Datasets:
Tasks:
Question Answering
Modalities:
Text
Sub-tasks:
extractive-qa
Languages:
code
Size:
100K - 1M
License:
Update README
Browse files
README.md
CHANGED
@@ -27,115 +27,6 @@ task_ids:
|
|
27 |
|
28 |
# Dataset Card for Codequeries
|
29 |
|
30 |
-
## Table of Contents
|
31 |
-
- [Table of Contents](#table-of-contents)
|
32 |
-
- [Dataset Description](#dataset-description)
|
33 |
-
- [Dataset Summary](#dataset-summary)
|
34 |
-
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
|
35 |
-
- [Languages](#languages)
|
36 |
-
- [Dataset Structure](#dataset-structure)
|
37 |
-
- [Data Instances](#data-instances)
|
38 |
-
- [Data Fields](#data-fields)
|
39 |
-
- [Data Splits](#data-splits)
|
40 |
-
- [Dataset Creation](#dataset-creation)
|
41 |
-
- [Curation Rationale](#curation-rationale)
|
42 |
-
- [Source Data](#source-data)
|
43 |
-
- [Annotations](#annotations)
|
44 |
-
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
45 |
-
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
46 |
-
- [Social Impact of Dataset](#social-impact-of-dataset)
|
47 |
-
- [Discussion of Biases](#discussion-of-biases)
|
48 |
-
- [Other Known Limitations](#other-known-limitations)
|
49 |
-
- [Additional Information](#additional-information)
|
50 |
-
- [Dataset Curators](#dataset-curators)
|
51 |
-
- [Licensing Information](#licensing-information)
|
52 |
-
- [Citation Information](#citation-information)
|
53 |
-
- [Contributions](#contributions)
|
54 |
-
|
55 |
-
## Dataset Description
|
56 |
-
|
57 |
-
- **Homepage:** [Codequeires](https://huggingface.co/datasets/thepurpleowl/codequeries)
|
58 |
-
- **Repository:** [Code repo](https://github.com/adityakanade/natural-cubert/)
|
59 |
-
- **Leaderboard:** [Code repo](https://github.com/adityakanade/natural-cubert/)
|
60 |
-
- **Paper:**
|
61 |
-
|
62 |
-
### Dataset Summary
|
63 |
-
|
64 |
-
CodeQueries allows to explore extractive question-answering methodology over code
|
65 |
-
by providing semantic natural language queries as question and code spans as answer or supporting fact. Given a query, finding the answer/supporting fact spans in code context involves analysis complex concepts and long chains of reasoning. The dataset is provided with five separate settings; details on the setting can be found in the [paper]().
|
66 |
-
|
67 |
-
### Supported Tasks and Leaderboards
|
68 |
-
|
69 |
-
Query comprehension for code, Extractive question answering for code. Refer the [paper]().
|
70 |
-
|
71 |
-
### Languages
|
72 |
-
|
73 |
-
The dataset contains code context from `python` files.
|
74 |
-
|
75 |
-
## Dataset Structure
|
76 |
-
|
77 |
-
### How to use
|
78 |
-
The dataset can directly used with huggingface datasets. You can load and iterate through the dataset for the proposed five settings with the following two lines of code:
|
79 |
-
```python
|
80 |
-
from datasets import load_dataset
|
81 |
-
|
82 |
-
ds = load_dataset("thepurpleowl/codequeries", "<ideal/file_ideal/prefix/twostep>", split="train")
|
83 |
-
print(next(iter(ds)))
|
84 |
-
#OUTPUT:
|
85 |
-
{
|
86 |
-
'code': "import mod189 from './mod189';\nvar value=mod189+1;\nexport default value;\n",
|
87 |
-
'repo_name': 'MirekSz/webpack-es6-ts',
|
88 |
-
'path': 'app/mods/mod190.js',
|
89 |
-
'language': 'JavaScript',
|
90 |
-
'license': 'isc',
|
91 |
-
'size': 73
|
92 |
-
}
|
93 |
-
```
|
94 |
-
|
95 |
-
### Data Splits and Data Fields
|
96 |
-
Detailed information on the data splits for proposed settings can be found in the paper.
|
97 |
-
|
98 |
-
In general, data splits in all prpoposed settings have examples in following fields -
|
99 |
-
```
|
100 |
-
- query_name (query name to uniquely identify the query)
|
101 |
-
- code_file_path (relative source file path w.r.t. ETH Py150 corpus)
|
102 |
-
- context_blocks (code blocks as context with metadata) [`prefix` setting doesn't have this field]
|
103 |
-
- answer_spans (answer spans with metadata)
|
104 |
-
- supporting_fact_spans (supporting-fact spans with metadata)
|
105 |
-
- example_type (1(positive)) or 0(negative)) example type)
|
106 |
-
- single_hop (True or False - for query type)
|
107 |
-
- subtokenized_input_sequence (example subtokens) [`prefix` setting has the corresponding token ids]
|
108 |
-
- label_sequence (example subtoken labels)
|
109 |
-
- relevance_label (0 (not relevant) or 1 (relevant) - relevance label of a block)
|
110 |
-
```
|
111 |
-
|
112 |
-
### Data Splits
|
113 |
-
|
114 |
-
| |train |validation |test |
|
115 |
-
|--------------|:----:|:---------:|:---:|
|
116 |
-
|ideal | 9427 | 3270| 3245|
|
117 |
-
|prefix | - | - | 3245|
|
118 |
-
|sliding_window| - | - | 3245|
|
119 |
-
|file_ideal | - | - | 3245|
|
120 |
-
|twostep | - | - | 3245|
|
121 |
-
|
122 |
-
## Dataset Creation
|
123 |
-
|
124 |
-
The dataset is created by using [ETH Py150 Open corpus](https://github.com/google-research-datasets/eth_py150_open) as source for code contexts. To get natural language queries and corresponding answer/supporting spans in ETH Py150 Open corpus files, CodeQL was used.
|
125 |
-
|
126 |
-
|
127 |
-
### Licensing Information
|
128 |
-
|
129 |
-
Codequeries dataset is licensed under the [Apache-2.0](https://opensource.org/licenses/Apache-2.0) License.
|
130 |
-
|
131 |
-
### Citation Information
|
132 |
-
|
133 |
-
[More Information Needed]
|
134 |
-
|
135 |
-
### Contributions
|
136 |
-
|
137 |
-
Thanks to [@github-username](https://github.com/<github-username>) for adding this dataset.# Dataset Card for Codequeries
|
138 |
-
|
139 |
## Table of Contents
|
140 |
- [Table of Contents](#table-of-contents)
|
141 |
- [Dataset Description](#dataset-description)
|
|
|
27 |
|
28 |
# Dataset Card for Codequeries
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
## Table of Contents
|
31 |
- [Table of Contents](#table-of-contents)
|
32 |
- [Dataset Description](#dataset-description)
|