Datasets:
tner
/

Modalities:
Text
Languages:
English
ArXiv:
Libraries:
Datasets
License:
asahi417 commited on
Commit
679f79d
1 Parent(s): e1003bc
Files changed (5) hide show
  1. README.md +89 -0
  2. dataset/test.json +0 -0
  3. dataset/train.json +0 -0
  4. dataset/valid.json +0 -0
  5. tweebank_ner.py +86 -0
README.md ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license:
5
+ - other
6
+ multilinguality:
7
+ - monolingual
8
+ size_categories:
9
+ - 1k<10K
10
+ task_categories:
11
+ - token-classification
12
+ task_ids:
13
+ - named-entity-recognition
14
+ pretty_name: WNUT 2017
15
+ ---
16
+
17
+ # Dataset Card for "tner/wnut2017"
18
+
19
+ ## Dataset Description
20
+
21
+ - **Repository:** [T-NER](https://github.com/asahi417/tner)
22
+ - **Paper:** [https://aclanthology.org/W17-4418/](https://aclanthology.org/W17-4418/)
23
+ - **Dataset:** WNUT 2017
24
+ - **Domain:** Twitter, Reddit, YouTube, and StackExchange
25
+ - **Number of Entity:** 6
26
+
27
+
28
+ ### Dataset Summary
29
+ WNUT 2017 NER dataset formatted in a part of [TNER](https://github.com/asahi417/tner) project.
30
+ - Entity Types: `creative-work`, `corporation`, `group`, `location`, `person`, `product`
31
+
32
+ ## Dataset Structure
33
+
34
+ ### Data Instances
35
+ An example of `train` looks as follows.
36
+
37
+ ```
38
+ {
39
+ 'tokens': ['@paulwalk', 'It', "'s", 'the', 'view', 'from', 'where', 'I', "'m", 'living', 'for', 'two', 'weeks', '.', 'Empire', 'State', 'Building', '=', 'ESB', '.', 'Pretty', 'bad', 'storm', 'here', 'last', 'evening', '.'],
40
+ 'tags': [12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 3, 9, 9, 12, 3, 12, 12, 12, 12, 12, 12, 12, 12]
41
+ }
42
+ ```
43
+
44
+ ### Label ID
45
+ The label2id dictionary can be found at [here](https://huggingface.co/datasets/tner/wnut2017/raw/main/dataset/label.json).
46
+ ```python
47
+ {
48
+ "B-corporation": 0,
49
+ "B-creative-work": 1,
50
+ "B-group": 2,
51
+ "B-location": 3,
52
+ "B-person": 4,
53
+ "B-product": 5,
54
+ "I-corporation": 6,
55
+ "I-creative-work": 7,
56
+ "I-group": 8,
57
+ "I-location": 9,
58
+ "I-person": 10,
59
+ "I-product": 11,
60
+ "O": 12
61
+ }
62
+ ```
63
+
64
+ ### Data Splits
65
+
66
+ | name |train|validation|test|
67
+ |---------|----:|---------:|---:|
68
+ |wnut2017 | 2395| 1009|1287|
69
+
70
+ ### Citation Information
71
+
72
+ ```
73
+ @inproceedings{derczynski-etal-2017-results,
74
+ title = "Results of the {WNUT}2017 Shared Task on Novel and Emerging Entity Recognition",
75
+ author = "Derczynski, Leon and
76
+ Nichols, Eric and
77
+ van Erp, Marieke and
78
+ Limsopatham, Nut",
79
+ booktitle = "Proceedings of the 3rd Workshop on Noisy User-generated Text",
80
+ month = sep,
81
+ year = "2017",
82
+ address = "Copenhagen, Denmark",
83
+ publisher = "Association for Computational Linguistics",
84
+ url = "https://aclanthology.org/W17-4418",
85
+ doi = "10.18653/v1/W17-4418",
86
+ pages = "140--147",
87
+ abstract = "This shared task focuses on identifying unusual, previously-unseen entities in the context of emerging discussions. Named entities form the basis of many modern approaches to other tasks (like event clustering and summarization), but recall on them is a real problem in noisy text - even among annotators. This drop tends to be due to novel entities and surface forms. Take for example the tweet {``}so.. kktny in 30 mins?!{''} {--} even human experts find the entity {`}kktny{'} hard to detect and resolve. The goal of this task is to provide a definition of emerging and of rare entities, and based on that, also datasets for detecting these entities. The task as described in this paper evaluated the ability of participating entries to detect and classify novel and emerging named entities in noisy text.",
88
+ }
89
+ ```
dataset/test.json ADDED
The diff for this file is too large to render. See raw diff
 
dataset/train.json ADDED
The diff for this file is too large to render. See raw diff
 
dataset/valid.json ADDED
The diff for this file is too large to render. See raw diff
 
tweebank_ner.py ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ NER dataset compiled by T-NER library https://github.com/asahi417/tner/tree/master/tner """
2
+ import json
3
+ from itertools import chain
4
+ import datasets
5
+
6
+ logger = datasets.logging.get_logger(__name__)
7
+ _DESCRIPTION = """[Tweebank NER](https://arxiv.org/abs/2201.07281)"""
8
+ _NAME = "tweebank_ner"
9
+ _VERSION = "1.0.0"
10
+ _CITATION = """
11
+ @article{DBLP:journals/corr/abs-2201-07281,
12
+ author = {Hang Jiang and
13
+ Yining Hua and
14
+ Doug Beeferman and
15
+ Deb Roy},
16
+ title = {Annotating the Tweebank Corpus on Named Entity Recognition and Building
17
+ {NLP} Models for Social Media Analysis},
18
+ journal = {CoRR},
19
+ volume = {abs/2201.07281},
20
+ year = {2022},
21
+ url = {https://arxiv.org/abs/2201.07281},
22
+ eprinttype = {arXiv},
23
+ eprint = {2201.07281},
24
+ timestamp = {Fri, 21 Jan 2022 13:57:15 +0100},
25
+ biburl = {https://dblp.org/rec/journals/corr/abs-2201-07281.bib},
26
+ bibsource = {dblp computer science bibliography, https://dblp.org}
27
+ }
28
+ """
29
+
30
+ _HOME_PAGE = "https://github.com/asahi417/tner"
31
+ _URL = f'https://huggingface.co/datasets/tner/{_NAME}/raw/main/dataset'
32
+ _URLS = {
33
+ str(datasets.Split.TEST): [f'{_URL}/test.json'],
34
+ str(datasets.Split.TRAIN): [f'{_URL}/train.json'],
35
+ str(datasets.Split.VALIDATION): [f'{_URL}/valid.json'],
36
+ }
37
+
38
+
39
+ class TweebankNERConfig(datasets.BuilderConfig):
40
+ """BuilderConfig"""
41
+
42
+ def __init__(self, **kwargs):
43
+ """BuilderConfig.
44
+
45
+ Args:
46
+ **kwargs: keyword arguments forwarded to super.
47
+ """
48
+ super(TweebankNERConfig, self).__init__(**kwargs)
49
+
50
+
51
+ class TweebankNER(datasets.GeneratorBasedBuilder):
52
+ """Dataset."""
53
+
54
+ BUILDER_CONFIGS = [
55
+ TweebankNERConfig(name=_NAME, version=datasets.Version(_VERSION), description=_DESCRIPTION),
56
+ ]
57
+
58
+ def _split_generators(self, dl_manager):
59
+ downloaded_file = dl_manager.download_and_extract(_URLS)
60
+ return [datasets.SplitGenerator(name=i, gen_kwargs={"filepaths": downloaded_file[str(i)]})
61
+ for i in [datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST]]
62
+
63
+ def _generate_examples(self, filepaths):
64
+ _key = 0
65
+ for filepath in filepaths:
66
+ logger.info(f"generating examples from = {filepath}")
67
+ with open(filepath, encoding="utf-8") as f:
68
+ _list = [i for i in f.read().split('\n') if len(i) > 0]
69
+ for i in _list:
70
+ data = json.loads(i)
71
+ yield _key, data
72
+ _key += 1
73
+
74
+ def _info(self):
75
+ return datasets.DatasetInfo(
76
+ description=_DESCRIPTION,
77
+ features=datasets.Features(
78
+ {
79
+ "tokens": datasets.Sequence(datasets.Value("string")),
80
+ "tags": datasets.Sequence(datasets.Value("int32")),
81
+ }
82
+ ),
83
+ supervised_keys=None,
84
+ homepage=_HOME_PAGE,
85
+ citation=_CITATION,
86
+ )