tianyang commited on
Commit
70045ae
·
verified ·
1 Parent(s): ec4b83c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +186 -10
README.md CHANGED
@@ -40,17 +40,193 @@ dataset_info:
40
  dtype: string
41
  splits:
42
  - name: cross_file_first
43
- num_bytes: 670974535
44
- num_examples: 8722
45
  - name: cross_file_random
46
- num_bytes: 675947919
47
- num_examples: 8705
48
  - name: in_file
49
- num_bytes: 674753278
50
- num_examples: 8696
51
- download_size: 575797094
52
- dataset_size: 2021675732
 
 
 
 
 
 
 
53
  ---
54
- # Dataset Card for "repobench_java_v1.1"
55
 
56
- [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
  dtype: string
41
  splits:
42
  - name: cross_file_first
43
+ num_bytes: 504528431
44
+ num_examples: 8033
45
  - name: cross_file_random
46
+ num_bytes: 467242455
47
+ num_examples: 7618
48
  - name: in_file
49
+ num_bytes: 488999100
50
+ num_examples: 7910
51
+ download_size: 472994299
52
+ dataset_size: 1460769986
53
+ license: cc
54
+ task_categories:
55
+ - text-generation
56
+ language:
57
+ - en
58
+ tags:
59
+ - code
60
  ---
61
+ # RepoBench v1.1 (Java)
62
 
63
+ ## Introduction
64
+
65
+ This dataset presents the **Java** portion of [RepoBench](https://arxiv.org/abs/2306.03091) v1.1 (ICLR 2024). The data encompasses a collection from GitHub, spanning the period from **October 6th to November 31st, 2023**. With a commitment to data integrity, we've implemented a deduplication process based on file content against the Stack v2 dataset (coming soon), aiming to mitigate data leakage and memorization concerns.
66
+
67
+ ## Resources and Links
68
+
69
+ - [Paper](https://arxiv.org/abs/2306.03091)
70
+ - [GitHub](https://github.com/Leolty/repobench)
71
+ - [Dataset Introduction](https://github.com/Leolty/repobench/blob/main/data/README.md)
72
+
73
+ ## FAQs
74
+
75
+ - **Q:** What do the features in the dataset mean?
76
+
77
+ **A:** Imagine you're coding and you want to write the next line of your code. The dataset provides you the following information:
78
+ - `repo_name` (string): the name of the repository
79
+ - `file_path` (string): the path of the current file
80
+ - `context` (list): the cross-file code snippets that might be helpful for writing the next line:
81
+ - `identifier` (string): the identifier of the code snippet
82
+ - `path` (string): the path of the code snippet
83
+ - `snippet` (string): the code snippet
84
+ - `import_statement` (string): the import statement of the current file
85
+ - `cropped_code` (string): the cropped code of the current file (up to previous 120 lines)
86
+ - `all_code` (string): the entire code of the current file (not cropped)
87
+ - `next_line` (string): the next line of the code (this serves as the target)
88
+ - `gold_snippet_index` (int): the index of the gold snippet in the context (which will be used in next line, just for reference, you should not use this for next line prediction)
89
+ - `created_at` (string): the creation time of the repository
90
+ - `level` (string): the level of next line completion, which is measured by the number of tokens for the whole prompt (including all the context, import statement, cropped code and some neccessary separator tokens)
91
+
92
+ - **Q:** How does the level be defined?
93
+
94
+ **A:** The level is determined by the number of tokens for the whole prompt (including all the context, import statement, cropped code and some neccessary separator tokens). The token number is calculated by the tokenizer of GPT-4 by using [tiktoken](https://github.com/openai/tiktoken). The following table shows the level definition:
95
+
96
+ | Level | Prompt Length (Number of Tokens) |
97
+ |-------|------------------------|
98
+ | 2k | 640 - 1,600 |
99
+ | 4k | 1,600 - 3,600 |
100
+ | 8k | 3,600 - 7,200 |
101
+ | 12k | 7,200 - 10,800 |
102
+ | 16k | 10,800 - 14,400 |
103
+ | 24k | 14,400 - 21,600 |
104
+ | 32k | 21,600 - 28,800 |
105
+ | 64k | 28,800 - 57,600 |
106
+ | 128k | 57,600 - 100,000 |
107
+
108
+ - **Q:** What does the different splits mean?
109
+
110
+ **A:** The dataset is split into three parts:
111
+ - `cross_file_first`: the next line of code utilizes content from a cross-file code snippet and it is its first usage within current file.
112
+ - `cross_file_random`: the next line of code utilizes content from a cross-file code snippet and it is NOT its first usage within current file.
113
+ - `in_file`: the next line of code does not utilize content from a cross-file code snippet.
114
+
115
+ - **Q:** How to construct the prompt for next line prediction?
116
+
117
+ **A:** We hereby provide the official implementation for constructing prompts. Please note that the methods described below are not necessarily the optimal way of construction. Reordering, retrieval argumentation, or employing different cropping/construction techniques could potentially lead to varying degrees of improvement. Ensure that your model evaluations are conducted in a fair manner.
118
+
119
+ ```python
120
+ import re
121
+
122
+ def construct_prompt(
123
+ data: dict,
124
+ language: str = "python",
125
+ tokenizer= None,
126
+ max_token_nums: int = 15800
127
+ ) -> str:
128
+ """
129
+ Construct the prompt for next line prediction.
130
+
131
+ :param data: data point from the dataset
132
+ :param language: the language of the code
133
+ :param tokenizer: the tokenizer of the evaluation model
134
+ :param max_token_nums: the maximum number of tokens constraint for the prompt
135
+
136
+ :return: the constructed prompt
137
+ """
138
+
139
+ # comment symbol for different languages
140
+ comment_symbol = "#" if language == "python" else "//"
141
+
142
+ # construct the cross-file prompt and in-file prompt separately
143
+ # cross-file prompt
144
+ cross_file_prompt = f"{comment_symbol} Repo Name: {data['repo_name']}\n"
145
+
146
+ for snippet in data['context']:
147
+ cross_file_prompt += f"{comment_symbol} Path: {snippet['path']}\n{snippet['snippet']}" + "\n\n"
148
+
149
+ # in-file prompt
150
+ in_file_prompt = f"{comment_symbol} Path: {data['file_path']}\n{data['import_statement']}\n{data['cropped_code']}\n"
151
+
152
+ # if we assign the tokenizer and the max_token_nums, we will truncate the cross-file prompt to meet the constraint
153
+ if tokenizer is not None and max_token_nums is not None:
154
+
155
+ cross_file_prompt_token_nums = len(tokenizer.encode(cross_file_prompt))
156
+ in_file_prompt_token_nums = len(tokenizer.encode(in_file_prompt))
157
+
158
+ exceed_token_nums = cross_file_prompt_token_nums + in_file_prompt_token_nums - max_token_nums
159
+
160
+ if exceed_token_nums > 0:
161
+ # split the cross-file prompt into lines
162
+ cross_file_prompt_lines = cross_file_prompt.split("\n")
163
+ # drop lines from end until the extra token number is less than 0
164
+ for i in range(len(repo_prompt_lines)-1, -1, -1):
165
+ extra_token_num -= len(tokenizer.encode(cross_file_prompt_lines[i]))
166
+ if extra_token_num < 0:
167
+ break
168
+
169
+ # join the lines back
170
+ cross_file_prompt = "\n".join(cross_file_prompt_lines[:i+1]) + "\n\n"
171
+
172
+ # combine the cross-file prompt and in-file prompt
173
+ prompt = cross_file_prompt + in_file_prompt
174
+
175
+ # normalize some empty lines
176
+ prompt = re.sub(r'\n{4,}', '\n\n', prompt)
177
+
178
+ return prompt
179
+ ```
180
+
181
+ - **Q:** How to load the dataset?
182
+
183
+ **A:** You can simply use the following code to load the dataset:
184
+
185
+ ```python
186
+ from datasets import load_dataset
187
+
188
+ dataset = load_dataset("tianyang/repobench_java_v1.1")
189
+ ```
190
+
191
+ To construct the prompt for next line prediction, you can refer to the official implementation provided in the previous question and use the `construct_prompt` function to construct the prompt, for example:
192
+
193
+ ```python
194
+ from transformers import AutoTokenizer, AutoModelForCausalLM
195
+
196
+ tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-1.3b-base")
197
+ model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-1.3b-base")
198
+
199
+ prompt = construct_prompt(dataset['cross_file_first'][0], language="java", tokenizer=tokenizer, max_token_nums=15800)
200
+ ```
201
+
202
+ - **Q:** How often will the dataset be updated?
203
+
204
+ **A:** We plan to update the dataset every three months, but there might be slight delays considering the time required for data crawling and our own schedules. If you require updated data, please feel free to contact us, and we can coordinate the timing and expedite the process.
205
+
206
+ - **Q:** What models should I use to evaluate the dataset?
207
+
208
+ **A:** RepoBench is designed to evaluate base models, not those that have been instruction fine-tuned. Please use base models for evaluation.
209
+
210
+ - **Q:** I am training a new model but the knowledge cutoff date is after the dataset's. Can you provide me with the latest data?
211
+
212
+ **A:** Sure! We are happy to provide you with the latest data (even customized data with specific requirements). Please feel free to contact us.
213
+
214
+ - **Q:** Can I opt-out?
215
+
216
+ **A:** Yes, you can opt-out your repository from the dataset. Please check [Am I in RepoBench?](https://huggingface.co/spaces/tianyang/in-the-repobench), we will upload the raw data of the repository information we crawled at least 15 days before the dataset creation and release. We will respect your decision and remove your repository from the dataset if you opt-out.
217
+
218
+ ## Citation
219
+
220
+ If you find RepoBench useful in your research, please consider citing the paper using the following BibTeX entry:
221
+
222
+ ```bibtex
223
+ @misc{liu2023repobench,
224
+ title={RepoBench: Benchmarking Repository-Level Code Auto-Completion Systems},
225
+ author={Tianyang Liu and Canwen Xu and Julian McAuley},
226
+ year={2024},
227
+ url={https://arxiv.org/abs/2306.03091},
228
+ booktitle={International Conference on Learning Representations}
229
+ }
230
+ ```
231
+
232
+ Your interest and contributions to RepoBench are immensely valued. Happy coding! 🚀