--- license: apache-2.0 task_categories: - zero-shot-classification - text-classification task_ids: - natural-language-inference language: - en dataset_info: features: - name: labels dtype: class_label: names: '0': entailment '1': neutral '2': contradiction - name: premise dtype: string - name: hypothesis dtype: string - name: task dtype: string splits: - name: train num_bytes: 551422306.0 num_examples: 1090333 - name: validation num_bytes: 10824484.0 num_examples: 14419 - name: test num_bytes: 9739005.0 num_examples: 14680 download_size: 302501186 dataset_size: 571985795.0 --- [tasksource](https://github.com/sileod/tasksource) classification tasks recasted as natural language inference. This dataset is intended to improve label understanding in [zero-shot classification HF pipelines](https://huggingface.co/docs/transformers/main/main_classes/pipelines#transformers.ZeroShotClassificationPipeline ). Inputs that are text pairs are separated by a newline (\n). ```python from transformers import pipeline classifier = pipeline(model="sileod/deberta-v3-base-tasksource-nli") classifier( "I have a problem with my iphone that needs to be resolved asap!!", candidate_labels=["urgent", "not urgent", "phone", "tablet", "computer"], ) ``` [deberta-v3-base-tasksource-nli](https://huggingface.co/sileod/deberta-v3-base-tasksource-nli) will include `label-nli` in its training mix (a relatively small portion, to keep the model general, but note that nli models work for label-like zero shot classification without specific supervision (https://aclanthology.org/D19-1404.pdf). ``` @article{sileo2023tasksource, title={tasksource: A Dataset Harmonization Framework for Streamlined NLP Multi-Task Learning and Evaluation}, author={Sileo, Damien}, year={2023} } ```