Datasets:
Update datasets task tags to align tags with models (#4067)
Browse files* update tasks list
* update tags in dataset cards
* more cards updates
* update dataset tags parser
* fix multi-choice-qa
* style
* small improvements in some dataset cards
* allow certain tag fields to be empty
* update vision datasets tags
* use multi-class-image-classification and remove other tags
Commit from https://github.com/huggingface/datasets/commit/edb4411d4e884690b8b328dba4360dbda6b3cbc8
README.md
CHANGED
@@ -14,9 +14,9 @@ size_categories:
|
|
14 |
source_datasets:
|
15 |
- original
|
16 |
task_categories:
|
17 |
-
-
|
18 |
task_ids:
|
19 |
-
-
|
20 |
paperswithcode_id: e2e
|
21 |
pretty_name: End-to-End NLG Challenge
|
22 |
---
|
@@ -67,7 +67,7 @@ https://arxiv.org/abs/1706.09254
|
|
67 |
|
68 |
### Supported Tasks and Leaderboards
|
69 |
|
70 |
-
- `
|
71 |
|
72 |
| | BLEU | NIST | METEOR | ROUGE_L | CIDEr |
|
73 |
| -------- | ------ | ------ | ------ | ------- | ------ |
|
|
|
14 |
source_datasets:
|
15 |
- original
|
16 |
task_categories:
|
17 |
+
- text2text-generation
|
18 |
task_ids:
|
19 |
+
- text2text-generation-other-meaning-representation-to-text
|
20 |
paperswithcode_id: e2e
|
21 |
pretty_name: End-to-End NLG Challenge
|
22 |
---
|
|
|
67 |
|
68 |
### Supported Tasks and Leaderboards
|
69 |
|
70 |
+
- `text2text-generation-other-meaning-representation-to-text`: The dataset can be used to train a model to generate descriptions in the restaurant domain from meaning representations, which consists in taking as input some data about a restaurant and generate a sentence in natural language that presents the different aspects of the data about the restaurant.. Success on this task is typically measured by achieving a *high* [BLEU](https://huggingface.co/metrics/bleu), [NIST](https://huggingface.co/metrics/nist), [METEOR](https://huggingface.co/metrics/meteor), [Rouge-L](https://huggingface.co/metrics/rouge), [CIDEr](https://huggingface.co/metrics/cider). The TGen model (Dusek and Jurcıcek, 2016a) was used a baseline, had the following scores:
|
71 |
|
72 |
| | BLEU | NIST | METEOR | ROUGE_L | CIDEr |
|
73 |
| -------- | ------ | ------ | ------ | ------- | ------ |
|