diff --git "a/Alpaca_+_Llama_7b_full_example.ipynb" "b/Alpaca_+_Llama_7b_full_example.ipynb" --- "a/Alpaca_+_Llama_7b_full_example.ipynb" +++ "b/Alpaca_+_Llama_7b_full_example.ipynb" @@ -3,11 +3,11 @@ { "cell_type": "markdown", "source": [ - "To run this, press \"Runtime\" and press \"Run all\" on a **free** Tesla T4 Google Colab instance!\n", + "To run this, press \"*Runtime*\" and press \"*Run all*\" on a **free** Tesla T4 Google Colab instance!\n", "
1 | \n", - "1.553400 | \n", + "1.536900 | \n", "
2 | \n", - "2.030900 | \n", + "1.858000 | \n", "
3 | \n", - "1.562900 | \n", + "1.344800 | \n", "
4 | \n", - "1.765400 | \n", + "1.578000 | \n", "
5 | \n", - "1.518000 | \n", + "1.424600 | \n", "
6 | \n", - "1.589000 | \n", + "1.540000 | \n", "
7 | \n", - "1.251600 | \n", + "1.350500 | \n", "
8 | \n", - "1.235800 | \n", + "1.256200 | \n", "
9 | \n", - "1.129500 | \n", + "1.193000 | \n", "
10 | \n", - "1.202800 | \n", + "1.158800 | \n", "
11 | \n", - "0.922900 | \n", + "0.986400 | \n", "
12 | \n", - "0.896000 | \n", + "1.017500 | \n", "
13 | \n", - "0.906600 | \n", + "0.885500 | \n", "
14 | \n", - "0.990200 | \n", + "1.055400 | \n", "
15 | \n", - "0.816700 | \n", + "0.925300 | \n", "
16 | \n", - "0.856300 | \n", + "0.963100 | \n", "
17 | \n", - "0.929600 | \n", + "1.063800 | \n", "
18 | \n", - "1.094100 | \n", + "0.806200 | \n", "
19 | \n", - "0.890500 | \n", + "0.667100 | \n", "
20 | \n", - "0.771500 | \n", + "0.788600 | \n", "
21 | \n", - "0.867300 | \n", + "0.903000 | \n", "
22 | \n", - "0.895800 | \n", + "0.973000 | \n", "
23 | \n", - "0.800700 | \n", + "0.793800 | \n", "
24 | \n", - "0.858700 | \n", + "0.787200 | \n", "
25 | \n", - "0.923800 | \n", + "0.918000 | \n", "
26 | \n", - "0.980100 | \n", + "0.741500 | \n", "
27 | \n", - "0.920300 | \n", + "0.913300 | \n", "
28 | \n", - "0.800100 | \n", + "0.852900 | \n", "
29 | \n", - "0.754100 | \n", + "0.865900 | \n", "
30 | \n", - "0.805100 | \n", + "0.757000 | \n", "
31 | \n", - "0.757400 | \n", + "0.803500 | \n", "
32 | \n", - "0.752700 | \n", + "0.790600 | \n", "
33 | \n", - "0.803100 | \n", + "0.848800 | \n", "
34 | \n", - "0.713000 | \n", + "0.870000 | \n", "
35 | \n", - "0.839500 | \n", + "0.773300 | \n", "
36 | \n", - "0.772600 | \n", + "0.801000 | \n", "
37 | \n", - "0.775400 | \n", + "0.827100 | \n", "
38 | \n", - "0.692200 | \n", + "0.820800 | \n", "
39 | \n", - "0.933300 | \n", + "0.618800 | \n", "
40 | \n", - "0.991700 | \n", + "0.935300 | \n", "
41 | \n", - "0.779300 | \n", + "0.797500 | \n", "
42 | \n", - "0.847800 | \n", + "0.631100 | \n", "
43 | \n", - "0.765000 | \n", + "0.710600 | \n", "
44 | \n", - "0.820400 | \n", + "0.695100 | \n", "
45 | \n", - "0.773500 | \n", + "0.665200 | \n", "
46 | \n", - "0.813200 | \n", + "0.686600 | \n", "
47 | \n", - "0.772400 | \n", + "0.785200 | \n", "
48 | \n", - "0.998300 | \n", + "0.801100 | \n", "
49 | \n", - "0.805000 | \n", + "0.767500 | \n", "
50 | \n", - "0.867900 | \n", + "0.982100 | \n", "
51 | \n", - "0.864400 | \n", + "0.833100 | \n", "
52 | \n", - "0.795100 | \n", + "0.760700 | \n", "
53 | \n", - "0.876900 | \n", + "0.871500 | \n", "
54 | \n", - "1.019400 | \n", + "0.962400 | \n", "
55 | \n", - "0.762300 | \n", + "0.818900 | \n", "
56 | \n", - "0.904300 | \n", + "0.984800 | \n", "
57 | \n", - "0.768700 | \n", + "0.804300 | \n", "
58 | \n", - "0.716400 | \n", + "0.915100 | \n", "
59 | \n", - "0.712200 | \n", + "0.851200 | \n", "
60 | \n", - "0.768200 | \n", + "0.904900 | \n", "
"
@@ -891,19 +1009,19 @@
"colab": {
"base_uri": "https://localhost:8080/"
},
- "outputId": "8a7a7eee-c329-4337-bcc7-ee5946a4b985"
+ "outputId": "3cecbbbd-a23b-45f6-948f-424edb37bdd4"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
- "429.4844 seconds used for training.\n",
- "7.16 minutes used for training.\n",
- "Peak reserved memory = 5.453 GB.\n",
- "Peak reserved memory for training = 1.332 GB.\n",
- "Peak reserved memory % of max memory = 36.975 %.\n",
- "Peak reserved memory for training % of max memory = 9.032 %.\n"
+ "476.7837 seconds used for training.\n",
+ "7.95 minutes used for training.\n",
+ "Peak reserved memory = 5.77 GB.\n",
+ "Peak reserved memory for training = 1.649 GB.\n",
+ "Peak reserved memory % of max memory = 39.124 %.\n",
+ "Peak reserved memory for training % of max memory = 11.181 %.\n"
]
}
],
@@ -935,6 +1053,8 @@
{
"cell_type": "code",
"source": [
+ "# alpaca_prompt = Copied from above\n",
+ "\n",
"inputs = tokenizer(\n",
"[\n",
" alpaca_prompt.format(\n",
@@ -944,7 +1064,7 @@
" )\n",
"]*1, return_tensors = \"pt\").to(\"cuda\")\n",
"\n",
- "outputs = model.generate(**inputs, max_new_tokens = 128, use_cache = True)\n",
+ "outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)\n",
"tokenizer.batch_decode(outputs)"
],
"metadata": {
@@ -952,7 +1072,7 @@
"colab": {
"base_uri": "https://localhost:8080/"
},
- "outputId": "ad759299-9d63-465c-a4ee-28d60feef175"
+ "outputId": "684a01f7-3545-4078-a361-64800718ba37"
},
"execution_count": null,
"outputs": [
@@ -960,7 +1080,7 @@
"output_type": "execute_result",
"data": {
"text/plain": [
- "[' Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\\n\\n### Instruction:\\nContinue the fibonnaci sequence.\\n\\n### Input:\\n1, 1, 2, 3, 5, 8\\n\\n### Response:\\n2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17714, 28657, 46368, 75025, 121429, 1968']"
+ "[' Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\\n\\n### Instruction:\\nContinue the fibonnaci sequence.\\n\\n### Input:\\n1, 1, 2, 3, 5, 8\\n\\n### Response:\\n2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2']"
]
},
"metadata": {},
@@ -971,55 +1091,53 @@
{
"cell_type": "markdown",
"source": [
- "\n",
- "### Saving, loading finetuned models\n",
- "To save the final model, either use Huggingface's `push_to_hub` for an online save or `save_pretrained` for a local save."
- ],
- "metadata": {
- "id": "uMuVrWbjAzhc"
- }
- },
- {
- "cell_type": "code",
- "source": [
- "model.save_pretrained(\"lora_model\") # Local saving\n",
- "# model.push_to_hub(\"your_name/lora_model\") # Online saving"
- ],
- "metadata": {
- "id": "upcOlWe7A1vc"
- },
- "execution_count": null,
- "outputs": []
- },
- {
- "cell_type": "markdown",
- "source": [
- "To save to `GGUF` / `llama.cpp`, or for model merging, use `model.merge_and_unload` first, then save the model. See this [issue](https://github.com/ggerganov/llama.cpp/issues/3097) on llama.cpp for more info."
+ " You can also use a `TextStreamer` for continuous inference - so you can see the generation token by token, instead of waiting the whole time!"
],
"metadata": {
- "id": "1bSoOaDunRPL"
+ "id": "_zsWEKC7t6Tt"
}
},
{
"cell_type": "code",
"source": [
- "model = model.merge_and_unload()"
+ "# alpaca_prompt = Copied from above\n",
+ "\n",
+ "inputs = tokenizer(\n",
+ "[\n",
+ " alpaca_prompt.format(\n",
+ " \"Continue the fibonnaci sequence.\", # instruction\n",
+ " \"1, 1, 2, 3, 5, 8\", # input\n",
+ " \"\", # output - leave this blank for generation!\n",
+ " )\n",
+ "]*1, return_tensors = \"pt\").to(\"cuda\")\n",
+ "\n",
+ "from transformers import TextStreamer\n",
+ "text_streamer = TextStreamer(tokenizer)\n",
+ "_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 128)"
],
"metadata": {
- "id": "xcRjsZe0RK1b",
"colab": {
"base_uri": "https://localhost:8080/"
},
- "outputId": "cd1025e7-9d24-4262-ff02-e4332f532ad3"
+ "id": "-C5dS6ZZt6ra",
+ "outputId": "d5fb7b7a-e2ba-4174-be00-62c86026c116"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
- "name": "stderr",
+ "name": "stdout",
"text": [
- "/usr/local/lib/python3.10/dist-packages/peft/tuners/lora/bnb.py:229: UserWarning: Merge lora module to 4-bit linear may get different generations due to rounding errors.\n",
- " warnings.warn(\n"
+ " Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n",
+ "\n",
+ "### Instruction:\n",
+ "Continue the fibonnaci sequence.\n",
+ "\n",
+ "### Input:\n",
+ "1, 1, 2, 3, 5, 8\n",
+ "\n",
+ "### Response:\n",
+ "1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121429, 1\n"
]
}
]
@@ -1027,20 +1145,24 @@
{
"cell_type": "markdown",
"source": [
- "Now if you want to load the LoRA adapters we just saved, we can!"
+ "\n",
+ "### Saving, loading finetuned models\n",
+ "To save the final model as LoRA adapters, either use Huggingface's `push_to_hub` for an online save or `save_pretrained` for a local save.\n",
+ "\n",
+ "**[NOTE]** This ONLY saves the LoRA adapters, and not the full model. To save to 16bit or GGUF, scroll down!"
],
"metadata": {
- "id": "AEEcJ4qfC7Lp"
+ "id": "uMuVrWbjAzhc"
}
},
{
"cell_type": "code",
"source": [
- "from peft import PeftModel\n",
- "model = PeftModel.from_pretrained(model, \"lora_model\")"
+ "model.save_pretrained(\"lora_model\") # Local saving\n",
+ "# model.push_to_hub(\"your_name/lora_model\", token = \"...\") # Online saving"
],
"metadata": {
- "id": "MKX_XKs_BNZR"
+ "id": "upcOlWe7A1vc"
},
"execution_count": null,
"outputs": []
@@ -1048,33 +1170,45 @@
{
"cell_type": "markdown",
"source": [
- "Finally, we can now do some inference on the loaded model."
+ "Now if you want to load the LoRA adapters we just saved for inference, set `False` to `True`:"
],
"metadata": {
- "id": "f8pvYYN9DvbN"
+ "id": "L7z5EkMXuC8c"
}
},
{
"cell_type": "code",
"source": [
+ "if False:\n",
+ " from unsloth import FastLanguageModel\n",
+ " model, tokenizer = FastLanguageModel.from_pretrained(\n",
+ " model_name = \"lora_model\", # YOUR MODEL YOU USED FOR TRAINING\n",
+ " max_seq_length = max_seq_length,\n",
+ " dtype = dtype,\n",
+ " load_in_4bit = load_in_4bit,\n",
+ " )\n",
+ "\n",
+ "# alpaca_prompt = You MUST copy from above!\n",
+ "\n",
"inputs = tokenizer(\n",
"[\n",
" alpaca_prompt.format(\n",
- " \"What is the famous tower in France called?\", # instruction\n",
+ " \"What is a famous tall tower in Paris?\", # instruction\n",
" \"\", # input\n",
- " \"\", # output\n",
+ " \"\", # output - leave this blank for generation!\n",
" )\n",
"]*1, return_tensors = \"pt\").to(\"cuda\")\n",
"\n",
- "outputs = model.generate(**inputs, max_new_tokens = 128, use_cache = True)\n",
- "tokenizer.batch_decode(outputs)"
+ "from transformers import TextStreamer\n",
+ "text_streamer = TextStreamer(tokenizer)\n",
+ "_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 64)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
- "id": "qWyyUoDq71jt",
- "outputId": "89236a12-69ff-42e3-8178-b7d039d19655"
+ "id": "_tbHr99fuAuL",
+ "outputId": "5c8468f6-7c2c-4733-d477-305d0df35c57"
},
"execution_count": null,
"outputs": [
@@ -1082,7 +1216,7 @@
"output_type": "execute_result",
"data": {
"text/plain": [
- "[' Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\\n\\n### Instruction:\\nWhat is the famous tower in France called?\\n\\n### Input:\\n\\n\\n### Response:\\nThe famous tower in France is called the Eiffel Tower. It is a wrought iron lattice tower located on the Champ de Mars in Paris and was built as the entrance arch to the 1889 World\\'s Fair. It is one of the most recognizable symbols of France and is the most-visited paid monument in the world. The tower stands at 324 meters tall and is the tallest structure in Paris. It is a cultural icon and has been featured in many movies, including the famous scene in the movie \"An American in Paris\" where the character played by Gene Kelly dances on']"
+ "[\" Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\\n\\n### Instruction:\\nWhat is a famous tall tower in Paris?\\n\\n### Input:\\n\\n\\n### Response:\\nThe Eiffel Tower is a famous tall tower in Paris. It is located on the Champ de Mars in the 7th arrondissement of Paris. It was built in 1889 as the main entrance to the 1889 World's Fair.\"]"
]
},
"metadata": {},
@@ -1090,14 +1224,122 @@
}
]
},
+ {
+ "cell_type": "markdown",
+ "source": [
+ "You can also use Hugging Face's `AutoModelForPeftCausalLM`"
+ ],
+ "metadata": {
+ "id": "TGKU509CuMmq"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "if False:\n",
+ " from peft import AutoModelForPeftCausalLM\n",
+ " from transformers import AutoTokenizer\n",
+ " model = AutoModelForPeftCausalLM.from_pretrained(\n",
+ " \"lora_model\", # YOUR MODEL YOU USED FOR TRAINING\n",
+ " load_in_4bit = load_in_4bit,\n",
+ " )\n",
+ " tokenizer = AutoTokenizer.from_pretrained(\"lora_model\")"
+ ],
+ "metadata": {
+ "id": "I1blTAruuM7X"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "### Saving to float16 for VLLM\n",
+ "\n",
+ "We also support saving to `float16` directly. Select `merged_16bit` for float16 or `merged_4bit` for int4. We also allow `lora` adapters as a fallback. Use `push_to_hub_merged` to upload to your Hugging Face account!"
+ ],
+ "metadata": {
+ "id": "-xp0YDnKuN98"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "# Merge to 16bit\n",
+ "if False: model.save_pretrained_merged(\"x\", tokenizer, save_method = \"merged_16bit\",)\n",
+ "if False: model.push_to_hub_merged(\"hf_user/x\", tokenizer, save_method = \"merged_16bit\", token = \"\")\n",
+ "\n",
+ "# Merge to 4bit\n",
+ "if False: model.save_pretrained_merged(\"x\", tokenizer, save_method = \"merged_4bit\",)\n",
+ "if False: model.push_to_hub_merged(\"hf_user/x\", tokenizer, save_method = \"merged_4bit\", token = \"\")\n",
+ "\n",
+ "# Just LoRA adapters\n",
+ "if False: model.save_pretrained_merged(\"x\", tokenizer, save_method = \"lora\",)\n",
+ "if False: model.push_to_hub_merged(\"hf_user/x\", tokenizer, save_method = \"lora\", token = \"\")"
+ ],
+ "metadata": {
+ "id": "vnFt-4ymuPM1"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "### GGUF / llama.cpp Conversion\n",
+ "To save to `GGUF` / `llama.cpp`, we support it natively now! We clone `llama.cpp` and we default save it to `q8_0`. We allow all methods like `q4_k_m`. Use `save_pretrained_gguf` for local saving and `push_to_hub_gguf` for uploading to HF."
+ ],
+ "metadata": {
+ "id": "8xg8B-N7uQcE"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "# Save to 8bit Q8_0\n",
+ "if False: model.save_pretrained_gguf(\"x\", tokenizer,)\n",
+ "if False: model.push_to_hub_gguf(\"hf_user/x\", tokenizer, token = \"\")\n",
+ "\n",
+ "# Save to 16bit GGUF\n",
+ "if False: model.save_pretrained_gguf(\"x\", tokenizer, quantization_method = \"f16\")\n",
+ "if False: model.push_to_hub_gguf(\"hf_user/x\", tokenizer, quantization_method = \"f16\", token = \"\")\n",
+ "\n",
+ "# Save to q4_k_m GGUF\n",
+ "if False: model.save_pretrained_gguf(\"x\", tokenizer, quantization_method = \"q4_k_m\")\n",
+ "if False: model.push_to_hub_gguf(\"hf_user/x\", tokenizer, quantization_method = \"q4_k_m\", token = \"\")"
+ ],
+ "metadata": {
+ "id": "8T822D9fuR0g"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "Now, use the `x.gguf` file or `x-unsloth-Q4_K_M.gguf` file in `llama.cpp` or a UI based system like `GPT4All`. You can install GPT4All by going [here](https://gpt4all.io/index.html)."
+ ],
+ "metadata": {
+ "id": "RiRcv_rquUq0"
+ }
+ },
{
"cell_type": "markdown",
"source": [
"And we're done! If you have any questions on Unsloth, we have a [Discord](https://discord.gg/u54VK8m8tk) channel! If you find any bugs or want to keep updated with the latest LLM stuff, or need help, join projects etc, feel free to join our Discord!\n",
+ "\n",
+ "Some other links:\n",
+ "1. Zephyr DPO 2x faster [free Colab](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing)\n",
+ "2. Mistral 7b 2x faster [free Colab](https://colab.research.google.com/drive/1Dyauq4kTZoLewQ1cApceUQVNcnnNTzg_?usp=sharing)\n",
+ "3. TinyLlama 4x faster full Alpaca 52K in 1 hour [free Colab](https://colab.research.google.com/drive/1AZghoNBQaMDgWJpi4RbffGM1h6raLUj9?usp=sharing)\n",
+ "4. CodeLlama 34b 2x faster [A100 on Colab](https://colab.research.google.com/drive/1y7A0AxE3y8gdj4AVkl2aZX47Xu3P1wJT?usp=sharing)\n",
+ "5. Llama 7b [free Kaggle](https://www.kaggle.com/danielhanchen/unsloth-alpaca-t4-ddp)\n",
+ "6. We also did a [blog](https://huggingface.co/blog/unsloth-trl) with 🤗 HuggingFace, and we're in the TRL [docs](https://huggingface.co/docs/trl/main/en/sft_trainer#accelerate-fine-tuning-2x-using-unsloth)!\n",
+ "\n",
""
],
"metadata": {
@@ -1120,7 +1362,7 @@
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
- "1ddd1a7f731a42ea86f8f38907200c0d": {
+ "8d89897b8d6043a987a22557fbb0dafe": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
@@ -1135,14 +1377,14 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
- "IPY_MODEL_b06f3ae2d51748649473e5fd50c7d965",
- "IPY_MODEL_df8d35e0ac574c9e86feb01568070798",
- "IPY_MODEL_acd1e9b8d7804b00903d131cf0375df4"
+ "IPY_MODEL_05b3626ffd6440928672d6404ec9557d",
+ "IPY_MODEL_c9071ce1dd5c42f8b6f80809b0a7b74c",
+ "IPY_MODEL_0a8c217f44334a02a4abb3a948873077"
],
- "layout": "IPY_MODEL_ffa07e2231044b77acd56ebc2d41de21"
+ "layout": "IPY_MODEL_341a9367f92c489db8a15ad1266719bd"
}
},
- "b06f3ae2d51748649473e5fd50c7d965": {
+ "05b3626ffd6440928672d6404ec9557d": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
@@ -1157,13 +1399,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_6a93358b89fd48abae84e563f1c32a36",
+ "layout": "IPY_MODEL_9124f5ad5e1c4c67bbfc03b40e3e93a3",
"placeholder": "​",
- "style": "IPY_MODEL_9c1c57caebfb4974abf75895be7e8a3d",
+ "style": "IPY_MODEL_36b804f7ebf34ed0afb58c5ff3c2e932",
"value": "config.json: 100%"
}
},
- "df8d35e0ac574c9e86feb01568070798": {
+ "c9071ce1dd5c42f8b6f80809b0a7b74c": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
@@ -1179,15 +1421,15 @@
"bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_ef7532bbe1cd49dd96e432c597ec6dfa",
+ "layout": "IPY_MODEL_79bf0b38acd34d8aae552bc0314f81cd",
"max": 1096,
"min": 0,
"orientation": "horizontal",
- "style": "IPY_MODEL_17784e5eadeb416fbb000dcfc66f4699",
+ "style": "IPY_MODEL_4295dda456ed44f5959c79e31f837d04",
"value": 1096
}
},
- "acd1e9b8d7804b00903d131cf0375df4": {
+ "0a8c217f44334a02a4abb3a948873077": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
@@ -1202,13 +1444,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_1f97459b01b340038dd02120127472c3",
+ "layout": "IPY_MODEL_09b8323944d64e07bb6e7d5f743868fb",
"placeholder": "​",
- "style": "IPY_MODEL_6cd5a1dd2da3469bbf2d16d12147fa50",
- "value": " 1.10k/1.10k [00:00<00:00, 18.3kB/s]"
+ "style": "IPY_MODEL_c92c8b9ee4964620bea877268d7be45c",
+ "value": " 1.10k/1.10k [00:00<00:00, 35.7kB/s]"
}
},
- "ffa07e2231044b77acd56ebc2d41de21": {
+ "341a9367f92c489db8a15ad1266719bd": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -1260,7 +1502,7 @@
"width": null
}
},
- "6a93358b89fd48abae84e563f1c32a36": {
+ "9124f5ad5e1c4c67bbfc03b40e3e93a3": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -1312,7 +1554,7 @@
"width": null
}
},
- "9c1c57caebfb4974abf75895be7e8a3d": {
+ "36b804f7ebf34ed0afb58c5ff3c2e932": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
@@ -1327,7 +1569,7 @@
"description_width": ""
}
},
- "ef7532bbe1cd49dd96e432c597ec6dfa": {
+ "79bf0b38acd34d8aae552bc0314f81cd": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -1379,7 +1621,7 @@
"width": null
}
},
- "17784e5eadeb416fbb000dcfc66f4699": {
+ "4295dda456ed44f5959c79e31f837d04": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
@@ -1395,7 +1637,7 @@
"description_width": ""
}
},
- "1f97459b01b340038dd02120127472c3": {
+ "09b8323944d64e07bb6e7d5f743868fb": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -1447,7 +1689,7 @@
"width": null
}
},
- "6cd5a1dd2da3469bbf2d16d12147fa50": {
+ "c92c8b9ee4964620bea877268d7be45c": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
@@ -1462,7 +1704,7 @@
"description_width": ""
}
},
- "21a946400f2d4b3b9abc6074f9ac9dbd": {
+ "471e931d67c84e54aedf20c9a877d2f1": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
@@ -1477,14 +1719,14 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
- "IPY_MODEL_1522d662921b4e4485b8e5da3680ba24",
- "IPY_MODEL_3aba6932c94645be9956bc2bcc1cf6f7",
- "IPY_MODEL_c1775a590f0e4ea0abb982beb2000505"
+ "IPY_MODEL_9bc601a14a77496eb0ffa0b71f3d8ba6",
+ "IPY_MODEL_dd139ccc28124987a1d6d9cc374a9204",
+ "IPY_MODEL_8ff7d048a32f4eb69ba14cf03e9c58e6"
],
- "layout": "IPY_MODEL_fea68882982841b2a01ee4e435ffca87"
+ "layout": "IPY_MODEL_9dfbc4c3ec2d45848f4de108b583455a"
}
},
- "1522d662921b4e4485b8e5da3680ba24": {
+ "9bc601a14a77496eb0ffa0b71f3d8ba6": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
@@ -1499,13 +1741,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_a0eb963673924ae3924c0ad37c40b32b",
+ "layout": "IPY_MODEL_5c00b4a97f7b4439a170fb4530957ffe",
"placeholder": "​",
- "style": "IPY_MODEL_dcafeb2b8a544ee7afc7570d38d1d9b0",
+ "style": "IPY_MODEL_aec1cf094879457d88f9d563078bd50f",
"value": "model.safetensors: 100%"
}
},
- "3aba6932c94645be9956bc2bcc1cf6f7": {
+ "dd139ccc28124987a1d6d9cc374a9204": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
@@ -1521,15 +1763,15 @@
"bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_43ff3d3bc58e4e248d13a7a43d567e17",
+ "layout": "IPY_MODEL_d7b787a20b334151965a53ec1e77c8dd",
"max": 3866042098,
"min": 0,
"orientation": "horizontal",
- "style": "IPY_MODEL_a9a7e603562b4989804f33f74d6d5abb",
+ "style": "IPY_MODEL_f48afe6065ac44d4aad7fa556aec7267",
"value": 3866042098
}
},
- "c1775a590f0e4ea0abb982beb2000505": {
+ "8ff7d048a32f4eb69ba14cf03e9c58e6": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
@@ -1544,13 +1786,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_6e4a9de6ddee4f449d1a8b9c3e169b28",
+ "layout": "IPY_MODEL_6990722c3ddc4735a242afd065c416fb",
"placeholder": "​",
- "style": "IPY_MODEL_8a1672d5c6cd4cac9f68e204c640e452",
- "value": " 3.87G/3.87G [02:40<00:00, 47.9MB/s]"
+ "style": "IPY_MODEL_99a178cda8e24f8d8517796f2ccbfaf2",
+ "value": " 3.87G/3.87G [00:28<00:00, 226MB/s]"
}
},
- "fea68882982841b2a01ee4e435ffca87": {
+ "9dfbc4c3ec2d45848f4de108b583455a": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -1602,7 +1844,7 @@
"width": null
}
},
- "a0eb963673924ae3924c0ad37c40b32b": {
+ "5c00b4a97f7b4439a170fb4530957ffe": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -1654,7 +1896,7 @@
"width": null
}
},
- "dcafeb2b8a544ee7afc7570d38d1d9b0": {
+ "aec1cf094879457d88f9d563078bd50f": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
@@ -1669,7 +1911,7 @@
"description_width": ""
}
},
- "43ff3d3bc58e4e248d13a7a43d567e17": {
+ "d7b787a20b334151965a53ec1e77c8dd": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -1721,7 +1963,7 @@
"width": null
}
},
- "a9a7e603562b4989804f33f74d6d5abb": {
+ "f48afe6065ac44d4aad7fa556aec7267": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
@@ -1737,7 +1979,7 @@
"description_width": ""
}
},
- "6e4a9de6ddee4f449d1a8b9c3e169b28": {
+ "6990722c3ddc4735a242afd065c416fb": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -1789,7 +2031,7 @@
"width": null
}
},
- "8a1672d5c6cd4cac9f68e204c640e452": {
+ "99a178cda8e24f8d8517796f2ccbfaf2": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
@@ -1804,7 +2046,7 @@
"description_width": ""
}
},
- "fba46c7d2ad54a429ee903d865effc9f": {
+ "1d5578090f284a5ba79ad57afdd64dbe": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
@@ -1819,14 +2061,14 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
- "IPY_MODEL_2e4a655856e9418286cd9db6b0c1cad8",
- "IPY_MODEL_893318c3ee734f66afa41f8ee171a1dd",
- "IPY_MODEL_e3ecf8bf5fbe4d8aa2443fe793d1e0a0"
+ "IPY_MODEL_dfe05ba9516e4055aad8f53d46ecc588",
+ "IPY_MODEL_c8ae93343086452983e21f31609169f8",
+ "IPY_MODEL_12e2e40e313a485587eb160603a89b00"
],
- "layout": "IPY_MODEL_db1e295ae0a3440c8b89c11c45145d2d"
+ "layout": "IPY_MODEL_27130d7c7cec45319e86ee37a2fe89b0"
}
},
- "2e4a655856e9418286cd9db6b0c1cad8": {
+ "dfe05ba9516e4055aad8f53d46ecc588": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
@@ -1841,13 +2083,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_219e0398ef174b7f83e71aab9b648457",
+ "layout": "IPY_MODEL_3d505c07701f4be1b24189c124341bb9",
"placeholder": "​",
- "style": "IPY_MODEL_9f48d5d3a1484b4ea8bf3dbdcd4daaf4",
+ "style": "IPY_MODEL_b1275656195d470c95a4f63e51bf0a47",
"value": "generation_config.json: 100%"
}
},
- "893318c3ee734f66afa41f8ee171a1dd": {
+ "c8ae93343086452983e21f31609169f8": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
@@ -1863,15 +2105,15 @@
"bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_78533fbf91114a6c96dfdb91652dbc49",
+ "layout": "IPY_MODEL_0ccacc110d36436c9191a6156eeab87f",
"max": 188,
"min": 0,
"orientation": "horizontal",
- "style": "IPY_MODEL_9356237ba6c54248a06740fc5a77c0c3",
+ "style": "IPY_MODEL_bfe98c524c824b07847833a49446e15d",
"value": 188
}
},
- "e3ecf8bf5fbe4d8aa2443fe793d1e0a0": {
+ "12e2e40e313a485587eb160603a89b00": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
@@ -1886,13 +2128,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_54a1c824681a43e58249fc8a234099e2",
+ "layout": "IPY_MODEL_6d4f0ae8028c4ef197e68dea712eda2d",
"placeholder": "​",
- "style": "IPY_MODEL_74b4889ab46a4d8c89d71923b507bb30",
- "value": " 188/188 [00:00<00:00, 13.1kB/s]"
+ "style": "IPY_MODEL_e7db0e34465e4e51b51934773e2d41da",
+ "value": " 188/188 [00:00<00:00, 12.5kB/s]"
}
},
- "db1e295ae0a3440c8b89c11c45145d2d": {
+ "27130d7c7cec45319e86ee37a2fe89b0": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -1944,7 +2186,7 @@
"width": null
}
},
- "219e0398ef174b7f83e71aab9b648457": {
+ "3d505c07701f4be1b24189c124341bb9": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -1996,7 +2238,7 @@
"width": null
}
},
- "9f48d5d3a1484b4ea8bf3dbdcd4daaf4": {
+ "b1275656195d470c95a4f63e51bf0a47": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
@@ -2011,7 +2253,7 @@
"description_width": ""
}
},
- "78533fbf91114a6c96dfdb91652dbc49": {
+ "0ccacc110d36436c9191a6156eeab87f": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -2063,7 +2305,7 @@
"width": null
}
},
- "9356237ba6c54248a06740fc5a77c0c3": {
+ "bfe98c524c824b07847833a49446e15d": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
@@ -2079,7 +2321,7 @@
"description_width": ""
}
},
- "54a1c824681a43e58249fc8a234099e2": {
+ "6d4f0ae8028c4ef197e68dea712eda2d": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -2131,7 +2373,7 @@
"width": null
}
},
- "74b4889ab46a4d8c89d71923b507bb30": {
+ "e7db0e34465e4e51b51934773e2d41da": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
@@ -2146,7 +2388,7 @@
"description_width": ""
}
},
- "adca77c0f10941f68b210db4f70c223b": {
+ "930ff2003e8a47ceb49fca7868354173": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
@@ -2161,14 +2403,14 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
- "IPY_MODEL_00f3afe5af164337b85c24e9121c1a49",
- "IPY_MODEL_d147d316cf594e1581f5048bd166f94b",
- "IPY_MODEL_1ba54d426db74897934536ca7f5a7a94"
+ "IPY_MODEL_2854db4495a04729b159dfc5090593c3",
+ "IPY_MODEL_d447ab9c6cab463092dbf0542deff6fc",
+ "IPY_MODEL_773529525c6346c2bc41e529df74e369"
],
- "layout": "IPY_MODEL_51f80559018c4e69ad42c9059a288068"
+ "layout": "IPY_MODEL_43ee1fb0bf4a434bbb657855e5381b61"
}
},
- "00f3afe5af164337b85c24e9121c1a49": {
+ "2854db4495a04729b159dfc5090593c3": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
@@ -2183,13 +2425,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_5a32d969c46c4db589c8c18c2e126e96",
+ "layout": "IPY_MODEL_815b46bb683d4ce8a9e1d9d79a693400",
"placeholder": "​",
- "style": "IPY_MODEL_04ac6e789d4b42268dce88e4d220ab24",
+ "style": "IPY_MODEL_d8954e5cba0442b19aea3eaf9385bde7",
"value": "tokenizer_config.json: 100%"
}
},
- "d147d316cf594e1581f5048bd166f94b": {
+ "d447ab9c6cab463092dbf0542deff6fc": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
@@ -2205,15 +2447,15 @@
"bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_cf941c99606b4b04b8f7e3fd4222d4a5",
+ "layout": "IPY_MODEL_8bd9c07d8b334470b52c203f67edeb7e",
"max": 894,
"min": 0,
"orientation": "horizontal",
- "style": "IPY_MODEL_2b6dd1d1c91f4c59b7bfa0c12183b49a",
+ "style": "IPY_MODEL_2bd90a0c15ad44388ca1db30cd788289",
"value": 894
}
},
- "1ba54d426db74897934536ca7f5a7a94": {
+ "773529525c6346c2bc41e529df74e369": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
@@ -2228,13 +2470,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_90ec3c2f4d1b4637ade135e6cd850fe3",
+ "layout": "IPY_MODEL_ebcca379b2f848558e9e566c8706dac7",
"placeholder": "​",
- "style": "IPY_MODEL_3bd2b78275cd46bfbe34234cab80a0a4",
- "value": " 894/894 [00:00<00:00, 54.9kB/s]"
+ "style": "IPY_MODEL_7d8886f7736f45c9b6e116222215af95",
+ "value": " 894/894 [00:00<00:00, 64.2kB/s]"
}
},
- "51f80559018c4e69ad42c9059a288068": {
+ "43ee1fb0bf4a434bbb657855e5381b61": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -2286,7 +2528,7 @@
"width": null
}
},
- "5a32d969c46c4db589c8c18c2e126e96": {
+ "815b46bb683d4ce8a9e1d9d79a693400": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -2338,7 +2580,7 @@
"width": null
}
},
- "04ac6e789d4b42268dce88e4d220ab24": {
+ "d8954e5cba0442b19aea3eaf9385bde7": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
@@ -2353,7 +2595,7 @@
"description_width": ""
}
},
- "cf941c99606b4b04b8f7e3fd4222d4a5": {
+ "8bd9c07d8b334470b52c203f67edeb7e": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -2405,7 +2647,7 @@
"width": null
}
},
- "2b6dd1d1c91f4c59b7bfa0c12183b49a": {
+ "2bd90a0c15ad44388ca1db30cd788289": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
@@ -2421,7 +2663,7 @@
"description_width": ""
}
},
- "90ec3c2f4d1b4637ade135e6cd850fe3": {
+ "ebcca379b2f848558e9e566c8706dac7": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -2473,7 +2715,7 @@
"width": null
}
},
- "3bd2b78275cd46bfbe34234cab80a0a4": {
+ "7d8886f7736f45c9b6e116222215af95": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
@@ -2488,7 +2730,7 @@
"description_width": ""
}
},
- "fde24c4c5fdb4f3eb9a9e9ded49e0514": {
+ "3b0e72a93a764f16965b10c0fdae262e": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
@@ -2503,14 +2745,14 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
- "IPY_MODEL_aeb6fbb915d2403cab1cf9e01fd920cb",
- "IPY_MODEL_672efe4e856b475d9e9f8f4b21de77cd",
- "IPY_MODEL_f6f55e4060fe4786a473f9e92dbd2123"
+ "IPY_MODEL_c9edd953e7fc4a44b565da8ddcc790e0",
+ "IPY_MODEL_f5066416256143f799d7314f23fdd024",
+ "IPY_MODEL_fac4622a80b5418cb4ebb50cb3ffb77c"
],
- "layout": "IPY_MODEL_e731171392144a44b9ad1c00e053d7c2"
+ "layout": "IPY_MODEL_b0dcfb5e8d73442185f5d30d52f6bd66"
}
},
- "aeb6fbb915d2403cab1cf9e01fd920cb": {
+ "c9edd953e7fc4a44b565da8ddcc790e0": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
@@ -2525,13 +2767,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_d63af63319bf477db65cf82798e3e94a",
+ "layout": "IPY_MODEL_fdec5f4749734ac7b7b5bb1a7c3fd7c7",
"placeholder": "​",
- "style": "IPY_MODEL_7a51811cd62f417188fc9def136f75c2",
+ "style": "IPY_MODEL_0bcd2db9a5314f269bd4b0c59a92a4a8",
"value": "tokenizer.model: 100%"
}
},
- "672efe4e856b475d9e9f8f4b21de77cd": {
+ "f5066416256143f799d7314f23fdd024": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
@@ -2547,15 +2789,15 @@
"bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_a1f5f349e4914449baac681adf8d9ffa",
+ "layout": "IPY_MODEL_6c9d8b0233584efe8d9afd8b6ae677eb",
"max": 499723,
"min": 0,
"orientation": "horizontal",
- "style": "IPY_MODEL_e1d7d4a1ad3943cfa1c6c393b3ec8fa9",
+ "style": "IPY_MODEL_107bc311503b44d697c099c9deea469e",
"value": 499723
}
},
- "f6f55e4060fe4786a473f9e92dbd2123": {
+ "fac4622a80b5418cb4ebb50cb3ffb77c": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
@@ -2570,13 +2812,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_07c1dac7860449959f98875095428c8e",
+ "layout": "IPY_MODEL_27ad0c0bb1624e2594b07ee6f312cc27",
"placeholder": "​",
- "style": "IPY_MODEL_9c16f94a447044fd812a5e07b455c1e1",
- "value": " 500k/500k [00:00<00:00, 2.39MB/s]"
+ "style": "IPY_MODEL_de9e2f862dd44e4bb8800f1b0dcf250a",
+ "value": " 500k/500k [00:00<00:00, 31.7MB/s]"
}
},
- "e731171392144a44b9ad1c00e053d7c2": {
+ "b0dcfb5e8d73442185f5d30d52f6bd66": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -2628,7 +2870,7 @@
"width": null
}
},
- "d63af63319bf477db65cf82798e3e94a": {
+ "fdec5f4749734ac7b7b5bb1a7c3fd7c7": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -2680,7 +2922,7 @@
"width": null
}
},
- "7a51811cd62f417188fc9def136f75c2": {
+ "0bcd2db9a5314f269bd4b0c59a92a4a8": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
@@ -2695,7 +2937,7 @@
"description_width": ""
}
},
- "a1f5f349e4914449baac681adf8d9ffa": {
+ "6c9d8b0233584efe8d9afd8b6ae677eb": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -2747,7 +2989,7 @@
"width": null
}
},
- "e1d7d4a1ad3943cfa1c6c393b3ec8fa9": {
+ "107bc311503b44d697c099c9deea469e": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
@@ -2763,7 +3005,7 @@
"description_width": ""
}
},
- "07c1dac7860449959f98875095428c8e": {
+ "27ad0c0bb1624e2594b07ee6f312cc27": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -2815,7 +3057,7 @@
"width": null
}
},
- "9c16f94a447044fd812a5e07b455c1e1": {
+ "de9e2f862dd44e4bb8800f1b0dcf250a": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
@@ -2830,7 +3072,7 @@
"description_width": ""
}
},
- "ee33b6b5166d4ed5af4ac37fffe98960": {
+ "13c9bef53636491eab093352d4caa735": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
@@ -2845,14 +3087,14 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
- "IPY_MODEL_9b816ccaf4244a56837ece478512305e",
- "IPY_MODEL_e9dccbaa8edd4f498ecac527690387e3",
- "IPY_MODEL_a7876f1a32e747a6b9b27832869c6465"
+ "IPY_MODEL_fc291c1f78cc482e8cc2e12b8e6e9006",
+ "IPY_MODEL_d9a320db623347db8854b6d2c40ec4b7",
+ "IPY_MODEL_9a3be91fa4dd44e981758f7105fc4079"
],
- "layout": "IPY_MODEL_b88962551870425bb2d9ecb447aa3ccb"
+ "layout": "IPY_MODEL_5f01512592774830a9c568d15d94075c"
}
},
- "9b816ccaf4244a56837ece478512305e": {
+ "fc291c1f78cc482e8cc2e12b8e6e9006": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
@@ -2867,13 +3109,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_28478a5b79c744d8a59a1fefc8d13ddd",
+ "layout": "IPY_MODEL_dc8ee38ae1f14b31be3bdbce6fd1d413",
"placeholder": "​",
- "style": "IPY_MODEL_085783b0fbed4614bddb27bae28872ba",
+ "style": "IPY_MODEL_28a7ec144fc742f4a17eacecb102aa13",
"value": "tokenizer.json: 100%"
}
},
- "e9dccbaa8edd4f498ecac527690387e3": {
+ "d9a320db623347db8854b6d2c40ec4b7": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
@@ -2889,15 +3131,15 @@
"bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_6a5da30b96f540f5a269d4a65ce62ac2",
+ "layout": "IPY_MODEL_2c436ab181004ffa9fb3abcc85a441ab",
"max": 1842767,
"min": 0,
"orientation": "horizontal",
- "style": "IPY_MODEL_b8e81706d00b4c909a5ec0af9c268781",
+ "style": "IPY_MODEL_f941586944b54224a6b5a30a37984c12",
"value": 1842767
}
},
- "a7876f1a32e747a6b9b27832869c6465": {
+ "9a3be91fa4dd44e981758f7105fc4079": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
@@ -2912,13 +3154,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_0553ab1878d54ae29cf7053949b25be8",
+ "layout": "IPY_MODEL_03244343741d49c3a4787ed4634e454b",
"placeholder": "​",
- "style": "IPY_MODEL_d66e9ae45ef54030b88e2346b229ceba",
- "value": " 1.84M/1.84M [00:00<00:00, 7.09MB/s]"
+ "style": "IPY_MODEL_d240fa97a1794d1eac82d64e971df7cc",
+ "value": " 1.84M/1.84M [00:00<00:00, 27.2MB/s]"
}
},
- "b88962551870425bb2d9ecb447aa3ccb": {
+ "5f01512592774830a9c568d15d94075c": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -2970,7 +3212,7 @@
"width": null
}
},
- "28478a5b79c744d8a59a1fefc8d13ddd": {
+ "dc8ee38ae1f14b31be3bdbce6fd1d413": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -3022,7 +3264,7 @@
"width": null
}
},
- "085783b0fbed4614bddb27bae28872ba": {
+ "28a7ec144fc742f4a17eacecb102aa13": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
@@ -3037,7 +3279,7 @@
"description_width": ""
}
},
- "6a5da30b96f540f5a269d4a65ce62ac2": {
+ "2c436ab181004ffa9fb3abcc85a441ab": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -3089,7 +3331,7 @@
"width": null
}
},
- "b8e81706d00b4c909a5ec0af9c268781": {
+ "f941586944b54224a6b5a30a37984c12": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
@@ -3105,7 +3347,7 @@
"description_width": ""
}
},
- "0553ab1878d54ae29cf7053949b25be8": {
+ "03244343741d49c3a4787ed4634e454b": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -3157,7 +3399,7 @@
"width": null
}
},
- "d66e9ae45ef54030b88e2346b229ceba": {
+ "d240fa97a1794d1eac82d64e971df7cc": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
@@ -3172,7 +3414,7 @@
"description_width": ""
}
},
- "1782ff6a8d3a409d9c1ff8c17aebea0e": {
+ "007c960fb11341189b9ca216c2387912": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
@@ -3187,14 +3429,14 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
- "IPY_MODEL_095e79dbaa0e4850bd5a87c5850c8469",
- "IPY_MODEL_94071f8fcd7243e1848896e6187424c2",
- "IPY_MODEL_efa7c56d7faa4fd5b693ab307f9e05a4"
+ "IPY_MODEL_ea83ea5d75b040859bb070c0c31245a6",
+ "IPY_MODEL_52503157dba14b61ae01ff7f2fa962b2",
+ "IPY_MODEL_095cc828d937430c811067c790d8abd4"
],
- "layout": "IPY_MODEL_b94592b0393a43cd8ccf27347ec0aed4"
+ "layout": "IPY_MODEL_3f8639bde84d49ad9a7175437aadd98a"
}
},
- "095e79dbaa0e4850bd5a87c5850c8469": {
+ "ea83ea5d75b040859bb070c0c31245a6": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
@@ -3209,13 +3451,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_62d976d654804d03880e4d6bcb81ba23",
+ "layout": "IPY_MODEL_931371f5c3ef4be783d0fdb8774bebe3",
"placeholder": "​",
- "style": "IPY_MODEL_c838747d204840e6891aa9d4169a016e",
+ "style": "IPY_MODEL_d2fc85e3d20a4378976aed9a124a5ed8",
"value": "special_tokens_map.json: 100%"
}
},
- "94071f8fcd7243e1848896e6187424c2": {
+ "52503157dba14b61ae01ff7f2fa962b2": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
@@ -3231,15 +3473,15 @@
"bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_e89c1d0d9dba4d18be3d220ab88d50be",
+ "layout": "IPY_MODEL_c10cb61418544f09a45feece6c6efc46",
"max": 438,
"min": 0,
"orientation": "horizontal",
- "style": "IPY_MODEL_5b71e3a911764babbc6442da73157f7d",
+ "style": "IPY_MODEL_599de7c643c4487c9b8f29983bec9ecb",
"value": 438
}
},
- "efa7c56d7faa4fd5b693ab307f9e05a4": {
+ "095cc828d937430c811067c790d8abd4": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
@@ -3254,13 +3496,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_60c1a75bb74341a9af04c3b33d29ceb6",
+ "layout": "IPY_MODEL_1c0d8835b57f48e2a5be293b77f557d2",
"placeholder": "​",
- "style": "IPY_MODEL_192deb5485594bf7a2357fa3e66d3ba8",
- "value": " 438/438 [00:00<00:00, 16.7kB/s]"
+ "style": "IPY_MODEL_4a57c032b69e464c8e24d049dc46041e",
+ "value": " 438/438 [00:00<00:00, 32.8kB/s]"
}
},
- "b94592b0393a43cd8ccf27347ec0aed4": {
+ "3f8639bde84d49ad9a7175437aadd98a": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -3312,7 +3554,7 @@
"width": null
}
},
- "62d976d654804d03880e4d6bcb81ba23": {
+ "931371f5c3ef4be783d0fdb8774bebe3": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -3364,7 +3606,7 @@
"width": null
}
},
- "c838747d204840e6891aa9d4169a016e": {
+ "d2fc85e3d20a4378976aed9a124a5ed8": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
@@ -3379,7 +3621,7 @@
"description_width": ""
}
},
- "e89c1d0d9dba4d18be3d220ab88d50be": {
+ "c10cb61418544f09a45feece6c6efc46": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -3431,7 +3673,7 @@
"width": null
}
},
- "5b71e3a911764babbc6442da73157f7d": {
+ "599de7c643c4487c9b8f29983bec9ecb": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
@@ -3447,7 +3689,7 @@
"description_width": ""
}
},
- "60c1a75bb74341a9af04c3b33d29ceb6": {
+ "1c0d8835b57f48e2a5be293b77f557d2": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -3499,7 +3741,7 @@
"width": null
}
},
- "192deb5485594bf7a2357fa3e66d3ba8": {
+ "4a57c032b69e464c8e24d049dc46041e": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
@@ -3514,7 +3756,7 @@
"description_width": ""
}
},
- "1ad8100179344b659456d1519992a20c": {
+ "74558dba954141e28f546384c5ce45df": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
@@ -3529,14 +3771,14 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
- "IPY_MODEL_47a30e51056a466d9ff38c18ae7c92b2",
- "IPY_MODEL_0e9c4d435701492d996625132ff8e89f",
- "IPY_MODEL_babd391a882c457fbf5ccac408d0d0e0"
+ "IPY_MODEL_c05bf4fa33e243318634e06a43c5e349",
+ "IPY_MODEL_1f5d32a9671a4e09bf5d354ad78900cf",
+ "IPY_MODEL_b02088d195c34da7972ab353c5f8c375"
],
- "layout": "IPY_MODEL_53feae2f6bce4f5e9fe46ed75562b74b"
+ "layout": "IPY_MODEL_023a79c0d8fd40eb8830066dc08f92d4"
}
},
- "47a30e51056a466d9ff38c18ae7c92b2": {
+ "c05bf4fa33e243318634e06a43c5e349": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
@@ -3551,13 +3793,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_844287e9ecd346b7a5e38a92abfd00d8",
+ "layout": "IPY_MODEL_8fdd1a662c56454da71ed5d321f34251",
"placeholder": "​",
- "style": "IPY_MODEL_f9c1c27d6b9c41abb511c0225d3a98a4",
+ "style": "IPY_MODEL_c24ff71905b94183b6b11caaf25c0679",
"value": "Downloading readme: 100%"
}
},
- "0e9c4d435701492d996625132ff8e89f": {
+ "1f5d32a9671a4e09bf5d354ad78900cf": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
@@ -3573,15 +3815,15 @@
"bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_10d56c6612c74a4680b6e64f9cf28057",
+ "layout": "IPY_MODEL_f4a668de26214a1080746b8e9d718fe8",
"max": 11610,
"min": 0,
"orientation": "horizontal",
- "style": "IPY_MODEL_a63dc78b5c334f2882319ded4d1a31f1",
+ "style": "IPY_MODEL_45b0279b01c64ce28d261a82023bf878",
"value": 11610
}
},
- "babd391a882c457fbf5ccac408d0d0e0": {
+ "b02088d195c34da7972ab353c5f8c375": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
@@ -3596,13 +3838,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_5989a3edb28a43f9aa7d23d6d5698394",
+ "layout": "IPY_MODEL_b970c106abfa413c99443000cfea30f3",
"placeholder": "​",
- "style": "IPY_MODEL_15e02c7908d74d8caf707be000199dce",
- "value": " 11.6k/11.6k [00:00<00:00, 395kB/s]"
+ "style": "IPY_MODEL_2d40e05ff63546ee887f38da6ef4b3b4",
+ "value": " 11.6k/11.6k [00:00<00:00, 374kB/s]"
}
},
- "53feae2f6bce4f5e9fe46ed75562b74b": {
+ "023a79c0d8fd40eb8830066dc08f92d4": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -3654,7 +3896,7 @@
"width": null
}
},
- "844287e9ecd346b7a5e38a92abfd00d8": {
+ "8fdd1a662c56454da71ed5d321f34251": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -3706,7 +3948,7 @@
"width": null
}
},
- "f9c1c27d6b9c41abb511c0225d3a98a4": {
+ "c24ff71905b94183b6b11caaf25c0679": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
@@ -3721,7 +3963,7 @@
"description_width": ""
}
},
- "10d56c6612c74a4680b6e64f9cf28057": {
+ "f4a668de26214a1080746b8e9d718fe8": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -3773,7 +4015,7 @@
"width": null
}
},
- "a63dc78b5c334f2882319ded4d1a31f1": {
+ "45b0279b01c64ce28d261a82023bf878": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
@@ -3789,7 +4031,7 @@
"description_width": ""
}
},
- "5989a3edb28a43f9aa7d23d6d5698394": {
+ "b970c106abfa413c99443000cfea30f3": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -3841,7 +4083,7 @@
"width": null
}
},
- "15e02c7908d74d8caf707be000199dce": {
+ "2d40e05ff63546ee887f38da6ef4b3b4": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
@@ -3856,7 +4098,7 @@
"description_width": ""
}
},
- "d90cb12c521e460d995f86a37dbd7cbd": {
+ "174584afca224f86a9dd15e2edbcc428": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
@@ -3871,14 +4113,14 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
- "IPY_MODEL_7e86d8407a27483fb3cfc6189884b143",
- "IPY_MODEL_ea40a9a523394410be01e84e09335d43",
- "IPY_MODEL_461b3cbd65a54201a6614732730c5052"
+ "IPY_MODEL_6f37160eee3d420f8208547646bbd6d1",
+ "IPY_MODEL_c81f8fadd92a427283c2aaad10b39683",
+ "IPY_MODEL_099696f8bcfc4ed7bc5e0eb68e6526a0"
],
- "layout": "IPY_MODEL_4eb32b35bff14fb2a3cd583758952136"
+ "layout": "IPY_MODEL_2ffe07a48b4c4a33bdfa5be58d05fe86"
}
},
- "7e86d8407a27483fb3cfc6189884b143": {
+ "6f37160eee3d420f8208547646bbd6d1": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
@@ -3893,13 +4135,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_2d275f36c9484f4987cbbbf3817c6e60",
+ "layout": "IPY_MODEL_387c937c33a64274a26eebc1a4e3dbe7",
"placeholder": "​",
- "style": "IPY_MODEL_c67b841b536141258f943dbb8e533448",
+ "style": "IPY_MODEL_e851aebec1ef4a38b063d199066bcf9f",
"value": "Downloading data: 100%"
}
},
- "ea40a9a523394410be01e84e09335d43": {
+ "c81f8fadd92a427283c2aaad10b39683": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
@@ -3915,15 +4157,15 @@
"bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_4d9d28b5489d4919abd0e1efaac3c2cc",
+ "layout": "IPY_MODEL_345b903d0f19437cbd6048fb13c66126",
"max": 44307561,
"min": 0,
"orientation": "horizontal",
- "style": "IPY_MODEL_1240fcb23e8f4f67be6a17f7f92a4119",
+ "style": "IPY_MODEL_9032582c45a947dcbc19796da17d626f",
"value": 44307561
}
},
- "461b3cbd65a54201a6614732730c5052": {
+ "099696f8bcfc4ed7bc5e0eb68e6526a0": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
@@ -3938,13 +4180,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_51f0c1b88ca44b2c894d87b67db91a17",
+ "layout": "IPY_MODEL_f9fce8fd15d84d538494da57d4c9d84c",
"placeholder": "​",
- "style": "IPY_MODEL_86ddac5d48644e7db99f93c3d1bdf706",
- "value": " 44.3M/44.3M [00:01<00:00, 28.2MB/s]"
+ "style": "IPY_MODEL_1055a35a671b422a82e6dd3bd3b62c1b",
+ "value": " 44.3M/44.3M [00:01<00:00, 33.5MB/s]"
}
},
- "4eb32b35bff14fb2a3cd583758952136": {
+ "2ffe07a48b4c4a33bdfa5be58d05fe86": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -3996,7 +4238,7 @@
"width": null
}
},
- "2d275f36c9484f4987cbbbf3817c6e60": {
+ "387c937c33a64274a26eebc1a4e3dbe7": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -4048,7 +4290,7 @@
"width": null
}
},
- "c67b841b536141258f943dbb8e533448": {
+ "e851aebec1ef4a38b063d199066bcf9f": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
@@ -4063,7 +4305,7 @@
"description_width": ""
}
},
- "4d9d28b5489d4919abd0e1efaac3c2cc": {
+ "345b903d0f19437cbd6048fb13c66126": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -4115,7 +4357,7 @@
"width": null
}
},
- "1240fcb23e8f4f67be6a17f7f92a4119": {
+ "9032582c45a947dcbc19796da17d626f": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
@@ -4131,7 +4373,7 @@
"description_width": ""
}
},
- "51f0c1b88ca44b2c894d87b67db91a17": {
+ "f9fce8fd15d84d538494da57d4c9d84c": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -4183,7 +4425,7 @@
"width": null
}
},
- "86ddac5d48644e7db99f93c3d1bdf706": {
+ "1055a35a671b422a82e6dd3bd3b62c1b": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
@@ -4198,7 +4440,7 @@
"description_width": ""
}
},
- "b056f9720512470eb013d3f9670dcff1": {
+ "6ceae480b63c44848d7f7a210b2b88d5": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
@@ -4213,14 +4455,14 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
- "IPY_MODEL_9a16aae1c2444ad297a30cefbd52bd33",
- "IPY_MODEL_7839c5a4623b4860822e29d5e1c228ca",
- "IPY_MODEL_8fe1c9ceaaa649cba7bd8818d6b10ada"
+ "IPY_MODEL_895aaaba6b064f6ab85cc0b1a3e15ad5",
+ "IPY_MODEL_16080e31e7fc447ebdcef8bcd3a68af5",
+ "IPY_MODEL_b8fbceddaea24ee6a540b1a9b1706d54"
],
- "layout": "IPY_MODEL_321ce162f5354a2c8da91420305defc3"
+ "layout": "IPY_MODEL_b7e42686cedb4cd0b415790927988ed3"
}
},
- "9a16aae1c2444ad297a30cefbd52bd33": {
+ "895aaaba6b064f6ab85cc0b1a3e15ad5": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
@@ -4235,13 +4477,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_44754c1c65164f2390b189301e8fcea7",
+ "layout": "IPY_MODEL_ed648c9a917447c79bf262638ad29a4d",
"placeholder": "​",
- "style": "IPY_MODEL_d845da7c591e4f158bf27a6e7a3d6052",
+ "style": "IPY_MODEL_406de0abbff2494194ff1f767bee84b4",
"value": "Generating train split: "
}
},
- "7839c5a4623b4860822e29d5e1c228ca": {
+ "16080e31e7fc447ebdcef8bcd3a68af5": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
@@ -4257,15 +4499,15 @@
"bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_84d6a93ac4b04fe888544ddc7b48ab0c",
+ "layout": "IPY_MODEL_e5449a6478584500a95cdbf571bc5410",
"max": 1,
"min": 0,
"orientation": "horizontal",
- "style": "IPY_MODEL_89766eb5651e40e0baf71e1d34cf236b",
+ "style": "IPY_MODEL_bbff18dc8f3f4172a316065b43a7754e",
"value": 1
}
},
- "8fe1c9ceaaa649cba7bd8818d6b10ada": {
+ "b8fbceddaea24ee6a540b1a9b1706d54": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
@@ -4280,13 +4522,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_b7b6dd26c0204349bb94f7bf05d863b9",
+ "layout": "IPY_MODEL_46e14a149d2c4eeaaaca6cb507e23c87",
"placeholder": "​",
- "style": "IPY_MODEL_e83d0e8438cb423d9533de385d48e660",
- "value": " 51760/0 [00:00<00:00, 60852.94 examples/s]"
+ "style": "IPY_MODEL_ae9779aa721b4dc6b36b522c8f2183ae",
+ "value": " 51760/0 [00:01<00:00, 35721.51 examples/s]"
}
},
- "321ce162f5354a2c8da91420305defc3": {
+ "b7e42686cedb4cd0b415790927988ed3": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -4338,7 +4580,7 @@
"width": null
}
},
- "44754c1c65164f2390b189301e8fcea7": {
+ "ed648c9a917447c79bf262638ad29a4d": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -4390,7 +4632,7 @@
"width": null
}
},
- "d845da7c591e4f158bf27a6e7a3d6052": {
+ "406de0abbff2494194ff1f767bee84b4": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
@@ -4405,7 +4647,7 @@
"description_width": ""
}
},
- "84d6a93ac4b04fe888544ddc7b48ab0c": {
+ "e5449a6478584500a95cdbf571bc5410": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -4457,7 +4699,7 @@
"width": "20px"
}
},
- "89766eb5651e40e0baf71e1d34cf236b": {
+ "bbff18dc8f3f4172a316065b43a7754e": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
@@ -4473,7 +4715,7 @@
"description_width": ""
}
},
- "b7b6dd26c0204349bb94f7bf05d863b9": {
+ "46e14a149d2c4eeaaaca6cb507e23c87": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -4525,7 +4767,7 @@
"width": null
}
},
- "e83d0e8438cb423d9533de385d48e660": {
+ "ae9779aa721b4dc6b36b522c8f2183ae": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
@@ -4540,7 +4782,7 @@
"description_width": ""
}
},
- "7314cd3f8b444f33bbe8e8f315585c55": {
+ "617fd1a72995407aa171832a3f85da60": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
@@ -4555,14 +4797,14 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
- "IPY_MODEL_06aa73c3ee5b43ffaa3b4e52f7d42a93",
- "IPY_MODEL_7c6b1c53823d4cde8d293cd47d65d09f",
- "IPY_MODEL_d1dec186275d44b9a69876e6a09a2663"
+ "IPY_MODEL_1f600fbaaed94f028970a52731e66a58",
+ "IPY_MODEL_6c83ca6081fe4cf19d4dbb28eaa44148",
+ "IPY_MODEL_bd337c697a49441ea0b0a3ed22a524fc"
],
- "layout": "IPY_MODEL_63342701c31c45548c010b54269ba904"
+ "layout": "IPY_MODEL_6187678a8c7646818bbb1d7ee6c8e57e"
}
},
- "06aa73c3ee5b43ffaa3b4e52f7d42a93": {
+ "1f600fbaaed94f028970a52731e66a58": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
@@ -4577,13 +4819,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_d7eb017ccb054711bc63c55e72766e1f",
+ "layout": "IPY_MODEL_0855a4acfa4c44ad8b6de5cc22748f58",
"placeholder": "​",
- "style": "IPY_MODEL_614e5b9476c24f2aa3c14d766c260594",
+ "style": "IPY_MODEL_35685010bc8e452e9618be89bf6e121d",
"value": "Map: 100%"
}
},
- "7c6b1c53823d4cde8d293cd47d65d09f": {
+ "6c83ca6081fe4cf19d4dbb28eaa44148": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
@@ -4599,15 +4841,15 @@
"bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_473bba705dbf43eb8ea225563d575799",
+ "layout": "IPY_MODEL_874aaa7bd499479d9b004f89c9ac566a",
"max": 51760,
"min": 0,
"orientation": "horizontal",
- "style": "IPY_MODEL_c8e41ed860554289b6f96e73f6514026",
+ "style": "IPY_MODEL_ce1a4213b6b149c6a8480e6b9883f1e4",
"value": 51760
}
},
- "d1dec186275d44b9a69876e6a09a2663": {
+ "bd337c697a49441ea0b0a3ed22a524fc": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
@@ -4622,13 +4864,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_98670c4c6b4242db9cbb26282eeb0a69",
+ "layout": "IPY_MODEL_78526ffb80284e1cb6b67bb29e8a58e8",
"placeholder": "​",
- "style": "IPY_MODEL_e8774961e8314a268a9d977f40226e99",
- "value": " 51760/51760 [00:00<00:00, 69225.20 examples/s]"
+ "style": "IPY_MODEL_2488b84919634be980df351d436f2c9b",
+ "value": " 51760/51760 [00:00<00:00, 52179.06 examples/s]"
}
},
- "63342701c31c45548c010b54269ba904": {
+ "6187678a8c7646818bbb1d7ee6c8e57e": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -4680,7 +4922,7 @@
"width": null
}
},
- "d7eb017ccb054711bc63c55e72766e1f": {
+ "0855a4acfa4c44ad8b6de5cc22748f58": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -4732,7 +4974,7 @@
"width": null
}
},
- "614e5b9476c24f2aa3c14d766c260594": {
+ "35685010bc8e452e9618be89bf6e121d": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
@@ -4747,7 +4989,7 @@
"description_width": ""
}
},
- "473bba705dbf43eb8ea225563d575799": {
+ "874aaa7bd499479d9b004f89c9ac566a": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -4799,7 +5041,7 @@
"width": null
}
},
- "c8e41ed860554289b6f96e73f6514026": {
+ "ce1a4213b6b149c6a8480e6b9883f1e4": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
@@ -4815,7 +5057,7 @@
"description_width": ""
}
},
- "98670c4c6b4242db9cbb26282eeb0a69": {
+ "78526ffb80284e1cb6b67bb29e8a58e8": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -4867,7 +5109,7 @@
"width": null
}
},
- "e8774961e8314a268a9d977f40226e99": {
+ "2488b84919634be980df351d436f2c9b": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
@@ -4882,7 +5124,7 @@
"description_width": ""
}
},
- "62bf1a9297c44ab1984201d97200b60a": {
+ "b45961f634ab4c77b0299b90a844ceb4": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
@@ -4897,14 +5139,14 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
- "IPY_MODEL_228660bc715a43da8eac4c7585e16bac",
- "IPY_MODEL_861f5cab34fa47718b8da2e5c5426ce5",
- "IPY_MODEL_b17bc865041b43999440ab80271f0610"
+ "IPY_MODEL_e198db9222944139ae54378c8ec37faa",
+ "IPY_MODEL_c836372d9d8f4e47ae3f0ac30c3c3819",
+ "IPY_MODEL_897344eb4c334ff3a6daaaad35785547"
],
- "layout": "IPY_MODEL_6b5cab72791b481d80c73ea95969962e"
+ "layout": "IPY_MODEL_a7cefb96d91d4da2ba22c505884ccb27"
}
},
- "228660bc715a43da8eac4c7585e16bac": {
+ "e198db9222944139ae54378c8ec37faa": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
@@ -4919,13 +5161,1381 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_692a42425ecf4da9a562803c22d522e0",
+ "layout": "IPY_MODEL_509bb157e8164ba3b12e191a979dcbe7",
"placeholder": "​",
- "style": "IPY_MODEL_87fcc05152694fed9f5cac6c35a7d8bd",
- "value": "Map: 100%"
+ "style": "IPY_MODEL_6dbdcba8515d4fb6be4656727c26848c",
+ "value": "tokenizer_config.json: 100%"
+ }
+ },
+ "c836372d9d8f4e47ae3f0ac30c3c3819": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "FloatProgressModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_a81e5681e8e64940ae70bd0499ebc542",
+ "max": 843,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_655a84ad15274d5e952eb77c778417bc",
+ "value": 843
+ }
+ },
+ "897344eb4c334ff3a6daaaad35785547": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_9544de014f9a410ea9a85fe030463921",
+ "placeholder": "​",
+ "style": "IPY_MODEL_0b611036fa664a309ab78800967f80b3",
+ "value": " 843/843 [00:00<00:00, 24.4kB/s]"
+ }
+ },
+ "a7cefb96d91d4da2ba22c505884ccb27": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "509bb157e8164ba3b12e191a979dcbe7": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "6dbdcba8515d4fb6be4656727c26848c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "a81e5681e8e64940ae70bd0499ebc542": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "655a84ad15274d5e952eb77c778417bc": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "ProgressStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "9544de014f9a410ea9a85fe030463921": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "0b611036fa664a309ab78800967f80b3": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "b5f83d82ca924895b49c67425ede0f1f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HBoxModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_580bec4f24d7440f9366a744d739c6f3",
+ "IPY_MODEL_973c72b8232e49a1bf0ae438a35268cd",
+ "IPY_MODEL_b431d2460e724d69b57a4cd2a6f4a0b9"
+ ],
+ "layout": "IPY_MODEL_831a8178a0f043b09be9b9bbcc077d0a"
+ }
+ },
+ "580bec4f24d7440f9366a744d739c6f3": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_725b302fc78940e880ae281b1808126e",
+ "placeholder": "​",
+ "style": "IPY_MODEL_1946e9c53e6645b0ae8a9bcc5c53d7ae",
+ "value": "tokenizer.model: 100%"
+ }
+ },
+ "973c72b8232e49a1bf0ae438a35268cd": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "FloatProgressModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_334e83adc688445a9593abe1787fcd53",
+ "max": 499723,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_a9fb267b56954fd696d273119602461f",
+ "value": 499723
+ }
+ },
+ "b431d2460e724d69b57a4cd2a6f4a0b9": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_8176392dd9a04671b3c48df9955e39b4",
+ "placeholder": "​",
+ "style": "IPY_MODEL_0c05f5826824460da5702f54bf4512ea",
+ "value": " 500k/500k [00:00<00:00, 10.6MB/s]"
+ }
+ },
+ "831a8178a0f043b09be9b9bbcc077d0a": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "725b302fc78940e880ae281b1808126e": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "1946e9c53e6645b0ae8a9bcc5c53d7ae": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "334e83adc688445a9593abe1787fcd53": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "a9fb267b56954fd696d273119602461f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "ProgressStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "8176392dd9a04671b3c48df9955e39b4": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "0c05f5826824460da5702f54bf4512ea": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "28d40a2c73fe4e5ab132019f9e877d04": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HBoxModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_136e1e8dbbc84ed78c9c33fb33b07c6a",
+ "IPY_MODEL_82c58e0f1fd547d082edaf0e1247e016",
+ "IPY_MODEL_0204195337d6419b8bc11f87648922a2"
+ ],
+ "layout": "IPY_MODEL_519dcba35ab34667b9c1d7e956292bad"
+ }
+ },
+ "136e1e8dbbc84ed78c9c33fb33b07c6a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_627d0b0edec94287a24982d4691be832",
+ "placeholder": "​",
+ "style": "IPY_MODEL_940e704814514a1d83a844e69998ae53",
+ "value": "tokenizer.json: 100%"
+ }
+ },
+ "82c58e0f1fd547d082edaf0e1247e016": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "FloatProgressModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_552cf4fecfc548e3b0cbe7b077fe9419",
+ "max": 1842767,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_9f5f46652e784b6799a973a3800fdc99",
+ "value": 1842767
+ }
+ },
+ "0204195337d6419b8bc11f87648922a2": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_4ce998bc595143afb1e6660b32aad390",
+ "placeholder": "​",
+ "style": "IPY_MODEL_911f9c43749242a3977b3665926eb86a",
+ "value": " 1.84M/1.84M [00:00<00:00, 33.4MB/s]"
+ }
+ },
+ "519dcba35ab34667b9c1d7e956292bad": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "627d0b0edec94287a24982d4691be832": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "940e704814514a1d83a844e69998ae53": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "552cf4fecfc548e3b0cbe7b077fe9419": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "9f5f46652e784b6799a973a3800fdc99": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "ProgressStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "4ce998bc595143afb1e6660b32aad390": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "911f9c43749242a3977b3665926eb86a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "e7420547ef9d4cf3bff2c5f3bbe57c1b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HBoxModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_25c500c92a5243948e2964be54c7d489",
+ "IPY_MODEL_fbf6d1dc0a24412fb067b1dac2fda172",
+ "IPY_MODEL_66b0660356cd491ba80289fbb7d77002"
+ ],
+ "layout": "IPY_MODEL_9de8c460109347fbb4fbe9c9defbd3fa"
+ }
+ },
+ "25c500c92a5243948e2964be54c7d489": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_c0704e7bc6d34a7cad29a30694a4d2e1",
+ "placeholder": "​",
+ "style": "IPY_MODEL_fe3f918fcfb34bc6a63e590acd0d5814",
+ "value": "special_tokens_map.json: 100%"
+ }
+ },
+ "fbf6d1dc0a24412fb067b1dac2fda172": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "FloatProgressModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_639ed7ec582b4083ad58379ba035a3f2",
+ "max": 438,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_0210a35193a84e0ebab03f6b0805525d",
+ "value": 438
+ }
+ },
+ "66b0660356cd491ba80289fbb7d77002": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_9125296314f1428195b31c8bef2099a0",
+ "placeholder": "​",
+ "style": "IPY_MODEL_a6ddb773091c446783f7882f8245e55b",
+ "value": " 438/438 [00:00<00:00, 12.3kB/s]"
+ }
+ },
+ "9de8c460109347fbb4fbe9c9defbd3fa": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "c0704e7bc6d34a7cad29a30694a4d2e1": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "fe3f918fcfb34bc6a63e590acd0d5814": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "639ed7ec582b4083ad58379ba035a3f2": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "0210a35193a84e0ebab03f6b0805525d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "ProgressStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "9125296314f1428195b31c8bef2099a0": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "a6ddb773091c446783f7882f8245e55b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "f9c467b27a574fe8a949c87859e56da4": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HBoxModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_b5c6123394b44d6daaa26974a63618b7",
+ "IPY_MODEL_654a37cc0ed24270b88d9046763ab797",
+ "IPY_MODEL_983324d114f9466bb24d428a935bf419"
+ ],
+ "layout": "IPY_MODEL_d0fe47bce69e4f80ac1c548827d5c3be"
+ }
+ },
+ "b5c6123394b44d6daaa26974a63618b7": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_8b3b6069d2e24d00a160ef04d0423fcd",
+ "placeholder": "​",
+ "style": "IPY_MODEL_3fc53be851324935830e16efbf13a9cd",
+ "value": "Map (num_proc=2): 100%"
}
},
- "861f5cab34fa47718b8da2e5c5426ce5": {
+ "654a37cc0ed24270b88d9046763ab797": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
@@ -4941,15 +6551,15 @@
"bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_25087a506e6b4ee5827c87804f4dfdc2",
+ "layout": "IPY_MODEL_3f56efc5bebd41b28b977b35f1257135",
"max": 51760,
"min": 0,
"orientation": "horizontal",
- "style": "IPY_MODEL_28eae49a2ca2422cb0666a8dd2ddf57b",
+ "style": "IPY_MODEL_07113f67b2434918948be81683628df2",
"value": 51760
}
},
- "b17bc865041b43999440ab80271f0610": {
+ "983324d114f9466bb24d428a935bf419": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
@@ -4964,13 +6574,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_c40aa48eed1741b6997f6bf23fee7057",
+ "layout": "IPY_MODEL_d4d2b43807d24b609dc27bfd9b02ed2d",
"placeholder": "​",
- "style": "IPY_MODEL_c7b9b43135e342d2b659839c31db90d1",
- "value": " 51760/51760 [00:43<00:00, 1872.90 examples/s]"
+ "style": "IPY_MODEL_beeb810d96ff4b7a8ae2285bc39c9869",
+ "value": " 51760/51760 [00:47<00:00, 1193.49 examples/s]"
}
},
- "6b5cab72791b481d80c73ea95969962e": {
+ "d0fe47bce69e4f80ac1c548827d5c3be": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -5022,7 +6632,7 @@
"width": null
}
},
- "692a42425ecf4da9a562803c22d522e0": {
+ "8b3b6069d2e24d00a160ef04d0423fcd": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -5074,7 +6684,7 @@
"width": null
}
},
- "87fcc05152694fed9f5cac6c35a7d8bd": {
+ "3fc53be851324935830e16efbf13a9cd": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
@@ -5089,7 +6699,7 @@
"description_width": ""
}
},
- "25087a506e6b4ee5827c87804f4dfdc2": {
+ "3f56efc5bebd41b28b977b35f1257135": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -5141,7 +6751,7 @@
"width": null
}
},
- "28eae49a2ca2422cb0666a8dd2ddf57b": {
+ "07113f67b2434918948be81683628df2": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
@@ -5157,7 +6767,7 @@
"description_width": ""
}
},
- "c40aa48eed1741b6997f6bf23fee7057": {
+ "d4d2b43807d24b609dc27bfd9b02ed2d": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -5209,7 +6819,7 @@
"width": null
}
},
- "c7b9b43135e342d2b659839c31db90d1": {
+ "beeb810d96ff4b7a8ae2285bc39c9869": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",