File size: 1,476 Bytes
71a3e71
 
 
 
 
 
 
 
 
35739cc
71a3e71
 
 
 
 
2d9ff1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91bc38d
 
35739cc
 
 
 
 
91bc38d
 
35739cc
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
---
license: cc
task_categories:
- text-generation
- text2text-generation
language:
- en
tags:
- keyphrase-generation
- domain-adaptation
- paleontology
- astrophysics
- natural-language-processing
size_categories:
- 1K<n<10K

configs:
- config_name: paleo
  data_files:
  - split: train
    path:
    - "paleo/train.jsonl"
  - split: test
    path: "paleo/test.jsonl"
- config_name: nlp
  data_files:
  - split: train
    path:
    - "nlp/train.jsonl"
  - split: test
    path: "nlp/test.jsonl"
- config_name: astro
  data_files:
  - split: train
    path:
    - "astro/train.jsonl"
  - split: test
    path: "astro/test.jsonl"
---

# `silk` synthetic training samples and human-labeled test sets for domain adaptation in keyphrase generation

This dataset contains the synthetic samples generated by 🧵 `silk`, a method that leverages citation contexts to create synthetic samples of documents paired with silver-standard keyphrases for adapting keyphrase generation models to new domains.
We applied `silk` on three domains: Natural Language Processing (nlp), Astrophysics (astro) and Paleontology (paleo).

This dataset also includes three human-labeled test sets to assess the performance of keyphrase generation across these domains.

## Citation

If you use this dataset, please cite the following paper:

```
Florian Boudin and Akiko Aizawa.
Unsupervised Domain Adaptation for Keyphrase Generation using Citation Context,
Proceedings of EMNLP 2024 (Findings).
```