albertvillanova HF staff commited on
Commit
02dcf22
1 Parent(s): e0c900e

Support streaming allocine dataset (#4563)

Browse files

* Support streaming allocine dataset

* Fix style

Commit from https://github.com/huggingface/datasets/commit/514756651448c03e0a8f08141148552f4b223e29

Files changed (1) hide show
  1. allocine.py +25 -13
allocine.py CHANGED
@@ -2,7 +2,6 @@
2
 
3
 
4
  import json
5
- import os
6
 
7
  import datasets
8
  from datasets.tasks import TextClassification
@@ -70,25 +69,38 @@ class AllocineDataset(datasets.GeneratorBasedBuilder):
70
  )
71
 
72
  def _split_generators(self, dl_manager):
73
- arch_path = dl_manager.download_and_extract(self._DOWNLOAD_URL)
74
- data_dir = os.path.join(arch_path, "data")
75
  return [
76
  datasets.SplitGenerator(
77
- name=datasets.Split.TRAIN, gen_kwargs={"filepath": os.path.join(data_dir, self._TRAIN_FILE)}
 
 
 
 
78
  ),
79
  datasets.SplitGenerator(
80
- name=datasets.Split.VALIDATION, gen_kwargs={"filepath": os.path.join(data_dir, self._VAL_FILE)}
 
 
 
 
81
  ),
82
  datasets.SplitGenerator(
83
- name=datasets.Split.TEST, gen_kwargs={"filepath": os.path.join(data_dir, self._TEST_FILE)}
 
 
 
 
84
  ),
85
  ]
86
 
87
- def _generate_examples(self, filepath):
88
  """Generate Allocine examples."""
89
- with open(filepath, encoding="utf-8") as f:
90
- for id_, row in enumerate(f):
91
- data = json.loads(row)
92
- review = data["review"]
93
- label = "neg" if data["polarity"] == 0 else "pos"
94
- yield id_, {"review": review, "label": label}
 
 
2
 
3
 
4
  import json
 
5
 
6
  import datasets
7
  from datasets.tasks import TextClassification
 
69
  )
70
 
71
  def _split_generators(self, dl_manager):
72
+ archive_path = dl_manager.download(self._DOWNLOAD_URL)
73
+ data_dir = "data"
74
  return [
75
  datasets.SplitGenerator(
76
+ name=datasets.Split.TRAIN,
77
+ gen_kwargs={
78
+ "filepath": f"{data_dir}/{self._TRAIN_FILE}",
79
+ "files": dl_manager.iter_archive(archive_path),
80
+ },
81
  ),
82
  datasets.SplitGenerator(
83
+ name=datasets.Split.VALIDATION,
84
+ gen_kwargs={
85
+ "filepath": f"{data_dir}/{self._VAL_FILE}",
86
+ "files": dl_manager.iter_archive(archive_path),
87
+ },
88
  ),
89
  datasets.SplitGenerator(
90
+ name=datasets.Split.TEST,
91
+ gen_kwargs={
92
+ "filepath": f"{data_dir}/{self._TEST_FILE}",
93
+ "files": dl_manager.iter_archive(archive_path),
94
+ },
95
  ),
96
  ]
97
 
98
+ def _generate_examples(self, filepath, files):
99
  """Generate Allocine examples."""
100
+ for path, file in files:
101
+ if path == filepath:
102
+ for id_, row in enumerate(file):
103
+ data = json.loads(row.decode("utf-8"))
104
+ review = data["review"]
105
+ label = "neg" if data["polarity"] == 0 else "pos"
106
+ yield id_, {"review": review, "label": label}