Datasets:
timm
/

Modalities:
Image
Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
License:
File size: 4,950 Bytes
e26b1d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd8779f
e26b1d0
 
bd8779f
e26b1d0
 
bd8779f
e26b1d0
 
bd8779f
e26b1d0
 
 
 
 
 
 
 
 
c428563
 
 
 
 
 
bd8779f
 
e26b1d0
c428563
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd8779f
 
 
 
 
 
 
 
c428563
 
bd8779f
c428563
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
---
dataset_info:
  features:
  - name: image
    dtype: image
  - name: label
    dtype:
      class_label:
        names:
          '0': n01532829
          '1': n01558993
          '2': n01704323
          '3': n01749939
          '4': n01770081
          '5': n01843383
          '6': n01855672
          '7': n01910747
          '8': n01930112
          '9': n01981276
          '10': n02074367
          '11': n02089867
          '12': n02091244
          '13': n02091831
          '14': n02099601
          '15': n02101006
          '16': n02105505
          '17': n02108089
          '18': n02108551
          '19': n02108915
          '20': n02110063
          '21': n02110341
          '22': n02111277
          '23': n02113712
          '24': n02114548
          '25': n02116738
          '26': n02120079
          '27': n02129165
          '28': n02138441
          '29': n02165456
          '30': n02174001
          '31': n02219486
          '32': n02443484
          '33': n02457408
          '34': n02606052
          '35': n02687172
          '36': n02747177
          '37': n02795169
          '38': n02823428
          '39': n02871525
          '40': n02950826
          '41': n02966193
          '42': n02971356
          '43': n02981792
          '44': n03017168
          '45': n03047690
          '46': n03062245
          '47': n03075370
          '48': n03127925
          '49': n03146219
          '50': n03207743
          '51': n03220513
          '52': n03272010
          '53': n03337140
          '54': n03347037
          '55': n03400231
          '56': n03417042
          '57': n03476684
          '58': n03527444
          '59': n03535780
          '60': n03544143
          '61': n03584254
          '62': n03676483
          '63': n03770439
          '64': n03773504
          '65': n03775546
          '66': n03838899
          '67': n03854065
          '68': n03888605
          '69': n03908618
          '70': n03924679
          '71': n03980874
          '72': n03998194
          '73': n04067472
          '74': n04146614
          '75': n04149813
          '76': n04243546
          '77': n04251144
          '78': n04258138
          '79': n04275548
          '80': n04296562
          '81': n04389033
          '82': n04418357
          '83': n04435653
          '84': n04443257
          '85': n04509417
          '86': n04515003
          '87': n04522168
          '88': n04596742
          '89': n04604644
          '90': n04612504
          '91': n06794110
          '92': n07584110
          '93': n07613480
          '94': n07697537
          '95': n07747607
          '96': n09246464
          '97': n09256479
          '98': n13054560
          '99': n13133613
  splits:
  - name: train
    num_bytes: 6284840508
    num_examples: 50000
  - name: validation
    num_bytes: 1286953696
    num_examples: 10000
  - name: test
    num_bytes: 670707560
    num_examples: 5000
  download_size: 7433461683
  dataset_size: 8242501764
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: validation
    path: data/validation-*
  - split: test
    path: data/test-*
license: other
license_name: imagenet
license_link: https://www.image-net.org/download.php
task_categories:
- image-classification
pretty_name: Mini-ImageNet
size_categories:
- 10K<n<100K
---

## Dataset Description

A mini version of ImageNet-1k with 100 of 1000 classes present.

Unlike some 'mini' variants this one includes the original images at their original sizes. Many such subsets downsample to 84x84 or other smaller resolutions.

### Data Splits

#### Train
* 50000 samples from ImageNet-1k train split

#### Validation
* 10000 samples from ImageNet-1k train split

#### Test
* 5000 samples from ImageNet-1k validation split (all 50 samples per class)

### Usage

This dataset is good for testing hparams and models in `timm`

#### Train

`python train.py --dataset hfds/timm/mini-imagenet --model resnet50 --amp --num-classes 100`

### Citation Information

For the specific instance of this mini variant I am not sure what the origin is. It is different from commonly referenced [Vinyales et al.,2016](https://arxiv.org/abs/1606.04080) as it doesn't match the classes / splits.

Train & validation splits match train & test of https://www.kaggle.com/datasets/ctrnngtrung/miniimagenet ... it is not clear where that originated though.

Original ImageNet citation:
```bibtex
@article{imagenet15russakovsky,
    Author = {Olga Russakovsky and Jia Deng and Hao Su and Jonathan Krause and Sanjeev Satheesh and Sean Ma and Zhiheng Huang and Andrej Karpathy and Aditya Khosla and Michael Bernstein and Alexander C. Berg and Li Fei-Fei},
    Title = { {ImageNet Large Scale Visual Recognition Challenge} },
    Year = {2015},
    journal   = {International Journal of Computer Vision (IJCV)},
    doi = {10.1007/s11263-015-0816-y},
    volume={115},
    number={3},
    pages={211-252}
}
```