trueorfalse441 commited on
Commit
6db1b6b
1 Parent(s): dce730f

Upload 4 files

Browse files
Files changed (4) hide show
  1. .gitattributes +0 -1
  2. README.md +229 -1
  3. dataset_infos.json +85 -0
  4. kmhas_korean_hate_speech.py +114 -0
.gitattributes CHANGED
@@ -26,7 +26,6 @@
26
  *.safetensors filter=lfs diff=lfs merge=lfs -text
27
  saved_model/**/* filter=lfs diff=lfs merge=lfs -text
28
  *.tar.* filter=lfs diff=lfs merge=lfs -text
29
- *.tar filter=lfs diff=lfs merge=lfs -text
30
  *.tflite filter=lfs diff=lfs merge=lfs -text
31
  *.tgz filter=lfs diff=lfs merge=lfs -text
32
  *.wasm filter=lfs diff=lfs merge=lfs -text
 
26
  *.safetensors filter=lfs diff=lfs merge=lfs -text
27
  saved_model/**/* filter=lfs diff=lfs merge=lfs -text
28
  *.tar.* filter=lfs diff=lfs merge=lfs -text
 
29
  *.tflite filter=lfs diff=lfs merge=lfs -text
30
  *.tgz filter=lfs diff=lfs merge=lfs -text
31
  *.wasm filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,3 +1,231 @@
1
  ---
2
- license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ annotations_creators:
3
+ - crowdsourced
4
+ language:
5
+ - ko
6
+ language_creators:
7
+ - found
8
+ license:
9
+ - cc-by-sa-4.0
10
+ multilinguality:
11
+ - monolingual
12
+ pretty_name: 'K-MHaS'
13
+ size_categories:
14
+ - 100K<n<1M
15
+ source_datasets:
16
+ - original
17
+ tags:
18
+ - K-MHaS
19
+ - Korean NLP
20
+ - Hate Speech Detection
21
+ - Dataset
22
+ - Coling2022
23
+ task_categories:
24
+ - text-classification
25
+ task_ids:
26
+ - multi-label-classification
27
+ - hate-speech-detection
28
+ paperswithcode_id: korean-multi-label-hate-speech-dataset
29
+ dataset_info:
30
+ features:
31
+ - name: text
32
+ dtype: string
33
+ - name: label
34
+ sequence:
35
+ class_label:
36
+ names:
37
+ 0: origin
38
+ 1: physical
39
+ 2: politics
40
+ 3: profanity
41
+ 4: age
42
+ 5: gender
43
+ 6: race
44
+ 7: religion
45
+ 8: not_hate_speech
46
+ splits:
47
+ - name: train
48
+ num_bytes: 6845463
49
+ num_examples: 78977
50
+ - name: validation
51
+ num_bytes: 748899
52
+ num_examples: 8776
53
+ - name: test
54
+ num_bytes: 1902352
55
+ num_examples: 21939
56
+ download_size: 9496714
57
+ dataset_size: 109692
58
  ---
59
+
60
+ # Dataset Card for K-MHaS
61
+
62
+ ## Table of Contents
63
+ - [Dataset Description](#dataset-description)
64
+ - [Dataset Summary](#dataset-summary)
65
+ - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
66
+ - [Languages](#languages)
67
+ - [Dataset Structure](#dataset-structure)
68
+ - [Data Instances](#data-instances)
69
+ - [Data Fields](#data-fields)
70
+ - [Data Splits](#data-splits)
71
+ - [Dataset Creation](#dataset-creation)
72
+ - [Curation Rationale](#curation-rationale)
73
+ - [Source Data](#source-data)
74
+ - [Annotations](#annotations)
75
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
76
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
77
+ - [Social Impact of Dataset](#social-impact-of-dataset)
78
+ - [Discussion of Biases](#discussion-of-biases)
79
+ - [Other Known Limitations](#other-known-limitations)
80
+ - [Additional Information](#additional-information)
81
+ - [Dataset Curators](#dataset-curators)
82
+ - [Licensing Information](#licensing-information)
83
+ - [Citation Information](#citation-information)
84
+ - [Contributions](#contributions)
85
+
86
+ ## Sample Code
87
+ <a href="https://colab.research.google.com/drive/171KhS1_LVBtpAFd_kaT8lcrZmhcz5ehY?usp=sharing"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="base"/></a>
88
+
89
+
90
+ ## Dataset Description
91
+
92
+ - **Homepage:** [K-MHaS](https://github.com/adlnlp/K-MHaS)
93
+ - **Repository:** [Korean Multi-label Hate Speech Dataset](https://github.com/adlnlp/K-MHaS)
94
+ - **Paper:** [K-MHaS: A Multi-label Hate Speech Detection Dataset in Korean Online News Comment](https://arxiv.org/abs/2208.10684)
95
+ - **Point of Contact:** [Caren Han](caren.han@sydney.edu.au)
96
+ - **Sample code:** [Colab](https://colab.research.google.com/drive/171KhS1_LVBtpAFd_kaT8lcrZmhcz5ehY?usp=sharing)
97
+
98
+
99
+ ### Dataset Summary
100
+
101
+ The Korean Multi-label Hate Speech Dataset, **K-MHaS**, consists of 109,692 utterances from Korean online news comments, labelled with 8 fine-grained hate speech classes (labels: `Politics`, `Origin`, `Physical`, `Age`, `Gender`, `Religion`, `Race`, `Profanity`) or `Not Hate Speech` class. Each utterance provides from a single to four labels that can handles Korean language patterns effectively. For more details, please refer to our paper about [**K-MHaS**](https://aclanthology.org/2022.coling-1.311), published at COLING 2022.
102
+
103
+ ### Supported Tasks and Leaderboards
104
+ Hate Speech Detection
105
+
106
+ * `binary classification` (labels: `Hate Speech`, `Not Hate Speech`)
107
+ * `multi-label classification`: (labels: `Politics`, `Origin`, `Physical`, `Age`, `Gender`, `Religion`, `Race`, `Profanity`, `Not Hate Speech`)
108
+
109
+ For the multi-label classification, a `Hate Speech` class from the binary classification, is broken down into eight classes, associated with the hate speech category. In order to reflect the social and historical context, we select the eight hate speech classes. For example, the `Politics` class is chosen, due to a significant influence on the style of Korean hate speech.
110
+
111
+ ### Languages
112
+
113
+ Korean
114
+
115
+ ## Dataset Structure
116
+
117
+ ### Data Instances
118
+
119
+ The dataset is provided with train/validation/test set in the txt format. Each instance is a news comment with a corresponding one or more hate speech classes (labels: `Politics`, `Origin`, `Physical`, `Age`, `Gender`, `Religion`, `Race`, `Profanity`) or `Not Hate Speech` class. The label numbers matching in both English and Korean is in the data fields section.
120
+
121
+ ```python
122
+ {'text':'수꼴틀딱시키들이 다 디져야 나라가 똑바로 될것같다..답이 없는 종자들ㅠ'
123
+ 'label': [2, 3, 4]
124
+ }
125
+ ```
126
+
127
+ ### Data Fields
128
+
129
+ * `text`: utterance from Korean online news comment.
130
+ * `label`: the label numbers matching with 8 fine-grained hate speech classes and `not hate speech` class are follows.
131
+ * `0`: `Origin`(`출신차별`) hate speech based on place of origin or identity;
132
+ * `1`: `Physical`(`외모차별`) hate speech based on physical appearance (e.g. body, face) or disability;
133
+ * `2`: `Politics`(`정치성향차별`) hate speech based on political stance;
134
+ * `3`: `Profanity`(`혐오욕설`) hate speech in the form of swearing, cursing, cussing, obscene words, or expletives; or an unspecified hate speech category;
135
+ * `4`: `Age`(`연령차별`) hate speech based on age;
136
+ * `5`: `Gender`(`성차별`) hate speech based on gender or sexual orientation (e.g. woman, homosexual);
137
+ * `6`: `Race`(`인종차별`) hate speech based on ethnicity;
138
+ * `7`: `Religion`(`종교차별`) hate speech based on religion;
139
+ * `8`: `Not Hate Speech`(`해당사항없음`).
140
+
141
+ ### Data Splits
142
+
143
+ In our repository, we provide splitted datasets that have 78,977(train) / 8,776 (validation) / 21,939 (test) samples, preserving the class proportion.
144
+
145
+ ## Dataset Creation
146
+
147
+ ### Curation Rationale
148
+
149
+ We propose K-MHaS, a large size Korean multi-label hate speech detection dataset that represents Korean language patterns effectively. Most datasets in hate speech research are annotated using a single label classification of particular aspects, even though the subjectivity of hate speech cannot be explained with a mutually exclusive annotation scheme. We propose a multi-label hate speech annotation scheme that allows overlapping labels associated with the subjectivity and the intersectionality of hate speech.
150
+
151
+ ### Source Data
152
+
153
+ #### Initial Data Collection and Normalization
154
+
155
+ Our dataset is based on the Korean online news comments available on Kaggle and Github. The unlabeled raw data was collected between January 2018 and June 2020. Please see the details in our paper [K-MHaS](https://aclanthology.org/2022.coling-1.311) published at COLING2020.
156
+
157
+
158
+ #### Who are the source language producers?
159
+
160
+ The language producers are users who left the comments on the Korean online news platform between 2018 and 2020.
161
+
162
+ ### Annotations
163
+
164
+ #### Annotation process
165
+
166
+ We begin with the common categories of hate speech found in literature and match the keywords for each category. After the preliminary round, we investigate the results to merge or remove labels in order to provide the most representative subtype labels of hate speech contextual to the cultural background. Our annotation instructions explain a twolayered annotation to (a) distinguish hate and not hate speech, and (b) the categories of hate speech. Annotators are requested to consider given keywords or alternatives of each category within social, cultural, and historical circumstances. For more details, please refer to the paper [K-MHaS](https://aclanthology.org/2022.coling-1.311).
167
+
168
+ #### Who are the annotators?
169
+
170
+ Five native speakers were recruited for manual annotation in both the preliminary and main rounds.
171
+
172
+ ### Personal and Sensitive Information
173
+
174
+ This datasets contains examples of hateful language, however, has no personal information.
175
+
176
+ ## Considerations for Using the Data
177
+
178
+ ### Social Impact of Dataset
179
+
180
+ We propose K-MHaS, a new large-sized dataset for Korean hate speech detection with a multi-label annotation scheme. We provided extensive baseline experiment results, presenting the usability of a dataset to detect Korean language patterns in hate speech.
181
+
182
+ ### Discussion of Biases
183
+
184
+ All annotators were recruited from a crowdsourcing platform. They were informed about hate speech before handling the data. Our instructions allowed them to feel free to leave if they were uncomfortable with the content. With respect to the potential risks, we note that the subjectivity of human annotation would impact on the quality of the dataset.
185
+
186
+ ### Other Known Limitations
187
+
188
+ [More Information Needed]
189
+
190
+ ## Additional Information
191
+
192
+ ### Dataset Curators
193
+
194
+ This dataset is curated by Taejun Lim, Heejun Lee and Bogeun Jo.
195
+
196
+ ### Licensing Information
197
+
198
+ Creative Commons Attribution-ShareAlike 4.0 International (cc-by-sa-4.0).
199
+
200
+ ### Citation Information
201
+
202
+ ```
203
+ @inproceedings{lee-etal-2022-k,
204
+ title = "K-{MH}a{S}: A Multi-label Hate Speech Detection Dataset in {K}orean Online News Comment",
205
+ author = "Lee, Jean and
206
+ Lim, Taejun and
207
+ Lee, Heejun and
208
+ Jo, Bogeun and
209
+ Kim, Yangsok and
210
+ Yoon, Heegeun and
211
+ Han, Soyeon Caren",
212
+ booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
213
+ month = oct,
214
+ year = "2022",
215
+ address = "Gyeongju, Republic of Korea",
216
+ publisher = "International Committee on Computational Linguistics",
217
+ url = "https://aclanthology.org/2022.coling-1.311",
218
+ pages = "3530--3538",
219
+ abstract = "Online hate speech detection has become an important issue due to the growth of online content, but resources in languages other than English are extremely limited. We introduce K-MHaS, a new multi-label dataset for hate speech detection that effectively handles Korean language patterns. The dataset consists of 109k utterances from news comments and provides a multi-label classification using 1 to 4 labels, and handles subjectivity and intersectionality. We evaluate strong baselines on K-MHaS. KR-BERT with a sub-character tokenizer outperforms others, recognizing decomposed characters in each hate speech class.",
220
+ }
221
+ ```
222
+
223
+ ### Contributions
224
+ The contributors of the work are:
225
+ - [Jean Lee](https://jeanlee-ai.github.io/) (The University of Sydney)
226
+ - [Taejun Lim](https://github.com/taezun) (The University of Sydney)
227
+ - [Heejun Lee](https://bigwaveai.com/) (BigWave AI)
228
+ - [Bogeun Jo](https://bigwaveai.com/) (BigWave AI)
229
+ - Yangsok Kim (Keimyung University)
230
+ - Heegeun Yoon (National Information Society Agency)
231
+ - [Soyeon Caren Han](https://drcarenhan.github.io/) (The University of Western Australia and The University of Sydney)
dataset_infos.json ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"default": {
2
+ "description": "Korean Multi-label Hate Speech Dataset - K-MHaS \n a new multi-label dataset for hate speech detection that consists of 109k utterances from Korean online news comments,\n labelled with 8 fine-grained hate speech classes or not hate speech class. \n",
3
+ "citation": "@inproceedings{lee-etal-2022-k,\n title = \"K-{MH}a{S}: A Multi-label Hate Speech Detection Dataset in {K}orean Online News Comment\",\n author = \"Lee, Jean and\n Lim, Taejun and\n Lee, Heejun and\n Jo, Bogeun and\n Kim, Yangsok and\n Yoon, Heegeun and\n Han, Soyeon Caren\",\n booktitle = \"Proceedings of the 29th International Conference on Computational Linguistics\",\n month = oct,\n year = \"2022\",\n address = \"Gyeongju, Republic of Korea\",\n publisher = \"International Committee on Computational Linguistics\",\n url = \"https://aclanthology.org/2022.coling-1.311\",\n pages = \"3530--3538\",\n abstract = \"Online hate speech detection has become an important issue due to the growth of online content, but resources in languages other than English are extremely limited. We introduce K-MHaS, a new multi-label dataset for hate speech detection that effectively handles Korean language patterns. The dataset consists of 109k utterances from news comments and provides a multi-label classification using 1 to 4 labels, and handles subjectivity and intersectionality. We evaluate strong baselines on K-MHaS. KR-BERT with a sub-character tokenizer outperforms others, recognizing decomposed characters in each hate speech class.\",\n}\n",
4
+ "homepage": "https://github.com/adlnlp/K-MHaS",
5
+ "license": "cc-by-sa-4.0",
6
+ "features": {
7
+ "text": {
8
+ "dtype": "string",
9
+ "id": null,
10
+ "_type": "Value"
11
+ },
12
+ "label": {
13
+ "feature": {
14
+ "num_classes": 9,
15
+ "names": [
16
+ "origin",
17
+ "physical",
18
+ "politics",
19
+ "profanity",
20
+ "age",
21
+ "gender",
22
+ "race",
23
+ "religion",
24
+ "not_hate_speech"
25
+ ],
26
+ "names_file": null,
27
+ "id": null,
28
+ "_type": "ClassLabel"
29
+ },
30
+ "length": -1,
31
+ "id": null,
32
+ "_type": "Sequence"
33
+ }
34
+ },
35
+ "post_processed": null,
36
+ "supervised_keys": null,
37
+ "builder_name": "kmhas_korean_hate_speech",
38
+ "config_name": "default",
39
+ "version": {
40
+ "version_str": "1.0.0",
41
+ "description": null,
42
+ "major": 1,
43
+ "minor": 0,
44
+ "patch": 0
45
+ },
46
+ "splits": {
47
+ "train": {
48
+ "name": "train",
49
+ "num_bytes": 6845463,
50
+ "num_examples": 78977,
51
+ "dataset_name": "kmhas_korean_hate_speech"
52
+ },
53
+ "validation": {
54
+ "name": "validation",
55
+ "num_bytes": 748899,
56
+ "num_examples": 8776,
57
+ "dataset_name": "kmhas_korean_hate_speech"
58
+ },
59
+ "test": {
60
+ "name": "test",
61
+ "num_bytes": 1902352,
62
+ "num_examples": 21939,
63
+ "dataset_name": "kmhas_korean_hate_speech"
64
+ }
65
+ },
66
+ "download_checksums": {
67
+ "https://raw.githubusercontent.com/adlnlp/K-MHaS/main/data/kmhas_train.txt": {
68
+ "num_bytes": 6845463,
69
+ "checksum": "ca9145afc5fd70a2222094daa427e57a08b309cb42dcce7986528b44eb0e7008"
70
+ },
71
+ "https://raw.githubusercontent.com/adlnlp/K-MHaS/main/data/kmhas_valid.txt": {
72
+ "num_bytes": 748899,
73
+ "checksum": "cb0df9e3cd665125b554d4c5e6f48b0801d5535ead51269134de5b85ae469c18"
74
+ },
75
+ "https://raw.githubusercontent.com/adlnlp/K-MHaS/main/data/kmhas_test.txt": {
76
+ "num_bytes": 1902352,
77
+ "checksum": "9eaf470ee12c445817301d58672349500d6759516a730e879d36d6de17a2051a"
78
+ }
79
+ },
80
+ "download_size": 9496714,
81
+ "post_processing_size": null,
82
+ "dataset_size": 109692,
83
+ "size_in_bytes": 9496714
84
+ }
85
+ }
kmhas_korean_hate_speech.py ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """K-MHaS Korean Multi-label Hate Speech Dataset"""
16
+
17
+
18
+ import csv
19
+
20
+ import datasets
21
+
22
+
23
+ _CITATION = """\
24
+ @inproceedings{lee-etal-2022-k,
25
+ title = "K-{MH}a{S}: A Multi-label Hate Speech Detection Dataset in {K}orean Online News Comment",
26
+ author = "Lee, Jean and
27
+ Lim, Taejun and
28
+ Lee, Heejun and
29
+ Jo, Bogeun and
30
+ Kim, Yangsok and
31
+ Yoon, Heegeun and
32
+ Han, Soyeon Caren",
33
+ booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
34
+ month = oct,
35
+ year = "2022",
36
+ address = "Gyeongju, Republic of Korea",
37
+ publisher = "International Committee on Computational Linguistics",
38
+ url = "https://aclanthology.org/2022.coling-1.311",
39
+ pages = "3530--3538",
40
+ abstract = "Online hate speech detection has become an important issue due to the growth of online content, but resources in languages other than English are extremely limited. We introduce K-MHaS, a new multi-label dataset for hate speech detection that effectively handles Korean language patterns. The dataset consists of 109k utterances from news comments and provides a multi-label classification using 1 to 4 labels, and handles subjectivity and intersectionality. We evaluate strong baselines on K-MHaS. KR-BERT with a sub-character tokenizer outperforms others, recognizing decomposed characters in each hate speech class.",
41
+ }
42
+ """
43
+
44
+ _DESCRIPTION = """\
45
+ The K-MHaS (Korean Multi-label Hate Speech) dataset contains 109k utterances from Korean online news comments labeled with 8 fine-grained hate speech classes or Not Hate Speech class.
46
+ The fine-grained hate speech classes are politics, origin, physical, age, gender, religion, race, and profanity and these categories are selected in order to reflect the social and historical context.
47
+ """
48
+
49
+ _HOMEPAGE = "https://github.com/adlnlp/K-MHaS"
50
+
51
+ _LICENSE = "cc-by-sa-4.0"
52
+
53
+ _TRAIN_DOWNLOAD_URL = "https://raw.githubusercontent.com/adlnlp/K-MHaS/main/data/kmhas_train.txt"
54
+ _VALIDATION_DOWNLOAD_URL = "https://raw.githubusercontent.com/adlnlp/K-MHaS/main/data/kmhas_valid.txt"
55
+ _TEST_DOWNLOAD_URL = "https://raw.githubusercontent.com/adlnlp/K-MHaS/main/data/kmhas_test.txt"
56
+
57
+ _CLASS_NAMES = [
58
+ "origin",
59
+ "physical",
60
+ "politics",
61
+ "profanity",
62
+ "age",
63
+ "gender",
64
+ "race",
65
+ "religion",
66
+ "not_hate_speech"
67
+ ]
68
+
69
+ class Kmhas(datasets.GeneratorBasedBuilder):
70
+ """K-MHaS Korean Multi-label Hate Speech Dataset"""
71
+
72
+ VERSION = datasets.Version("1.0.0")
73
+
74
+ def _info(self):
75
+ features = datasets.Features(
76
+ {
77
+ "text": datasets.Value("string"),
78
+ "label": datasets.Sequence(datasets.ClassLabel(names=_CLASS_NAMES))
79
+ }
80
+ )
81
+
82
+ return datasets.DatasetInfo(
83
+ description=_DESCRIPTION,
84
+ features=features,
85
+ homepage=_HOMEPAGE,
86
+ license=_LICENSE,
87
+ citation=_CITATION,
88
+ )
89
+
90
+ def _split_generators(self, dl_manager):
91
+ train_path = dl_manager.download_and_extract(_TRAIN_DOWNLOAD_URL)
92
+ validation_path = dl_manager.download_and_extract(_VALIDATION_DOWNLOAD_URL)
93
+ test_path = dl_manager.download_and_extract(_TEST_DOWNLOAD_URL)
94
+ return [
95
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}),
96
+ datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": validation_path}),
97
+ datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}),
98
+ ]
99
+
100
+ def _generate_examples(self, filepath):
101
+ """Generate K-MHaS Korean Multi-label Hate Speech examples"""
102
+
103
+ with open(filepath, 'r', encoding="utf-8") as f:
104
+ lines = f.readlines()[1:]
105
+
106
+ for index, line in enumerate(lines):
107
+ row = line.strip().split('\t')
108
+ sentence = row[0]
109
+ label = [int(ind) for ind in row[1].split(",")]
110
+ yield index, {
111
+ "text" : sentence,
112
+ "label": label,
113
+ }
114
+