# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import datasets import pandas as pd _CITATION = """\ """ _DESCRIPTION = """\ """ _LICENSE = "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License" domains = { "Human Science": [ "Human Science", "Art & Architecture", ], "Medicine": [ "Medical Science", "Veterinary Science", ], "Science & engineering": [ "Agriculture & Natural Resources", "Engineering & Technology", "Basic Science", ], } class ESPOSITOConfig(datasets.BuilderConfig): def __init__(self, **kwargs): super().__init__(version=datasets.Version("1.0.0"), **kwargs) class ESPOSITO(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ ESPOSITOConfig( name=domain, ) for domain in domains.keys() ] def _info(self): features = datasets.Features( { "id":datasets.Value("int32"), "question": datasets.Value("string"), "A": datasets.Value("string"), "B": datasets.Value("string"), "C": datasets.Value("string"), "D": datasets.Value("string"), "answer": datasets.Value("string"), "explanation":datasets.Value("string"), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): data_dir = dl_manager.download_and_extract(_URL) task_name = self.config.name return [ datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepath": os.path.join( data_dir, "test", f"{task_name}_test.csv" ), }, ), datasets.SplitGenerator( name=datasets.Split("val"), gen_kwargs={ "filepath": os.path.join( data_dir, "val", f"{task_name}_val.csv" ), }, ), datasets.SplitGenerator( name=datasets.Split("dev"), gen_kwargs={ "filepath": os.path.join( data_dir, "dev", f"{task_name}_dev.csv" ), }, ), ] def _generate_examples(self, filepath): df = pd.read_csv(filepath,encoding="utf-8") for i, instance in enumerate(df.to_dict(orient="records")): if "answer" not in instance.keys(): instance["answer"]="" if "explanation" not in instance.keys(): instance["explanation"]="" yield i, instance