Datasets:

ArXiv:
RedPajama-Data-V2 / RedPajama-Data-V2.py
mauriceweber's picture
rpv2-subsamples (#26)
02c400d verified
# Copyright 2023 Together Computer
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""RedPajama V2: Quality annotated Web Text Documents."""
import gzip
import json
import traceback
from typing import List
import datasets
import pyarrow.parquet as pq
logger = datasets.logging.get_logger(__name__)
_DESCRIPTION = """\
RedPajama V2: an Open Dataset for Training Large Language Models
"""
_URL_BASE = "https://data.together.xyz/redpajama-data-v2/v1.0.0"
_LANGUAGES = ("en", "de", "fr", "es", "it")
_MISSING_FILES_PATTERN = "urls/missing-{component}.txt"
_NUM_SHARDS = 5000
_SUBSAMPLE_FILE_COUNTS = {"sample-10B": 1, "sample-100B": 10, "sample-1T": 100}
_CC_SNAPSHOT_IDS = (
"2014-15",
"2014-23",
"2014-35",
"2014-41",
"2014-42",
"2014-49",
"2014-52",
"2015-14",
"2015-22",
"2015-27",
"2015-32",
"2015-35",
"2015-40",
"2015-48",
"2016-07",
"2016-18",
"2016-22",
"2016-26",
"2016-30",
"2016-36",
"2016-40",
"2016-44",
"2016-50",
"2017-04",
"2017-09",
"2017-17",
"2017-22",
"2017-26",
"2017-30",
"2017-34",
"2017-39",
"2017-43",
"2017-47",
"2017-51",
"2018-05",
"2018-09",
"2018-13",
"2018-17",
"2018-22",
"2018-26",
"2018-30",
"2018-34",
"2018-39",
"2018-43",
"2018-47",
"2018-51",
"2019-04",
"2019-09",
"2019-13",
"2019-18",
"2019-22",
"2019-26",
"2019-30",
"2019-35",
"2019-39",
"2019-43",
"2019-47",
"2019-51",
"2020-05",
"2020-10",
"2020-16",
"2020-24",
"2020-29",
"2020-34",
"2020-40",
"2020-45",
"2020-50",
"2021-04",
"2021-10",
"2021-17",
"2021-21",
"2021-25",
"2021-31",
"2021-39",
"2021-43",
"2021-49",
"2022-05",
"2022-21",
"2022-27",
"2022-33",
"2022-40",
"2022-49",
"2023-06",
"2023-14",
)
class RedPajamaDataV2Config(datasets.BuilderConfig):
"""BuilderConfig for RedPajama."""
def __init__(self, *args, **kwargs):
"""BuilderConfig for RedPajama.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(RedPajamaDataV2Config, self).__init__(**kwargs)
self.partition: str = kwargs.pop("partition", "all")
self.snapshots: List[str] = kwargs.pop("snapshots", _CC_SNAPSHOT_IDS)
self.languages: List[str] = kwargs.pop("languages", _LANGUAGES)
class RedPajamaV2(datasets.GeneratorBasedBuilder):
"""RedPajama V2: Quality annotated Web Text Documents."""
BUILDER_CONFIGS = [
RedPajamaDataV2Config(
name="sample",
version=datasets.Version("1.0.0", ""),
description=f"RedPajamaV2 Sample",
),
RedPajamaDataV2Config(
name="sample-10B",
version=datasets.Version("1.0.0", ""),
description=f"RedPajamaV2 Sample with 10B tokens",
),
RedPajamaDataV2Config(
name="sample-100B",
version=datasets.Version("1.0.0", ""),
description=f"RedPajamaV2 Sample with 100B tokens",
),
RedPajamaDataV2Config(
name="sample-1T",
version=datasets.Version("1.0.0", ""),
description=f"RedPajamaV2 Sample with 1T tokens",
),
RedPajamaDataV2Config(
name="default",
version=datasets.Version("1.0.0", ""),
description=f"RedPajamaV2",
),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"raw_content": datasets.Value("string"),
"doc_id": datasets.Value("string"),
"meta": datasets.Value("string"),
"quality_signals": datasets.Value("string"),
}
),
supervised_keys=None,
)
def _split_generators_sample(self, dl_manager):
# fetch list of base tags
sample_base_tags_fp = dl_manager.download_and_extract(
"sample/sample_listings.txt"
)
with open(sample_base_tags_fp, "r") as fd:
sample_base_tags = [line.strip() for line in fd]
# fetch documents
logger.info(f"Downloading {len(sample_base_tags)} documents files.")
documents_files = dl_manager.download(
{
base_tag: f"sample/documents/{base_tag}.json.gz"
for base_tag in sample_base_tags
}
)
# fetch quality signals
logger.info(f"Downloading {len(sample_base_tags)} quality signals files.")
quality_signals_files = dl_manager.download(
{
base_tag: f"sample/quality_signals/{base_tag}.signals.json.gz"
for base_tag in sample_base_tags
}
)
# fetch ids of duplicates
logger.info(f"Downloading {len(sample_base_tags)} duplicates ids files.")
duplicates_ids_files = dl_manager.download(
{
base_tag: f"sample/duplicates/{base_tag}.duplicates.parquet"
for base_tag in sample_base_tags
}
)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"base_tags": sample_base_tags,
"documents_files": documents_files,
"quality_signals_files": quality_signals_files,
"duplicates_ids_files": duplicates_ids_files,
},
)
]
def _split_generators_full(self, dl_manager):
snapshots = getattr(self.config, "snapshots", _CC_SNAPSHOT_IDS)
languages = getattr(self.config, "languages", _LANGUAGES)
partition = getattr(self.config, "partition", "all")
if self.config.name in ("sample-10B", "sample-100B", "sample-1T"):
partition = "head_middle"
languages = _LANGUAGES
snapshots = _CC_SNAPSHOT_IDS
num_shards = _SUBSAMPLE_FILE_COUNTS[self.config.name]
else:
num_shards = _NUM_SHARDS
if partition == "all":
partitions = ["head", "middle", "tail"]
elif partition == "head_middle":
partitions = ["head", "middle"]
elif partition == "tail":
partitions = [partition]
else:
raise ValueError(f"invalid partition: {partition}")
# fetch list of missing files (e.g., missing duplicates or corrupted documents and
# quality signal files)
missing_files_paths = dl_manager.download_and_extract(
{
component: _MISSING_FILES_PATTERN.format(component=component)
for component in ("documents", "signals", "duplicates")
}
)
missing_files = {}
for component, missing_file in missing_files_paths.items():
with open(missing_file, "r", encoding="utf-8") as f:
missing_files[component] = set(line.strip() for line in f)
# build list of urls to fetch
documents_urls = {}
quality_signals_urls = {}
duplicates_ids_urls = {}
base_tags = []
for lang in languages:
for snapshot in snapshots:
for part in partitions:
for n in range(num_shards):
base_tag = f"{snapshot}/{n:04d}/{lang}_{part}"
base_tags.append(base_tag)
# documents
url = f"{_URL_BASE}/documents/{base_tag}.json.gz"
if url not in missing_files["documents"]:
documents_urls[base_tag] = url
# quality signals
url = f"{_URL_BASE}/quality_signals/{base_tag}.signals.json.gz"
if url not in missing_files["signals"]:
quality_signals_urls[base_tag] = url
# duplicates
url = f"{_URL_BASE}/duplicates/{base_tag}.duplicates.parquet"
if url not in missing_files["duplicates"]:
duplicates_ids_urls[base_tag] = url
# download documents files
logger.info(f"Downloading {len(documents_urls)} documents files.")
documents_files = dl_manager.download(documents_urls)
# download quality signals files
logger.info(f"Downloading {len(quality_signals_urls)} quality signals files.")
quality_signals_files = dl_manager.download(quality_signals_urls)
# download duplicates ids files
logger.info(f"Downloading {len(duplicates_ids_urls)} duplicates ids files.")
duplicates_ids_files = dl_manager.download(duplicates_ids_urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"base_tags": base_tags,
"documents_files": documents_files,
"quality_signals_files": quality_signals_files,
"duplicates_ids_files": duplicates_ids_files,
},
)
]
def _split_generators(self, dl_manager):
if self.config.name == "sample":
return self._split_generators_sample(dl_manager)
return self._split_generators_full(dl_manager)
def _generate_examples(
self, base_tags, documents_files, quality_signals_files, duplicates_ids_files
):
key = 0
for base_tag in base_tags:
doc_file = documents_files.get(base_tag)
qs_file = quality_signals_files.get(base_tag)
dupe_file = duplicates_ids_files.get(base_tag)
if doc_file is None:
continue
for sample in self.__get_generator(base_tag, doc_file, qs_file, dupe_file):
yield key, sample
key += 1
def __get_generator(self, base_tag, doc_file, qs_file, dupe_file):
if "_tail" in base_tag:
yield from self._handle_tail(base_tag, doc_file, qs_file, dupe_file)
else:
yield from self._handle_head_middle(base_tag, doc_file, qs_file, dupe_file)
def _handle_tail(self, base_tag, doc_file, qs_file, dupe_file):
try:
with gzip.open(doc_file, "rt", encoding="utf-8") as df:
for row, doc in enumerate(df):
doc_id = f"{base_tag}.json.gz/{row}"
try:
yield self.handle_record("tail", doc_id, doc, None, None)
except Exception as e:
logger.warning(f"failed handling row {row} in {doc_file}")
traceback.print_exc()
continue
except gzip.BadGzipFile as e:
# skip broken gzip files
print(f"BadGzipFile: {doc_file, qs_file}")
traceback.print_exc()
return
def _handle_head_middle(self, base_tag, doc_file, qs_file, dupe_file):
if qs_file is None:
yield from self._handle_tail(base_tag, doc_file, None, None)
return
# load duplicates
try:
with open(dupe_file, "rb") as df:
duplicates = set(
pq.read_table(df, columns=["doc_id"], use_pandas_metadata=False)[
"doc_id"
].to_pylist()
)
except Exception as e:
logger.warning(f"no duplicate ids found for {base_tag}")
duplicates = set()
try:
with gzip.open(doc_file, "rt", encoding="utf-8") as df:
with gzip.open(qs_file, "rt", encoding="utf-8") as qf:
for row, (doc, qs) in enumerate(zip(df, qf)):
doc_id = f"{base_tag}.json.gz/{row}"
try:
yield self.handle_record(
part="head_middle",
doc_id=doc_id,
doc=doc,
qs=qs,
is_duplicate=doc_id in duplicates,
)
except Exception as e:
logger.warning(
f"failed handling row {row} in {doc_file} ({qs_file})"
)
traceback.print_exc()
continue
except gzip.BadGzipFile as e:
# skip broken gzip files
print(f"BadGzipFile: {doc_file, qs_file}")
traceback.print_exc()
return
@staticmethod
def handle_record(part, doc_id, doc, qs, is_duplicate=None):
doc = json.loads(doc)
qs = json.loads(qs) if qs is not None else {}
meta = {
"url": doc["url"],
"partition": part,
"language": doc["language"],
"source_domain": doc["source_domain"],
"date_download": doc["date_download"],
"digest": doc["digest"],
}
quality_signals = qs.get("quality_signals", {})
quality_signals["is_duplicate"] = is_duplicate
return {
"raw_content": doc["raw_content"],
"doc_id": doc_id,
"meta": json.dumps(meta),
"quality_signals": json.dumps(quality_signals),
}