nonunique :> scalarQuantities; attribute def EnergyUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); } } /* ISO-80000-5 item 5-20.2 internal energy, thermodynamic energy */ attribute internalEnergy: EnergyValue :> scalarQuantities { doc /* * source: item 5-20.2 internal energy, thermodynamic energy * symbol(s): `U` * application domain: generic * name: InternalEnergy (specializes Energy) * quantity dimension: L^2*M^1*T^-2 * measurement unit(s): J, kg*m^2*s^-2 * tensor order: 0 * definition: energy of a system whose change is given by the amount of the heat (item 5-6.1) transferred to the system and the work (ISO 80000-4) done on the system, provided that the system is closed and no chemical reactions occur * remarks: In thermodynamic text books, usually the formula `ΔU = Q + W` is used. Note that the zero of the energy is undefined. */ } alias thermodynamicEnergy for internalEnergy; /* ISO-80000-5 item 5-20.3 enthalpy */ attribute enthalpy: EnergyValue :> scalarQuantities { doc /* * source: item 5-20.3 enthalpy * symbol(s): `H` * application domain: generic * name: Enthalpy (specializes Energy) * quantity dimension: L^2*M^1*T^-2 * measurement unit(s): J, kg*m^2*s^-2 * tensor order: 0 * definition: sum of internal energy of the system and the product of pressure and volume of the system: `H = U + p*V` where U is internal energy (item 5-20.2), `p` is pressure (ISO 80000-4), and `V` is volume (ISO 80000-3) * remarks: None. */ } /* ISO-80000-5 item 5-20.4 Helmholtz energy, Helmholtz function */ attribute helmholtzEnergy: EnergyValue :> scalarQuantities { doc /* * source: item 5-20.4 Helmholtz energy, Helmholtz function * symbol(s): `A`, `F` * application domain: generic * name: HelmholtzEnergy (specializes Energy) * quantity dimension: L^2*M^1*T^-2 * measurement unit(s): J, kg*m^2*s^-2 * tensor order: 0 * definition: difference of internal energy of the system and the product of thermodynamic temperature and entropy of the system: `A = U - TS` where `U` is internal energy (item 5-20.2), `T` is thermodynamic temperature (item 5-1), and `S` is entropy (item 5-18) * remarks: The name Helmholtz free energy is also used. However, this term is not recommended. */ } alias helmholtzFunction for helmholtzEnergy; /* ISO-80000-5 item 5-20.5 Gibbs energy, Gibbs function */ attribute gibbsEnergy: EnergyValue :> scalarQuantities { doc /* * source: item 5-20.5 Gibbs energy, Gibbs function * symbol(s): `G` * application domain: generic * name: GibbsEnergy (specializes Energy) * quantity dimension: L^2*M^1*T^-2 * measurement unit(s): J, kg*m^2*s^-2 * tensor order: 0 * definition: difference of the enthalpy and the product of thermodynamic temperature and entropy of the system: `G = H - T*S` where H is enthalpy (item 5-20.3), `T` is thermodynamic temperature (item 5-1), and `S` is entropy (item 5-18) * remarks: The name Gibbs free energy is also used. However, this term is not recommended. */ } alias gibbsFunction for gibbsEnergy; /* ISO-80000-5 item 5-21.1 specific energy */ attribute def SpecificEnergyValue :> ScalarQuantityValue { doc /* * source: item 5-21.1 specific energy * symbol(s): `e` * application domain: generic * name: SpecificEnergy * quantity dimension: L^2*T^-2 * measurement unit(s): J/kg, m^2*s^-2 * tensor order: 0 * definition: quotient of energy and mass: `e = E/m` where `E` is energy (item 5-20.1) and `m` is mass (ISO 80000-4) * remarks: None. */ attribute :>> num: Real; attribute :>> mRef: SpecificEnergyUnit[1]; } attribute specificEnergy: SpecificEnergyValue[*] nonunique :> scalarQuantities; attribute def SpecificEnergyUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF); } } /* ISO-80000-5 item 5-21.2 specific internal energy, specific thermodynamic energy */ attribute specificInternalEnergy: SpecificEnergyValue :> scalarQuantities { doc /* * source: item 5-21.2 specific internal energy, specific thermodynamic energy * symbol(s): `u` * application domain: generic * name: SpecificInternalEnergy (specializes SpecificEnergy) * quantity dimension: L^2*T^-2 * measurement unit(s): J/kg, m^2*s^-2 * tensor order: 0 * definition: quotient of internal energy and mass: `u = U/m` where `U` is internal energy (item 5-20.2) and `m` is mass (ISO 80000-4) * remarks: None. */ } alias specificThermodynamicEnergy for specificInternalEnergy; /* ISO-80000-5 item 5-21.3 specific enthalpy */ attribute def SpecificEnthalpyValue :> ScalarQuantityValue { doc /* * source: item 5-21.3 specific enthalpy * symbol(s): `h` * application domain: generic * name: SpecificEnthalpy * quantity dimension: L^2*T^-2 * measurement unit(s): J/kg, m^2*s^-2 * tensor order: 0 * definition: quotient of enthalpy and mass: `h = H/m` where `H` is enthalpy (item 5-20.3) and `m` is mass (ISO 80000-4) * remarks: None. */ attribute :>> num: Real; attribute :>> mRef: SpecificEnthalpyUnit[1]; } attribute specificEnthalpy: SpecificEnthalpyValue[*] nonunique :> scalarQuantities; attribute def SpecificEnthalpyUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF); } } /* ISO-80000-5 item 5-21.4 specific Helmholtz energy, specific Helmholtz function */ attribute specificHelmholtzEnergy: SpecificEnergyValue :> scalarQuantities { doc /* * source: item 5-21.4 specific Helmholtz energy, specific Helmholtz function * symbol(s): `a`, `f` * application domain: generic * name: SpecificHelmholtzEnergy (specializes SpecificEnergy) * quantity dimension: L^2*T^-2 * measurement unit(s): J/kg, m^2*s^-2 * tensor order: 0 * definition: quotient of Helmholtz energy and mass: `a = A/m` where A is Helmholtz energy (item 5-20.4) and m is mass (ISO 80000-4) * remarks: The name specific Helmholtz free energy is also used. However, this term is not recommended. */ } alias specificHelmholtzFunction for specificHelmholtzEnergy; /* ISO-80000-5 item 5-21.5 specific Gibbs energy, specific Gibbs function */ attribute specificGibbsEnergy: SpecificEnergyValue :> scalarQuantities { doc /* * source: item 5-21.5 specific Gibbs energy, specific Gibbs function * symbol(s): `g` * application domain: generic * name: SpecificGibbsEnergy (specializes SpecificEnergy) * quantity dimension: L^2*T^-2 * measurement unit(s): J/kg, m^2*s^-2 * tensor order: 0 * definition: quotient of Gibbs energy and mass: `g = G/m` where `G` is Gibbs energy (item 5-20.5) and `m` is mass (ISO 80000-4) * remarks: The name specific Gibbs free energy is also used. However, this term is not recommended. */ } alias specificGibbsFunction for specificGibbsEnergy; /* ISO-80000-5 item 5-22 Massieu function */ attribute def MassieuFunctionValue :> ScalarQuantityValue { doc /* * source: item 5-22 Massieu function * symbol(s): `J` * application domain: generic * name: MassieuFunction * quantity dimension: L^2*M^1*T^-2*Θ^-1 * measurement unit(s): J/K, kg*m^2*s^-2*K^-1 * tensor order: 0 * definition: quotient of the negative of Helmholtz energy and temperature: `J = -A/T` where `A` is Helmholtz energy (item 5-20.4) and `T` is thermodynamic temperature (item 5-1) * remarks: None. */ attribute :>> num: Real; attribute :>> mRef: MassieuFunctionUnit[1]; } attribute massieuFunction: MassieuFunctionValue[*] nonunique :> scalarQuantities; attribute def MassieuFunctionUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; } private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, thermodynamicTemperaturePF); } } /* ISO-80000-5 item 5-23 Planck function */ attribute def PlanckFunctionValue :> ScalarQuantityValue { doc /* * source: item 5-23 Planck function * symbol(s): `Y` * application domain: generic * name: PlanckFunction * quantity dimension: L^2*M^1*T^-2*Θ^-1 * measurement unit(s): J/K, kg*m^2*s^-2*K^-1 * tensor order: 0 * definition: quotient of the negative of Gibbs energy and temperature: `Y = -G/T` where G is Gibbs energy (item 5-20.5) and `T` is thermodynamic temperature (item 5-1) * remarks: None. */ attribute :>> num: Real; attribute :>> mRef: PlanckFunctionUnit[1]; } attribute planckFunction: PlanckFunctionValue[*] nonunique :> scalarQuantities; attribute def PlanckFunctionUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; } private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, thermodynamicTemperaturePF); } } /* ISO-80000-5 item 5-24 Joule-Thomson coefficient */ attribute def JouleThomsonCoefficientValue :> ScalarQuantityValue { doc /* * source: item 5-24 Joule-Thomson coefficient * symbol(s): `μ_"JT"` * application domain: generic * name: JouleThomsonCoefficient * quantity dimension: L^1*M^-1*T^2*Θ^1 * measurement unit(s): K/Pa, kg^-1*m*s^2*K * tensor order: 0 * definition: change of thermodynamic temperature with respect to pressure in a Joule-Thomson process at constant enthalpy: `μ_(JT) = ((partial T)/(partial p))_H` where `T` is thermodynamic temperature (item 5-1), `p` is pressure (ISO 80000-4) and H is enthalpy (item 5-20.3) * remarks: None. */ attribute :>> num: Real; attribute :>> mRef: JouleThomsonCoefficientUnit[1]; } attribute jouleThomsonCoefficient: JouleThomsonCoefficientValue[*] nonunique :> scalarQuantities; attribute def JouleThomsonCoefficientUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 1; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 2; } private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = 1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, thermodynamicTemperaturePF); } } /* ISO-80000-5 item 5-25.1 thermal efficiency */ attribute def ThermalEfficiencyValue :> DimensionOneValue { doc /* * source: item 5-25.1 thermal efficiency * symbol(s): `η` * application domain: thermodynamics * name: ThermalEfficiency (specializes DimensionOneQuantity) * quantity dimension: 1 * measurement unit(s): 1 * tensor order: 0 * definition: quotient of work (ISO 80000-4) delivered by a heat engine and supplied heat: `η = W/Q` where `W` is work (ISO 80000-4) and `Q` is heat (item 5-6.1) * remarks: None. */ } attribute thermalEfficiency: ThermalEfficiencyValue :> scalarQuantities; /* ISO-80000-5 item 5-25.2 maximum thermal efficiency */ attribute def MaximumThermalEfficiencyValue :> DimensionOneValue { doc /* * source: item 5-25.2 maximum thermal efficiency * symbol(s): `η_"max"` * application domain: generic * name: MaximumThermalEfficiency (specializes DimensionOneQuantity) * quantity dimension: 1 * measurement unit(s): 1 * tensor order: 0 * definition: efficiency determined by the quotient of the temperatures of the hot source and the cold sink: `η_max = 1 - T_c/T_h` where `T_c` is the thermodynamic temperature (item 5-1) of the cold sink and `T_h` is the thermodynamic temperature (item 5-1) of the hot source * remarks: An ideal heat engine operating according to the Carnot process is delivering the maximum efficiency. */ } attribute maximumThermalEfficiency: MaximumThermalEfficiencyValue :> scalarQuantities; /* ISO-80000-5 item 5-26 specific gas constant */ attribute def SpecificGasConstantValue :> ScalarQuantityValue { doc /* * source: item 5-26 specific gas constant * symbol(s): `R_s` * application domain: generic * name: SpecificGasConstant * quantity dimension: L^2*T^-2*Θ^-1 * measurement unit(s): J/(kg*K), m^2*s^-2*K^-1 * tensor order: 0 * definition: quotient of the Boltzmann constant `k` (ISO 80000-1) and the mass `m` (ISO 80000-4) of the gas particle * remarks: None. */ attribute :>> num: Real; attribute :>> mRef: SpecificGasConstantUnit[1]; } attribute specificGasConstant: SpecificGasConstantValue[*] nonunique :> scalarQuantities; attribute def SpecificGasConstantUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; } private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; } private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF, thermodynamicTemperaturePF); } } /* ISO-80000-5 item 5-27 mass concentration of water */ attribute def MassConcentrationOfWaterValue :> ScalarQuantityValue { doc /* * source: item 5-27 mass concentration of water * symbol(s): `w` * application domain: generic * name: MassConcentrationOfWater * quantity dimension: L^-3*M^1 * measurement unit(s): kg*m^-3 * tensor order: 0 * definition: quotient of mass of water and a specified volume: `w = m/V` where `m` is mass (ISO 80000-4) of water, irrespective of the form of aggregation state, and `V` is volume (ISO 80000-3) * remarks: Mass concentration of water at saturation is denoted `w_"sat"`. */ attribute :>> num: Real; attribute :>> mRef: MassConcentrationOfWaterUnit[1]; } attribute massConcentrationOfWater: MassConcentrationOfWaterValue[*] nonunique :> scalarQuantities; attribute def MassConcentrationOfWaterUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -3; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF); } } /* ISO-80000-5 item 5-28 mass concentration of water vapour absolute humidity */ attribute def MassConcentrationOfWaterVapourAbsoluteHumidityValue :> ScalarQuantityValue { doc /* * source: item 5-28 mass concentration of water vapour absolute humidity * symbol(s): `v` * application domain: generic * name: MassConcentrationOfWaterVapourAbsoluteHumidity * quantity dimension: L^-3*M^1 * measurement unit(s): kg*m^-3 * tensor order: 0 * definition: quotient of mass of water vapour and a specified volume: `v = m/V` where m is mass (ISO 80000-4) of water vapour and `V` is volume (ISO 80000-3) * remarks: Mass concentration of water vapour at saturation is denoted `v_"sat"`. */ attribute :>> num: Real; attribute :>> mRef: MassConcentrationOfWaterVapourAbsoluteHumidityUnit[1]; } attribute massConcentrationOfWaterVapourAbsoluteHumidity: MassConcentrationOfWaterVapourAbsoluteHumidityValue[*] nonunique :> scalarQuantities; attribute def MassConcentrationOfWaterVapourAbsoluteHumidityUnit :> DerivedUnit { private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -3; } private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF); } } /* ISO-80000-5 item 5-29 mass ratio of water to dry matter */ attribute def MassRatioOfWaterToDryMatterValue :> DimensionOneValue { doc /* * source: item 5-29 mass ratio of water to dry matter * symbol(s): `u` * application domain: generic * name: MassRatioOfWaterToDryMatter (specializes DimensionOneQuantity) * quantity dimension: 1 * measurement unit(s): 1 * tensor order: 0 * definition: quotient of mass of water and mass of dry matter: `u = m/m_d` where `m` is mass (ISO 80000-4) of water and `m_d` is mass of dry matter * remarks: Mass ratio of water to dry matter at saturation is denoted `u_"sat"`. */ } attribute massRatioOfWaterToDryMatter: MassRatioOfWaterToDryMatterValue :> scalarQuantities; /* ISO-80000-5 item 5-30 mass ratio of water vapour to dry gas */ attribute def MassRatioOfWaterVapourToDryGasValue :> DimensionOneValue { doc /* * source: item 5-30 mass ratio of water vapour to dry gas * symbol(s): `r`, `(x)` * application domain: generic * name: MassRatioOfWaterVapourToDryGas (specializes DimensionOneQuantity) * quantity dimension: 1 * measurement unit(s): 1 * tensor order: 0 * definition: quotient of mass of water vapour and mass of dry gas: `r = m/m_d` where `m` is mass (ISO 80000-4) of water vapour and `m_d` is mass of dry gas * remarks: Mass ratio of water vapour to dry gas at saturation is denoted `r_"sat"`. Mass ratio of water vapour to dry gas is also called mixing ratio. */ } attribute massRatioOfWaterVapourToDryGas: MassRatioOfWaterVapourToDryGasValue :> scalarQuantities; /* ISO-80000-5 item 5-31 mass fraction of water */ attribute def MassFractionOfWaterValue :> DimensionOneValue { doc /* * source: item 5-31 mass fraction of water * symbol(s): `w_(H_(2)O)` * application domain: generic * name: MassFractionOfWater (specializes DimensionOneQuantity) * quantity dimension: 1 * measurement unit(s): 1 * tensor order: 0 * definition: quantity given by: `w_(H_(2)O) = u/(1+u)` where `u` is mass ratio of water to dry matter (item 5-29) * remarks: None. */ } attribute massFractionOfWater: MassFractionOfWaterValue :> scalarQuantities; /* ISO-80000-5 item 5-32 mass fraction of dry matter */ attribute def MassFractionOfDryMatterValue :> DimensionOneValue { doc /* * source: item 5-32 mass fraction of dry matter * symbol(s): `w_d` * application domain: generic * name: MassFractionOfDryMatter (specializes DimensionOneQuantity) * quantity dimension: 1 * measurement unit(s): 1 * tensor order: 0 * definition: quantity given by: `w_d = 1 - w_(H_(2)O)` where `w_(H_(2)O)` is mass fraction of water (item 5-31) * remarks: None. */ } attribute massFractionOfDryMatter: MassFractionOfDryMatterValue :> scalarQuantities; /* ISO-80000-5 item 5-33 relative humidity */ attribute def RelativeHumidityValue :> DimensionOneValue { doc /* * source: item 5-33 relative humidity * symbol(s): `φ` * application domain: generic * name: RelativeHumidity (specializes DimensionOneQuantity) * quantity dimension: 1 * measurement unit(s): 1 * tensor order: 0 * definition: quotient of partial pressure of water vapour and partial pressure at its saturation: `φ = p/p_"sat"` where `p` is partial pressure (ISO 80000-4) of vapour and `p_"sat"` is its partial pressure at saturation at the same temperature * remarks: Relative humidity is often referred to as RH and expressed in percent. See also remark in item 5-35. */ } attribute relativeHumidity: RelativeHumidityValue :> scalarQuantities; /* ISO-80000-5 item 5-34 relative mass concentration of vapour */ attribute def RelativeMassConcentrationOfVapourValue :> DimensionOneValue { doc /* * source: item 5-34 relative mass concentration of vapour * symbol(s): `φ` * application domain: generic * name: RelativeMassConcentrationOfVapour (specializes DimensionOneQuantity) * quantity dimension: 1 * measurement unit(s): 1 * tensor order: 0 * definition: quotient of mass concentration of water vapour and mass concentration at its saturation: `φ = v/v_"sat"` where `v` is mass concentration of water vapour (item 5-28) and `v_"sat"` is its mass concentration of water vapour at saturation of the same temperature * remarks: For water vapour concentrations up to 1 kg/m^3, the relative humidity (item 5-33) is assumed to be equal to relative mass concentration of vapour. For details see Reference [8]. */ } attribute relativeMassConcentrationOfVapour: RelativeMassConcentrationOfVapourValue :> scalarQuantities; /* ISO-80000-5 item 5-35 relative mass ratio of vapour */ attribute def RelativeMassRatioOfVapourValue :> DimensionOneValue { doc /* * source: item 5-35 relative mass ratio of vapour * symbol(s): `ψ` * application domain: generic * name: RelativeMassRatioOfVapour (specializes DimensionOneQuantity) * quantity dimension: 1 * measurement unit(s): 1 * tensor order: 0 * definition: quotient of mass ratio of water vapour to dry gas and mass ratio of water vapour to dry gas at saturation: `ψ = r/r_"sat"` where `r` is mass ratio of water vapour to dry gas (item 5-30) and `r_"sat"` is its mass ratio of water vapour to dry gas at saturation of the same temperature * remarks: This quantity is also used as an approximation of relative humidity (item 5-33). */ } attribute relativeMassRatioOfVapour: RelativeMassRatioOfVapourValue :> scalarQuantities; /* ISO-80000-5 item 5-36 dew-point temperature */ attribute dewPointTemperature: ThermodynamicTemperatureValue :> scalarQuantities { doc /* * source: item 5-36 dew-point temperature * symbol(s): `T_d` * application domain: generic * name: DewPointTemperature (specializes ThermodynamicTemperature) * quantity dimension: Θ^1 * measurement unit(s): K * tensor order: 0 * definition: temperature at which water vapour in the air reaches saturation under isobaric conditions * remarks: The corresponding Celsius temperature, denoted `t_d`, is still called dew-point temperature. The unit for the corresponding Celsius temperature is degree Celsius, symbol °C. */ } }