Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
drop / dataset_infos.json
albertvillanova's picture
Convert dataset to Parquet
ffd96bd
raw
history blame
2.55 kB
{
"default": {
"description": "DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs.\n. DROP is a crowdsourced, adversarially-created, 96k-question benchmark, in which a system must resolve references in a\nquestion, perhaps to multiple input positions, and perform discrete operations over them (such as addition, counting, or\n sorting). These operations require a much more comprehensive understanding of the content of paragraphs than what was\n necessary for prior datasets.\n",
"citation": "@inproceedings{Dua2019DROP,\n author={Dheeru Dua and Yizhong Wang and Pradeep Dasigi and Gabriel Stanovsky and Sameer Singh and Matt Gardner},\n title={DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs},\n booktitle={Proc. of NAACL},\n year={2019}\n}\n",
"homepage": "https://allennlp.org/drop",
"license": "",
"features": {
"section_id": {
"dtype": "string",
"_type": "Value"
},
"query_id": {
"dtype": "string",
"_type": "Value"
},
"passage": {
"dtype": "string",
"_type": "Value"
},
"question": {
"dtype": "string",
"_type": "Value"
},
"answers_spans": {
"feature": {
"spans": {
"dtype": "string",
"_type": "Value"
},
"types": {
"dtype": "string",
"_type": "Value"
}
},
"_type": "Sequence"
}
},
"builder_name": "drop",
"dataset_name": "drop",
"config_name": "default",
"version": {
"version_str": "0.1.0",
"major": 0,
"minor": 1,
"patch": 0
},
"splits": {
"train": {
"name": "train",
"num_bytes": 105572506,
"num_examples": 77400,
"dataset_name": null
},
"validation": {
"name": "validation",
"num_bytes": 11737755,
"num_examples": 9535,
"dataset_name": null
}
},
"download_size": 11538387,
"dataset_size": 117310261,
"size_in_bytes": 128848648
}
}