Datasets:
File size: 4,950 Bytes
e26b1d0 bd8779f e26b1d0 bd8779f e26b1d0 bd8779f e26b1d0 bd8779f e26b1d0 c428563 bd8779f e26b1d0 c428563 bd8779f c428563 bd8779f c428563 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
---
dataset_info:
features:
- name: image
dtype: image
- name: label
dtype:
class_label:
names:
'0': n01532829
'1': n01558993
'2': n01704323
'3': n01749939
'4': n01770081
'5': n01843383
'6': n01855672
'7': n01910747
'8': n01930112
'9': n01981276
'10': n02074367
'11': n02089867
'12': n02091244
'13': n02091831
'14': n02099601
'15': n02101006
'16': n02105505
'17': n02108089
'18': n02108551
'19': n02108915
'20': n02110063
'21': n02110341
'22': n02111277
'23': n02113712
'24': n02114548
'25': n02116738
'26': n02120079
'27': n02129165
'28': n02138441
'29': n02165456
'30': n02174001
'31': n02219486
'32': n02443484
'33': n02457408
'34': n02606052
'35': n02687172
'36': n02747177
'37': n02795169
'38': n02823428
'39': n02871525
'40': n02950826
'41': n02966193
'42': n02971356
'43': n02981792
'44': n03017168
'45': n03047690
'46': n03062245
'47': n03075370
'48': n03127925
'49': n03146219
'50': n03207743
'51': n03220513
'52': n03272010
'53': n03337140
'54': n03347037
'55': n03400231
'56': n03417042
'57': n03476684
'58': n03527444
'59': n03535780
'60': n03544143
'61': n03584254
'62': n03676483
'63': n03770439
'64': n03773504
'65': n03775546
'66': n03838899
'67': n03854065
'68': n03888605
'69': n03908618
'70': n03924679
'71': n03980874
'72': n03998194
'73': n04067472
'74': n04146614
'75': n04149813
'76': n04243546
'77': n04251144
'78': n04258138
'79': n04275548
'80': n04296562
'81': n04389033
'82': n04418357
'83': n04435653
'84': n04443257
'85': n04509417
'86': n04515003
'87': n04522168
'88': n04596742
'89': n04604644
'90': n04612504
'91': n06794110
'92': n07584110
'93': n07613480
'94': n07697537
'95': n07747607
'96': n09246464
'97': n09256479
'98': n13054560
'99': n13133613
splits:
- name: train
num_bytes: 6284840508
num_examples: 50000
- name: validation
num_bytes: 1286953696
num_examples: 10000
- name: test
num_bytes: 670707560
num_examples: 5000
download_size: 7433461683
dataset_size: 8242501764
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
license: other
license_name: imagenet
license_link: https://www.image-net.org/download.php
task_categories:
- image-classification
pretty_name: Mini-ImageNet
size_categories:
- 10K<n<100K
---
## Dataset Description
A mini version of ImageNet-1k with 100 of 1000 classes present.
Unlike some 'mini' variants this one includes the original images at their original sizes. Many such subsets downsample to 84x84 or other smaller resolutions.
### Data Splits
#### Train
* 50000 samples from ImageNet-1k train split
#### Validation
* 10000 samples from ImageNet-1k train split
#### Test
* 5000 samples from ImageNet-1k validation split (all 50 samples per class)
### Usage
This dataset is good for testing hparams and models in `timm`
#### Train
`python train.py --dataset hfds/timm/mini-imagenet --model resnet50 --amp --num-classes 100`
### Citation Information
For the specific instance of this mini variant I am not sure what the origin is. It is different from commonly referenced [Vinyales et al.,2016](https://arxiv.org/abs/1606.04080) as it doesn't match the classes / splits.
Train & validation splits match train & test of https://www.kaggle.com/datasets/ctrnngtrung/miniimagenet ... it is not clear where that originated though.
Original ImageNet citation:
```bibtex
@article{imagenet15russakovsky,
Author = {Olga Russakovsky and Jia Deng and Hao Su and Jonathan Krause and Sanjeev Satheesh and Sean Ma and Zhiheng Huang and Andrej Karpathy and Aditya Khosla and Michael Bernstein and Alexander C. Berg and Li Fei-Fei},
Title = { {ImageNet Large Scale Visual Recognition Challenge} },
Year = {2015},
journal = {International Journal of Computer Vision (IJCV)},
doi = {10.1007/s11263-015-0816-y},
volume={115},
number={3},
pages={211-252}
}
``` |