|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""KdConv: Chinese multi-domain Knowledge-driven Conversation dataset""" |
|
|
|
|
|
import json |
|
import os |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{zhou-etal-2020-kdconv, |
|
title = "{K}d{C}onv: A {C}hinese Multi-domain Dialogue Dataset Towards Multi-turn Knowledge-driven Conversation", |
|
author = "Zhou, Hao and |
|
Zheng, Chujie and |
|
Huang, Kaili and |
|
Huang, Minlie and |
|
Zhu, Xiaoyan", |
|
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics", |
|
month = jul, |
|
year = "2020", |
|
address = "Online", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://www.aclweb.org/anthology/2020.acl-main.635", |
|
doi = "10.18653/v1/2020.acl-main.635", |
|
pages = "7098--7108", |
|
} |
|
""" |
|
|
|
|
|
_DESCRIPTION = """\ |
|
KdConv is a Chinese multi-domain Knowledge-driven Conversionsation dataset, grounding the topics in multi-turn \ |
|
conversations to knowledge graphs. KdConv contains 4.5K conversations from three domains (film, music, and travel), \ |
|
and 86K utterances with an average turn number of 19.0. These conversations contain in-depth discussions on related \ |
|
topics and natural transition between multiple topics, while the corpus can also used for exploration of transfer \ |
|
learning and domain adaptation.\ |
|
""" |
|
|
|
|
|
_HOMEPAGE = "https://github.com/thu-coai/KdConv" |
|
|
|
|
|
_LICENSE = "Apache License 2.0" |
|
|
|
|
|
_URL = "data.zip" |
|
|
|
_DOMAINS = ["travel", "music", "film"] |
|
_DATA_TYPES = ["dialogues", "knowledge_base"] |
|
|
|
|
|
class KdConv(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("1.1.0") |
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name=domain + "_" + type, |
|
description="This part of dataset covers {0} domain and {1} data " "of the corpus".format(domain, type), |
|
) |
|
for domain in _DOMAINS |
|
for type in _DATA_TYPES |
|
] + [ |
|
datasets.BuilderConfig( |
|
name="all_" + type, |
|
description="This part of dataset covers all domains and {0} data of " "the corpus".format(type), |
|
) |
|
for type in _DATA_TYPES |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "all_dialogues" |
|
|
|
def _info(self): |
|
if "dialogues" in self.config.name: |
|
features = datasets.Features( |
|
{ |
|
"messages": datasets.Sequence( |
|
{ |
|
"message": datasets.Value("string"), |
|
"attrs": datasets.Sequence( |
|
{ |
|
"attrname": datasets.Value("string"), |
|
"attrvalue": datasets.Value("string"), |
|
"name": datasets.Value("string"), |
|
} |
|
), |
|
} |
|
), |
|
"name": datasets.Value("string"), |
|
"domain": datasets.Value("string"), |
|
} |
|
) |
|
else: |
|
features = datasets.Features( |
|
{ |
|
"head_entity": datasets.Value("string"), |
|
"kb_triplets": datasets.Sequence(datasets.Sequence(datasets.Value("string"))), |
|
"domain": datasets.Value("string"), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
|
|
data_dir = dl_manager.download_and_extract(_URL) |
|
base_dir = os.path.join(data_dir, "data") |
|
if "dialogues" in self.config.name: |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"data_dir": base_dir, |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"data_dir": base_dir, "split": "test"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"data_dir": base_dir, |
|
"split": "dev", |
|
}, |
|
), |
|
] |
|
else: |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"data_dir": base_dir, |
|
"split": "train", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, data_dir, split): |
|
"""Yields examples.""" |
|
if "dialogues" in self.config.name: |
|
if "all" in self.config.name: |
|
file_dict = { |
|
domain: os.path.join(os.path.join(data_dir, domain), split + ".json") for domain in _DOMAINS |
|
} |
|
else: |
|
domain = self.config.name.split("_")[0] |
|
file_dict = {domain: os.path.join(os.path.join(data_dir, domain), split + ".json")} |
|
id_ = -1 |
|
for domain, filepath in file_dict.items(): |
|
with open(filepath, encoding="utf-8") as f: |
|
conversations = json.load(f) |
|
for conversation in conversations: |
|
id_ += 1 |
|
conversation["domain"] = domain |
|
for turn in conversation["messages"]: |
|
if "attrs" in turn: |
|
attrnames = [kb_triplet.get("attrname", "") for kb_triplet in turn["attrs"]] |
|
attrvalues = [kb_triplet.get("attrvalue", "") for kb_triplet in turn["attrs"]] |
|
names = [kb_triplet.get("name", "") for kb_triplet in turn["attrs"]] |
|
else: |
|
attrnames, attrvalues, names = [], [], [] |
|
turn["attrs"] = {"attrname": attrnames, "attrvalue": attrvalues, "name": names} |
|
|
|
yield id_, conversation |
|
else: |
|
if "all" in self.config.name: |
|
file_dict = { |
|
domain: os.path.join(os.path.join(data_dir, domain), "kb_" + domain + ".json") |
|
for domain in _DOMAINS |
|
} |
|
else: |
|
domain = self.config.name.split("_")[0] |
|
file_dict = {domain: os.path.join(os.path.join(data_dir, domain), "kb_" + domain + ".json")} |
|
|
|
id_ = -1 |
|
for domain, filepath in file_dict.items(): |
|
with open(filepath, encoding="utf-8") as f: |
|
kb_dict = json.load(f) |
|
for head_entity, kb_triplets in kb_dict.items(): |
|
id_ += 1 |
|
yield id_, {"head_entity": head_entity, "kb_triplets": kb_triplets, "domain": domain} |
|
|