Datasets:
Tasks:
Text Generation
Modalities:
Text
Formats:
json
Size:
100K - 1M
Tags:
text-generation
License:
File size: 7,114 Bytes
0d0c10b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
# -*- coding: utf-8 -*-
"""
@author:XuMing(xuming624@qq.com)
@description:
Natural Language Generation Chinese Corpus.(medical)
"""
import os
import json
import datasets
_DESCRIPTION = """纯文本数据,中文医疗数据集,包含预训练数据的百科数据,指令微调数据和奖励模型数据。"""
_HOMEPAGE = "https://github.com/shibing624/MedicalGPT"
_CITATION = ""
_LICENSE = ""
_BASE_URL = "https://huggingface.co/datasets/shibing624/medical/resolve/main/"
# file url: https://huggingface.co/datasets/shibing624/medical/resolve/main/finetune/test_zh_0.json
class NewDataset(datasets.GeneratorBasedBuilder):
"""Medical Chinese Version"""
VERSION = datasets.Version("1.0.1")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="pretrain", version=VERSION, description="pretrain data"),
datasets.BuilderConfig(name="finetune", version=VERSION, description="finetune data"),
datasets.BuilderConfig(name="reward", version=VERSION, description="reward data"),
]
def _info(self):
if self.config.name == "pretrain":
features = datasets.Features(
{
"text": datasets.Value("string")
}
)
elif self.config.name == 'finetune':
features = datasets.Features(
{
"instruction": datasets.Value("string"),
"input": datasets.Value("string"),
"output": datasets.Value("string")
}
)
elif self.config.name == 'reward':
features = datasets.Features(
{
"question": datasets.Value("string"),
"response_chosen": datasets.Value("string"),
"response_rejected": datasets.Value("string")
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
# supervised_keys=("sentence", "label"),
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
data_url = _BASE_URL + self.config.name
if self.config.name == 'pretrain':
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": dl_manager.download_and_extract(f"{data_url}/train_encyclopedia.json"),
"split": "train"
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": dl_manager.download_and_extract(f"{data_url}/valid_encyclopedia.json"),
"split": "dev"
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": dl_manager.download_and_extract(f"{data_url}/test_encyclopedia.json"),
"split": "test"
},
),
]
elif self.config.name == 'finetune':
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": dl_manager.download_and_extract([f"{data_url}/train_zh_0.json", f"{data_url}/train_en_1.json"]),
"split": "train"
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": dl_manager.download_and_extract([f"{data_url}/valid_zh_0.json", f"{data_url}/valid_en_1.json"]),
"split": "dev"
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": dl_manager.download_and_extract([f"{data_url}/test_zh_0.json", f"{data_url}/test_en_1.json"]),
"split": "test"
},
),
]
elif self.config.name == 'reward':
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": dl_manager.download_and_extract(f"{data_url}/train.json"),
"split": "train"
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": dl_manager.download_and_extract(f"{data_url}/valid.json"),
"split": "dev"
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": dl_manager.download_and_extract(f"{data_url}/test.json"),
"split": "test"
},
),
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepath, split):
id = 0
if isinstance(filepath, str):
filepath = [filepath]
for file in filepath:
with open(file, encoding="utf-8") as f:
for key, row in enumerate(f):
data = json.loads(row)
if self.config.name == "pretrain":
yield id, {
"text": data["text"]
}
elif self.config.name == 'finetune':
yield id, {
"instruction": data["instruction"],
"input": data["input"],
"output": data["output"]
}
elif self.config.name == 'reward':
yield id, {
"question": data["question"],
"response_chosen": data["response_chosen"],
"response_rejected": data["response_rejected"]
}
id += 1
|