diff --git "a/Alpaca_+_Mistral_7b_full_example.ipynb" "b/Alpaca_+_Mistral_7b_full_example.ipynb" --- "a/Alpaca_+_Mistral_7b_full_example.ipynb" +++ "b/Alpaca_+_Mistral_7b_full_example.ipynb" @@ -3,11 +3,11 @@ { "cell_type": "markdown", "source": [ - "To run this, press \"Runtime\" and press \"Run all\" on a **free** Tesla T4 Google Colab instance!\n", + "To run this, press \"*Runtime*\" and press \"*Run all*\" on a **free** Tesla T4 Google Colab instance!\n", "
1 | \n", - "1.404300 | \n", + "1.408900 | \n", "
2 | \n", - "1.703200 | \n", + "1.709700 | \n", "
3 | \n", - "1.146300 | \n", + "1.148400 | \n", "
4 | \n", - "1.176100 | \n", + "1.177500 | \n", "
5 | \n", - "0.986200 | \n", + "0.986600 | \n", "
6 | \n", - "1.002200 | \n", + "0.998200 | \n", "
7 | \n", - "1.033700 | \n", + "1.032900 | \n", "
8 | \n", - "0.888100 | \n", + "0.887600 | \n", "
9 | \n", - "0.942000 | \n", + "0.937500 | \n", "
10 | \n", - "0.934500 | \n", + "0.932100 | \n", "
11 | \n", - "0.897300 | \n", + "0.902500 | \n", "
12 | \n", - "0.932300 | \n", + "0.925300 | \n", "
13 | \n", - "0.819300 | \n", + "0.814800 | \n", "
14 | \n", - "0.985400 | \n", + "0.978600 | \n", "
15 | \n", - "0.821500 | \n", + "0.820800 | \n", "
16 | \n", - "0.880600 | \n", + "0.878900 | \n", "
17 | \n", - "1.007600 | \n", + "1.005700 | \n", "
18 | \n", - "0.720200 | \n", + "0.720300 | \n", "
19 | \n", - "0.588100 | \n", + "0.589200 | \n", "
20 | \n", - "0.726600 | \n", + "0.721600 | \n", "
21 | \n", - "0.887900 | \n", + "0.883800 | \n", "
22 | \n", - "0.922300 | \n", + "0.929200 | \n", "
23 | \n", - "0.750000 | \n", + "0.754100 | \n", "
24 | \n", - "0.746500 | \n", + "0.748900 | \n", "
25 | \n", - "0.894900 | \n", + "0.896000 | \n", "
26 | \n", - "0.739500 | \n", + "0.735100 | \n", "
27 | \n", - "0.863900 | \n", + "0.859300 | \n", "
28 | \n", - "0.863300 | \n", + "0.861700 | \n", "
29 | \n", - "0.784500 | \n", + "0.785500 | \n", "
30 | \n", - "0.747500 | \n", + "0.744700 | \n", "
31 | \n", - "0.793200 | \n", + "0.793400 | \n", "
32 | \n", - "0.749500 | \n", + "0.754200 | \n", "
33 | \n", - "0.856100 | \n", + "0.857900 | \n", "
34 | \n", - "0.856500 | \n", + "0.849700 | \n", "
35 | \n", - "0.749200 | \n", + "0.738900 | \n", "
36 | \n", - "0.754000 | \n", + "0.751700 | \n", "
37 | \n", - "0.761600 | \n", + "0.762700 | \n", "
38 | \n", - "0.802100 | \n", + "0.801600 | \n", "
39 | \n", - "0.889300 | \n", + "0.886300 | \n", "
40 | \n", - "0.929700 | \n", + "0.925500 | \n", "
41 | \n", - "0.734500 | \n", + "0.730600 | \n", "
42 | \n", - "0.596400 | \n", + "0.593000 | \n", "
43 | \n", - "0.696700 | \n", + "0.695600 | \n", "
44 | \n", - "0.665600 | \n", + "0.660200 | \n", "
45 | \n", - "0.964900 | \n", + "0.964300 | \n", "
46 | \n", - "0.574200 | \n", + "0.575800 | \n", "
47 | \n", - "0.749800 | \n", + "0.752600 | \n", "
48 | \n", - "0.758600 | \n", + "0.757200 | \n", "
49 | \n", - "0.713500 | \n", + "0.714300 | \n", "
50 | \n", - "0.957900 | \n", + "0.959800 | \n", "
51 | \n", - "0.828400 | \n", + "0.829300 | \n", "
52 | \n", - "0.712900 | \n", + "0.711700 | \n", "
53 | \n", - "0.837600 | \n", + "0.841900 | \n", "
54 | \n", - "0.924600 | \n", + "0.920200 | \n", "
55 | \n", - "0.717400 | \n", + "0.717800 | \n", "
56 | \n", - "0.951900 | \n", + "0.948100 | \n", "
57 | \n", - "0.744900 | \n", + "0.741000 | \n", "
58 | \n", - "0.889500 | \n", + "0.893100 | \n", "
59 | \n", - "0.772800 | \n", + "0.771400 | \n", "
60 | \n", - "0.881800 | \n", + "0.879800 | \n", "
"
@@ -1006,19 +1009,19 @@
"colab": {
"base_uri": "https://localhost:8080/"
},
- "outputId": "8164562f-9c1d-4d1c-a596-ebdfb95001a1"
+ "outputId": "ff1b0842-5966-4dc2-bd98-c20832526b31"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
- "480.792 seconds used for training.\n",
- "8.01 minutes used for training.\n",
- "Peak reserved memory = 6.826 GB.\n",
- "Peak reserved memory for training = 2.201 GB.\n",
- "Peak reserved memory % of max memory = 46.284 %.\n",
- "Peak reserved memory for training % of max memory = 14.924 %.\n"
+ "484.744 seconds used for training.\n",
+ "8.08 minutes used for training.\n",
+ "Peak reserved memory = 6.846 GB.\n",
+ "Peak reserved memory for training = 2.221 GB.\n",
+ "Peak reserved memory % of max memory = 46.42 %.\n",
+ "Peak reserved memory for training % of max memory = 15.06 %.\n"
]
}
],
@@ -1050,6 +1053,8 @@
{
"cell_type": "code",
"source": [
+ "# alpaca_prompt = Copied from above\n",
+ "\n",
"inputs = tokenizer(\n",
"[\n",
" alpaca_prompt.format(\n",
@@ -1059,7 +1064,7 @@
" )\n",
"]*1, return_tensors = \"pt\").to(\"cuda\")\n",
"\n",
- "outputs = model.generate(**inputs, max_new_tokens = 128, use_cache = True)\n",
+ "outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)\n",
"tokenizer.batch_decode(outputs)"
],
"metadata": {
@@ -1067,7 +1072,7 @@
"colab": {
"base_uri": "https://localhost:8080/"
},
- "outputId": "a14cd344-4807-4389-f357-bbd5a6661d67"
+ "outputId": "9f3bd036-9ed6-40af-b4e8-6193b2088d3b"
},
"execution_count": null,
"outputs": [
@@ -1075,15 +1080,14 @@
"output_type": "stream",
"name": "stderr",
"text": [
- "/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py:1547: UserWarning: You have modified the pretrained model configuration to control generation. This is a deprecated strategy to control generation and will be removed soon, in a future version. Please use and modify the model generation configuration (see https://huggingface.co/docs/transformers/generation_strategies#default-text-generation-configuration )\n",
- " warnings.warn(\n"
+ "Setting `pad_token_id` to `eos_token_id`:2 for open-end generation.\n"
]
},
{
"output_type": "execute_result",
"data": {
"text/plain": [
- "[' Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\\n\\n### Instruction:\\nContinue the fibonnaci sequence.\\n\\n### Input:\\n1, 1, 2, 3, 5, 8\\n\\n### Response:\\nThe next number in the Fibonacci sequence is 13. The Fibonacci sequence is a series of numbers where each number is the sum of the two numbers before it. The sequence starts with 0 and 1, and each subsequent number is the sum of the two numbers before it. The sequence continues as follows: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 61']"
+ "[' Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\\n\\n### Instruction:\\nContinue the fibonnaci sequence.\\n\\n### Input:\\n1, 1, 2, 3, 5, 8\\n\\n### Response:\\nThe next number in the Fibonacci sequence is 13.']"
]
},
"metadata": {},
@@ -1091,12 +1095,75 @@
}
]
},
+ {
+ "cell_type": "markdown",
+ "source": [
+ " You can also use a `TextStreamer` for continuous inference - so you can see the generation token by token, instead of waiting the whole time!"
+ ],
+ "metadata": {
+ "id": "CrSvZObor0lY"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "# alpaca_prompt = Copied from above\n",
+ "\n",
+ "inputs = tokenizer(\n",
+ "[\n",
+ " alpaca_prompt.format(\n",
+ " \"Continue the fibonnaci sequence.\", # instruction\n",
+ " \"1, 1, 2, 3, 5, 8\", # input\n",
+ " \"\", # output - leave this blank for generation!\n",
+ " )\n",
+ "]*1, return_tensors = \"pt\").to(\"cuda\")\n",
+ "\n",
+ "from transformers import TextStreamer\n",
+ "text_streamer = TextStreamer(tokenizer)\n",
+ "_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 128)"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "e2pEuRb1r2Vg",
+ "outputId": "2188f68b-6b72-46e6-ea85-f8134df0aa46"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "Setting `pad_token_id` to `eos_token_id`:2 for open-end generation.\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ " Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n",
+ "\n",
+ "### Instruction:\n",
+ "Continue the fibonnaci sequence.\n",
+ "\n",
+ "### Input:\n",
+ "1, 1, 2, 3, 5, 8\n",
+ "\n",
+ "### Response:\n",
+ "The next number in the Fibonacci sequence is 13.\n"
+ ]
+ }
+ ]
+ },
{
"cell_type": "markdown",
"source": [
"\n",
"### Saving, loading finetuned models\n",
- "To save the final model, either use Huggingface's `push_to_hub` for an online save or `save_pretrained` for a local save."
+ "To save the final model as LoRA adapters, either use Huggingface's `push_to_hub` for an online save or `save_pretrained` for a local save.\n",
+ "\n",
+ "**[NOTE]** This ONLY saves the LoRA adapters, and not the full model. To save to 16bit or GGUF, scroll down!"
],
"metadata": {
"id": "uMuVrWbjAzhc"
@@ -1106,7 +1173,7 @@
"cell_type": "code",
"source": [
"model.save_pretrained(\"lora_model\") # Local saving\n",
- "# model.push_to_hub(\"your_name/lora_model\") # Online saving"
+ "# model.push_to_hub(\"your_name/lora_model\", token = \"...\") # Online saving"
],
"metadata": {
"id": "upcOlWe7A1vc"
@@ -1117,9 +1184,7 @@
{
"cell_type": "markdown",
"source": [
- "Now if you want to load the LoRA adapters we just saved to use for inference, UNCOMMENT the commented parts, and copy paste the below to a new instance.\n",
- "\n",
- "**[HELP]** If `unsloth/mistral-7b-bnb-4bit` errors out, try `unsloth/mistral-7b`"
+ "Now if you want to load the LoRA adapters we just saved for inference, set `False` to `True`:"
],
"metadata": {
"id": "AEEcJ4qfC7Lp"
@@ -1128,18 +1193,14 @@
{
"cell_type": "code",
"source": [
- "from peft import PeftModel\n",
- "\n",
- "### **** UNCOMMENT BELOW FOR INFERENCE **** ###\n",
- "# from unsloth import FastLanguageModel\n",
- "# model, tokenizer = FastLanguageModel.from_pretrained(\n",
- "# model_name = \"unsloth/mistral-7b\" # YOUR MODEL YOU USED FOR TRAINING\n",
- "# max_seq_length = max_seq_length,\n",
- "# dtype = dtype,\n",
- "# load_in_4bit = load_in_4bit,\n",
- "# )\n",
- "# model = PeftModel.from_pretrained(model, \"lora_model\")\n",
- "### **** UNCOMMENT ABOVE FOR INFERENCE **** ###\n",
+ "if False:\n",
+ " from unsloth import FastLanguageModel\n",
+ " model, tokenizer = FastLanguageModel.from_pretrained(\n",
+ " model_name = \"lora_model\", # YOUR MODEL YOU USED FOR TRAINING\n",
+ " max_seq_length = max_seq_length,\n",
+ " dtype = dtype,\n",
+ " load_in_4bit = load_in_4bit,\n",
+ " )\n",
"\n",
"alpaca_prompt = \"\"\"Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n",
"\n",
@@ -1161,7 +1222,7 @@
" )\n",
"]*1, return_tensors = \"pt\").to(\"cuda\")\n",
"\n",
- "outputs = model.generate(**inputs, max_new_tokens = 128, use_cache = True)\n",
+ "outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)\n",
"tokenizer.batch_decode(outputs)"
],
"metadata": {
@@ -1169,93 +1230,52 @@
"colab": {
"base_uri": "https://localhost:8080/"
},
- "outputId": "9a6df427-0e12-45fe-9467-78e2095346ce"
+ "outputId": "68f54910-2634-4cce-f3a2-4cbb90e2e990"
},
"execution_count": null,
"outputs": [
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "Setting `pad_token_id` to `eos_token_id`:2 for open-end generation.\n"
+ ]
+ },
{
"output_type": "execute_result",
"data": {
"text/plain": [
- "[\" Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\\n\\n### Instruction:\\nWhat is a famous tall tower in Paris?\\n\\n### Input:\\n\\n\\n### Response:\\nThe Eiffel Tower is a famous tall tower in Paris, France. It is an iron lattice tower located on the Champ de Mars and is one of the most recognizable structures in the world. It was built in 1889 as the entrance arch to the 1889 World's Fair and was designed by Gustave Eiffel. The tower stands at a height of 324 meters (1,063 feet) and is the tallest structure in Paris. It is a popular tourist attraction and is one of the most visited monuments in the world.\"]"
+ "[\" Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\\n\\n### Instruction:\\nWhat is a famous tall tower in Paris?\\n\\n### Input:\\n\\n\\n### Response:\\nThe Eiffel Tower is a famous tall tower in Paris, France. It is located on the Champ de Mars and is one of the most recognizable symbols of the city. The tower was built in 1889 as the entrance arch to the 1889 World's Fair and was\"]"
]
},
"metadata": {},
- "execution_count": 11
+ "execution_count": 13
}
]
},
+ {
+ "cell_type": "markdown",
+ "source": [
+ "You can also use Hugging Face's `AutoModelForPeftCausalLM`"
+ ],
+ "metadata": {
+ "id": "QQMjaNrjsU5_"
+ }
+ },
{
"cell_type": "code",
"source": [
- "#@title Code for conversion to GGUF\n",
- "def colab_quantize_to_gguf(save_directory, quantization_method = \"q4_k_m\"):\n",
- " from transformers.models.llama.modeling_llama import logger\n",
- " import os\n",
- "\n",
- " logger.warning_once(\n",
- " \"Unsloth: `colab_quantize_to_gguf` is still in development mode.\\n\"\\\n",
- " \"If anything errors or breaks, please file a ticket on Github.\\n\"\\\n",
- " \"Also, if you used this successfully, please tell us on Discord!\"\n",
+ "if False:\n",
+ " from peft import AutoModelForPeftCausalLM\n",
+ " from transformers import AutoTokenizer\n",
+ " model = AutoModelForPeftCausalLM.from_pretrained(\n",
+ " \"lora_model\", # YOUR MODEL YOU USED FOR TRAINING\n",
+ " load_in_4bit = load_in_4bit,\n",
" )\n",
- "\n",
- " # From https://mlabonne.github.io/blog/posts/Quantize_Llama_2_models_using_ggml.html\n",
- " ALLOWED_QUANTS = \\\n",
- " {\n",
- " \"q2_k\" : \"Uses Q4_K for the attention.vw and feed_forward.w2 tensors, Q2_K for the other tensors.\",\n",
- " \"q3_k_l\" : \"Uses Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else Q3_K\",\n",
- " \"q3_k_m\" : \"Uses Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else Q3_K\",\n",
- " \"q3_k_s\" : \"Uses Q3_K for all tensors\",\n",
- " \"q4_0\" : \"Original quant method, 4-bit.\",\n",
- " \"q4_1\" : \"Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models.\",\n",
- " \"q4_k_m\" : \"Uses Q6_K for half of the attention.wv and feed_forward.w2 tensors, else Q4_K\",\n",
- " \"q4_k_s\" : \"Uses Q4_K for all tensors\",\n",
- " \"q5_0\" : \"Higher accuracy, higher resource usage and slower inference.\",\n",
- " \"q5_1\" : \"Even higher accuracy, resource usage and slower inference.\",\n",
- " \"q5_k_m\" : \"Uses Q6_K for half of the attention.wv and feed_forward.w2 tensors, else Q5_K\",\n",
- " \"q5_k_s\" : \"Uses Q5_K for all tensors\",\n",
- " \"q6_k\" : \"Uses Q8_K for all tensors\",\n",
- " \"q8_0\" : \"Almost indistinguishable from float16. High resource use and slow. Not recommended for most users.\",\n",
- " }\n",
- "\n",
- " if quantization_method not in ALLOWED_QUANTS.keys():\n",
- " error = f\"Unsloth: Quant method = [{quantization_method}] not supported. Choose from below:\\n\"\n",
- " for key, value in ALLOWED_QUANTS.items():\n",
- " error += f\"[{key}] => {value}\\n\"\n",
- " raise RuntimeError(error)\n",
- " pass\n",
- "\n",
- " print_info = \\\n",
- " f\"==((====))== Unsloth: Conversion from QLoRA to GGUF information\\n\"\\\n",
- " f\" \\\\\\ /| [0] Installing llama.cpp will take 3 minutes.\\n\"\\\n",
- " f\"O^O/ \\_/ \\\\ [1] Converting HF to GUUF 16bits will take 3 minutes.\\n\"\\\n",
- " f\"\\ / [2] Converting GGUF 16bits to q4_k_m will take 20 minutes.\\n\"\\\n",
- " f' \"-____-\" In total, you will have to wait around 26 minutes.\\n'\n",
- " print(print_info)\n",
- "\n",
- " if not os.path.exists(\"llama.cpp\"):\n",
- " print(\"Unsloth: [0] Installing llama.cpp. This will take 3 minutes...\")\n",
- " !git clone https://github.com/ggerganov/llama.cpp\n",
- " !cd llama.cpp && make clean && LLAMA_CUBLAS=1 make -j\n",
- " !pip install gguf protobuf\n",
- " pass\n",
- "\n",
- " print(\"Unsloth: [1] Converting HF into GGUF 16bit. This will take 3 minutes...\")\n",
- " !python llama.cpp/convert.py {save_directory} \\\n",
- " --outfile {save_directory}-unsloth.gguf \\\n",
- " --outtype f16\n",
- "\n",
- " print(\"Unsloth: [2] Converting GGUF 16bit into q4_k_m. This will take 20 minutes...\")\n",
- " final_location = f\"./{save_directory}-{quantization_method}-unsloth.gguf\"\n",
- " !./llama.cpp/quantize ./{save_directory}-unsloth.gguf \\\n",
- " {final_location} {quantization_method}\n",
- "\n",
- " print(f\"Unsloth: Output location: {final_location}\")\n",
- "pass\n"
+ " tokenizer = AutoTokenizer.from_pretrained(\"lora_model\")"
],
"metadata": {
- "cellView": "form",
- "id": "nCVtR2ElF1GX"
+ "id": "yFfaXG0WsQuE"
},
"execution_count": null,
"outputs": []
@@ -1263,32 +1283,31 @@
{
"cell_type": "markdown",
"source": [
- "To save to `GGUF` / `llama.cpp`, we support it natively now! You can also go to our dedicated GGUF notebook [here](https://colab.research.google.com/drive/14DW0VwuqL2O3tqGlX7aUF6TOBA8S59M4?usp=sharing). Select either `save locally` for local saving or `save locally and quantize to 4bit` for 4bit quantization for llama.cpp / GGUF."
+ "### Saving to float16 for VLLM\n",
+ "\n",
+ "We also support saving to `float16` directly. Select `merged_16bit` for float16 or `merged_4bit` for int4. We also allow `lora` adapters as a fallback. Use `push_to_hub_merged` to upload to your Hugging Face account!"
],
"metadata": {
- "id": "TCv4vXHd61i7"
+ "id": "f422JgM9sdVT"
}
},
{
"cell_type": "code",
"source": [
- "from unsloth import unsloth_save_model\n",
- "\n",
- "# Change to `save locally` to save a float16 GGUF file or `\"save locally and quantize to 4bit\"`\n",
- "# to quantize down to 4bit\n",
- "SAVE_STRATEGY = \"none\"\n",
- "\n",
- "if SAVE_STRATEGY == \"save locally\":\n",
+ "# Merge to 16bit\n",
+ "if False: model.save_pretrained_merged(\"x\", tokenizer, save_method = \"merged_16bit\",)\n",
+ "if False: model.push_to_hub_merged(\"hf_user/x\", tokenizer, save_method = \"merged_16bit\", token = \"\")\n",
"\n",
- " unsloth_save_model(model, tokenizer, \"output_model\")\n",
+ "# Merge to 4bit\n",
+ "if False: model.save_pretrained_merged(\"x\", tokenizer, save_method = \"merged_4bit\",)\n",
+ "if False: model.push_to_hub_merged(\"hf_user/x\", tokenizer, save_method = \"merged_4bit\", token = \"\")\n",
"\n",
- "elif SAVE_STRATEGY == \"save locally and quantize to 4bit\":\n",
- "\n",
- " unsloth_save_model(model, tokenizer, \"output_model\")\n",
- " colab_quantize_to_gguf(\"output_model\", quantization_method = \"q4_k_m\")"
+ "# Just LoRA adapters\n",
+ "if False: model.save_pretrained_merged(\"x\", tokenizer, save_method = \"lora\",)\n",
+ "if False: model.push_to_hub_merged(\"hf_user/x\", tokenizer, save_method = \"lora\", token = \"\")"
],
"metadata": {
- "id": "FqfebeAdT073"
+ "id": "iHjt_SMYsd3P"
},
"execution_count": null,
"outputs": []
@@ -1296,44 +1315,42 @@
{
"cell_type": "markdown",
"source": [
- "Now, use the `output_model.gguf` file or `output_model-q4_k_m-unsloth.gguf` file in `llama.cpp` or a UI based system like `GPT4All`. You can install GPT4All by going [here](https://gpt4all.io/index.html)."
+ "### GGUF / llama.cpp Conversion\n",
+ "To save to `GGUF` / `llama.cpp`, we support it natively now! We clone `llama.cpp` and we default save it to `q8_0`. We allow all methods like `q4_k_m`. Use `save_pretrained_gguf` for local saving and `push_to_hub_gguf` for uploading to HF."
],
"metadata": {
- "id": "bDp0zNpwe6U_"
+ "id": "TCv4vXHd61i7"
}
},
{
- "cell_type": "markdown",
+ "cell_type": "code",
"source": [
- "Otherwise, to merge the LoRA adapters into the 4bit model:"
+ "# Save to 8bit Q8_0\n",
+ "if False: model.save_pretrained_gguf(\"x\", tokenizer,)\n",
+ "if False: model.push_to_hub_gguf(\"hf_user/x\", tokenizer, token = \"\")\n",
+ "\n",
+ "# Save to 16bit GGUF\n",
+ "if False: model.save_pretrained_gguf(\"x\", tokenizer, quantization_method = \"f16\")\n",
+ "if False: model.push_to_hub_gguf(\"hf_user/x\", tokenizer, quantization_method = \"f16\", token = \"\")\n",
+ "\n",
+ "# Save to q4_k_m GGUF\n",
+ "if False: model.save_pretrained_gguf(\"x\", tokenizer, quantization_method = \"q4_k_m\")\n",
+ "if False: model.push_to_hub_gguf(\"hf_user/x\", tokenizer, quantization_method = \"q4_k_m\", token = \"\")"
],
"metadata": {
- "id": "acUVCgzzU1Wv"
- }
+ "id": "FqfebeAdT073"
+ },
+ "execution_count": null,
+ "outputs": []
},
{
- "cell_type": "code",
+ "cell_type": "markdown",
"source": [
- "model = model.merge_and_unload()"
+ "Now, use the `x.gguf` file or `x-unsloth-Q4_K_M.gguf` file in `llama.cpp` or a UI based system like `GPT4All`. You can install GPT4All by going [here](https://gpt4all.io/index.html)."
],
"metadata": {
- "id": "xcRjsZe0RK1b",
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "outputId": "896496df-5d9a-49e7-f60b-ce2304f70c39"
- },
- "execution_count": null,
- "outputs": [
- {
- "output_type": "stream",
- "name": "stderr",
- "text": [
- "/usr/local/lib/python3.10/dist-packages/peft/tuners/lora/bnb.py:229: UserWarning: Merge lora module to 4-bit linear may get different generations due to rounding errors.\n",
- " warnings.warn(\n"
- ]
- }
- ]
+ "id": "bDp0zNpwe6U_"
+ }
},
{
"cell_type": "markdown",
@@ -1374,7 +1391,7 @@
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
- "21fd9c71893a4a99b96e79f39213af35": {
+ "3a4a21c80b1e4232825d13fbceb4e051": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
@@ -1389,14 +1406,14 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
- "IPY_MODEL_99c5700859124f37be1156508a685e28",
- "IPY_MODEL_5d9562bd69f64f2bb0f3a7b271af3d9e",
- "IPY_MODEL_7adea9776e2348619d345699778531c4"
+ "IPY_MODEL_f16087f7a4f94b18ae92a2615bd3719c",
+ "IPY_MODEL_06eac325390f467d9825c489eb4cb442",
+ "IPY_MODEL_9309cba5e6a64d62af82b8e8403336ba"
],
- "layout": "IPY_MODEL_3f5189d724e04588b3782479297877ce"
+ "layout": "IPY_MODEL_c339d8fa8d7d4ad8874bc59f47ef193d"
}
},
- "99c5700859124f37be1156508a685e28": {
+ "f16087f7a4f94b18ae92a2615bd3719c": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
@@ -1411,13 +1428,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_20651e17aea349bdbc4f0d67522d4577",
+ "layout": "IPY_MODEL_c73d502c8be34400bd4fd31f1c14f354",
"placeholder": "",
- "style": "IPY_MODEL_04b1e656bedb4b5bb0388d7239ef01cb",
+ "style": "IPY_MODEL_34e7e54d02cf4120acc14cfa9430674d",
"value": "config.json: 100%"
}
},
- "5d9562bd69f64f2bb0f3a7b271af3d9e": {
+ "06eac325390f467d9825c489eb4cb442": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
@@ -1433,15 +1450,15 @@
"bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_5151bb9352074dbc965d3503ed94e5c5",
+ "layout": "IPY_MODEL_52995fc47dcc4b6bbbba3a158370da1b",
"max": 1055,
"min": 0,
"orientation": "horizontal",
- "style": "IPY_MODEL_4431246852364e3990f46df5186f5cc7",
+ "style": "IPY_MODEL_5a88fa6168b34baca965387de6f9cbf4",
"value": 1055
}
},
- "7adea9776e2348619d345699778531c4": {
+ "9309cba5e6a64d62af82b8e8403336ba": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
@@ -1456,13 +1473,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_f215b46454e44fb5a474c765e23888ac",
+ "layout": "IPY_MODEL_320fff7da29b49d0980a5e19ecdd7e11",
"placeholder": "",
- "style": "IPY_MODEL_acf89e72380c4e388dc72e2684a4bea1",
- "value": " 1.05k/1.05k [00:00<00:00, 11.4kB/s]"
+ "style": "IPY_MODEL_b0caf6ffd475467b9c26e9258902a6d7",
+ "value": " 1.05k/1.05k [00:00<00:00, 26.2kB/s]"
}
},
- "3f5189d724e04588b3782479297877ce": {
+ "c339d8fa8d7d4ad8874bc59f47ef193d": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -1514,7 +1531,7 @@
"width": null
}
},
- "20651e17aea349bdbc4f0d67522d4577": {
+ "c73d502c8be34400bd4fd31f1c14f354": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -1566,7 +1583,7 @@
"width": null
}
},
- "04b1e656bedb4b5bb0388d7239ef01cb": {
+ "34e7e54d02cf4120acc14cfa9430674d": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
@@ -1581,7 +1598,7 @@
"description_width": ""
}
},
- "5151bb9352074dbc965d3503ed94e5c5": {
+ "52995fc47dcc4b6bbbba3a158370da1b": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -1633,7 +1650,7 @@
"width": null
}
},
- "4431246852364e3990f46df5186f5cc7": {
+ "5a88fa6168b34baca965387de6f9cbf4": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
@@ -1649,7 +1666,7 @@
"description_width": ""
}
},
- "f215b46454e44fb5a474c765e23888ac": {
+ "320fff7da29b49d0980a5e19ecdd7e11": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -1701,7 +1718,7 @@
"width": null
}
},
- "acf89e72380c4e388dc72e2684a4bea1": {
+ "b0caf6ffd475467b9c26e9258902a6d7": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
@@ -1716,7 +1733,7 @@
"description_width": ""
}
},
- "27f30a48f4f04b06bbc392989c99304d": {
+ "8978f89cdfd64c41b504debc99fa000b": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
@@ -1731,14 +1748,14 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
- "IPY_MODEL_709c7148397d4bffb855dd2cfa3ae28f",
- "IPY_MODEL_53bd9b2299754baa89c805d52efb1229",
- "IPY_MODEL_e742e883d9e342bfb5d855b996e20c35"
+ "IPY_MODEL_fad0db53f8d84346996a49bb8548a28f",
+ "IPY_MODEL_d719af3c7e434c4fbd88ce6442ff94f3",
+ "IPY_MODEL_1dffcda7345949cca7a01373e87bef91"
],
- "layout": "IPY_MODEL_9d554c1d3d894ee8b0057d3b629a1375"
+ "layout": "IPY_MODEL_2da70f09f484477ebbb8f81458556515"
}
},
- "709c7148397d4bffb855dd2cfa3ae28f": {
+ "fad0db53f8d84346996a49bb8548a28f": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
@@ -1753,13 +1770,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_ab0c5847e0064fa8905d4cecbc3fdb24",
+ "layout": "IPY_MODEL_db33c13036a74c5eb2bcab082f9ce07d",
"placeholder": "",
- "style": "IPY_MODEL_f41dfa9cdccd4dd193d794b314113608",
+ "style": "IPY_MODEL_dca1b3a080e74bf3b00a27dd1ed4b99c",
"value": "model.safetensors: 100%"
}
},
- "53bd9b2299754baa89c805d52efb1229": {
+ "d719af3c7e434c4fbd88ce6442ff94f3": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
@@ -1775,15 +1792,15 @@
"bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_c3c30bca2f034056b19c562c13d2d624",
+ "layout": "IPY_MODEL_838d7a4c2c3a4fe99a3eb0689fa7ef27",
"max": 4125687906,
"min": 0,
"orientation": "horizontal",
- "style": "IPY_MODEL_6113ac3a4f2d4620b47dcadd3b8ced7a",
+ "style": "IPY_MODEL_e0ed107826af43db93b4fbd171bb9f36",
"value": 4125687906
}
},
- "e742e883d9e342bfb5d855b996e20c35": {
+ "1dffcda7345949cca7a01373e87bef91": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
@@ -1798,13 +1815,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_979028afa83f4fbd88dc7af54f2ea346",
+ "layout": "IPY_MODEL_1eef883b99634b8abefd9c008eddbd1f",
"placeholder": "",
- "style": "IPY_MODEL_1a76dd74171e4275a858bc778cb09413",
- "value": " 4.13G/4.13G [00:36<00:00, 179MB/s]"
+ "style": "IPY_MODEL_a858db7a4c8a40a5bedc4ea817491c4c",
+ "value": " 4.13G/4.13G [00:36<00:00, 96.2MB/s]"
}
},
- "9d554c1d3d894ee8b0057d3b629a1375": {
+ "2da70f09f484477ebbb8f81458556515": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -1856,7 +1873,7 @@
"width": null
}
},
- "ab0c5847e0064fa8905d4cecbc3fdb24": {
+ "db33c13036a74c5eb2bcab082f9ce07d": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -1908,7 +1925,7 @@
"width": null
}
},
- "f41dfa9cdccd4dd193d794b314113608": {
+ "dca1b3a080e74bf3b00a27dd1ed4b99c": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
@@ -1923,7 +1940,7 @@
"description_width": ""
}
},
- "c3c30bca2f034056b19c562c13d2d624": {
+ "838d7a4c2c3a4fe99a3eb0689fa7ef27": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -1975,7 +1992,7 @@
"width": null
}
},
- "6113ac3a4f2d4620b47dcadd3b8ced7a": {
+ "e0ed107826af43db93b4fbd171bb9f36": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
@@ -1991,7 +2008,7 @@
"description_width": ""
}
},
- "979028afa83f4fbd88dc7af54f2ea346": {
+ "1eef883b99634b8abefd9c008eddbd1f": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -2043,7 +2060,7 @@
"width": null
}
},
- "1a76dd74171e4275a858bc778cb09413": {
+ "a858db7a4c8a40a5bedc4ea817491c4c": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
@@ -2058,7 +2075,7 @@
"description_width": ""
}
},
- "bea3f4e007fb4f8d92766ec2455e1c17": {
+ "c52fb02a25774735bc6cd1fd4085ffb2": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
@@ -2073,14 +2090,14 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
- "IPY_MODEL_a2f6355eeae340b6b29ee901c1d26a42",
- "IPY_MODEL_958fd55cc70b404da1f44177aa86f91d",
- "IPY_MODEL_dbba49dde33745a68a1d2e3d783cfa64"
+ "IPY_MODEL_2c64fd94311247d89b2bbb37b0a72d52",
+ "IPY_MODEL_28ffcbb08f9c443c87df1b6d6d5f38bb",
+ "IPY_MODEL_699373e9a43d4433b1b3eacdc4eb338d"
],
- "layout": "IPY_MODEL_2bb22f43844c4f91ab3264a736976842"
+ "layout": "IPY_MODEL_ed41c69c299e42ccaea8cf4e31162b8e"
}
},
- "a2f6355eeae340b6b29ee901c1d26a42": {
+ "2c64fd94311247d89b2bbb37b0a72d52": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
@@ -2095,13 +2112,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_830f4ba2895749c3859931beb0789c6f",
+ "layout": "IPY_MODEL_f85bc895a6ee4c5b8cfd26a1c827888f",
"placeholder": "",
- "style": "IPY_MODEL_d23bc863c5aa4d55aa7b7ee89f9e1967",
+ "style": "IPY_MODEL_e5f70528f2834d2b861dc303346eff3a",
"value": "generation_config.json: 100%"
}
},
- "958fd55cc70b404da1f44177aa86f91d": {
+ "28ffcbb08f9c443c87df1b6d6d5f38bb": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
@@ -2117,15 +2134,15 @@
"bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_aab98b960b784260a9fbe7722dcc48be",
+ "layout": "IPY_MODEL_e76d203cc320464cadfc7b2649d8fdb7",
"max": 116,
"min": 0,
"orientation": "horizontal",
- "style": "IPY_MODEL_eaf252cf95d148619e198128fa6176c1",
+ "style": "IPY_MODEL_0b2301c8190944a3bf8935c4bf075d8c",
"value": 116
}
},
- "dbba49dde33745a68a1d2e3d783cfa64": {
+ "699373e9a43d4433b1b3eacdc4eb338d": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
@@ -2140,13 +2157,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_5bc33740d9dc45d9959676268cc403f1",
+ "layout": "IPY_MODEL_ead0df4cb60a4223b6a2d27814971093",
"placeholder": "",
- "style": "IPY_MODEL_e84fd33e8af149199191917d41f73995",
- "value": " 116/116 [00:00<00:00, 3.84kB/s]"
+ "style": "IPY_MODEL_5b1aa79e9567426d893b92bab1f1cc40",
+ "value": " 116/116 [00:00<00:00, 4.47kB/s]"
}
},
- "2bb22f43844c4f91ab3264a736976842": {
+ "ed41c69c299e42ccaea8cf4e31162b8e": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -2198,7 +2215,7 @@
"width": null
}
},
- "830f4ba2895749c3859931beb0789c6f": {
+ "f85bc895a6ee4c5b8cfd26a1c827888f": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -2250,7 +2267,7 @@
"width": null
}
},
- "d23bc863c5aa4d55aa7b7ee89f9e1967": {
+ "e5f70528f2834d2b861dc303346eff3a": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
@@ -2265,7 +2282,7 @@
"description_width": ""
}
},
- "aab98b960b784260a9fbe7722dcc48be": {
+ "e76d203cc320464cadfc7b2649d8fdb7": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -2317,7 +2334,7 @@
"width": null
}
},
- "eaf252cf95d148619e198128fa6176c1": {
+ "0b2301c8190944a3bf8935c4bf075d8c": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
@@ -2333,7 +2350,7 @@
"description_width": ""
}
},
- "5bc33740d9dc45d9959676268cc403f1": {
+ "ead0df4cb60a4223b6a2d27814971093": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -2385,7 +2402,7 @@
"width": null
}
},
- "e84fd33e8af149199191917d41f73995": {
+ "5b1aa79e9567426d893b92bab1f1cc40": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
@@ -2400,7 +2417,7 @@
"description_width": ""
}
},
- "d2945f43455245c491b3cafc6f6b463b": {
+ "6a46284e269e4044b2e082098fb0988f": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
@@ -2415,14 +2432,14 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
- "IPY_MODEL_b2a60ed3dc304f6193bd08e2a085510c",
- "IPY_MODEL_93224ff8b9aa4adda5cfb72e97f31e9f",
- "IPY_MODEL_c2dade9e7951426087f570c912765220"
+ "IPY_MODEL_c5311843eaf640fd885b125d32fec217",
+ "IPY_MODEL_aed33eb228e84f77bf141b5141dab343",
+ "IPY_MODEL_27cee145c0774440ba13e7033db70b14"
],
- "layout": "IPY_MODEL_f4477f83b0ad4a7e999b7673e77df34a"
+ "layout": "IPY_MODEL_613978ea26b94edeac575404c09edc52"
}
},
- "b2a60ed3dc304f6193bd08e2a085510c": {
+ "c5311843eaf640fd885b125d32fec217": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
@@ -2437,13 +2454,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_1066f1cd381640f3a50a6e3f5eb69310",
+ "layout": "IPY_MODEL_d05f155563dd45c9a0cd76d7d0ee38f9",
"placeholder": "",
- "style": "IPY_MODEL_8a0571e322084e559e8ea6cf2dccdec2",
+ "style": "IPY_MODEL_cf6fe6d02df5448986728647e0442031",
"value": "tokenizer_config.json: 100%"
}
},
- "93224ff8b9aa4adda5cfb72e97f31e9f": {
+ "aed33eb228e84f77bf141b5141dab343": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
@@ -2459,15 +2476,15 @@
"bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_8e5f466a39c240c6932b15f90d3198c2",
+ "layout": "IPY_MODEL_cd12b6b9c1204fe18733c1862d0900e2",
"max": 971,
"min": 0,
"orientation": "horizontal",
- "style": "IPY_MODEL_5dadd8af5a974cea83c078bd692570d8",
+ "style": "IPY_MODEL_612b4afa75734acba7ab7917a70ece9a",
"value": 971
}
},
- "c2dade9e7951426087f570c912765220": {
+ "27cee145c0774440ba13e7033db70b14": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
@@ -2482,13 +2499,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_d92d6d3ec5b14c6fa29224838a41dfbf",
+ "layout": "IPY_MODEL_9ca704fdbe8843239b76380e1735bc25",
"placeholder": "",
- "style": "IPY_MODEL_7fdec40cd5dd4b76b1793a1d2f1127ef",
- "value": " 971/971 [00:00<00:00, 46.0kB/s]"
+ "style": "IPY_MODEL_07087433b7984095a400cffe9c47b38d",
+ "value": " 971/971 [00:00<00:00, 49.3kB/s]"
}
},
- "f4477f83b0ad4a7e999b7673e77df34a": {
+ "613978ea26b94edeac575404c09edc52": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -2540,7 +2557,7 @@
"width": null
}
},
- "1066f1cd381640f3a50a6e3f5eb69310": {
+ "d05f155563dd45c9a0cd76d7d0ee38f9": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -2592,7 +2609,7 @@
"width": null
}
},
- "8a0571e322084e559e8ea6cf2dccdec2": {
+ "cf6fe6d02df5448986728647e0442031": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
@@ -2607,7 +2624,7 @@
"description_width": ""
}
},
- "8e5f466a39c240c6932b15f90d3198c2": {
+ "cd12b6b9c1204fe18733c1862d0900e2": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -2659,7 +2676,7 @@
"width": null
}
},
- "5dadd8af5a974cea83c078bd692570d8": {
+ "612b4afa75734acba7ab7917a70ece9a": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
@@ -2675,7 +2692,7 @@
"description_width": ""
}
},
- "d92d6d3ec5b14c6fa29224838a41dfbf": {
+ "9ca704fdbe8843239b76380e1735bc25": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -2727,7 +2744,7 @@
"width": null
}
},
- "7fdec40cd5dd4b76b1793a1d2f1127ef": {
+ "07087433b7984095a400cffe9c47b38d": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
@@ -2742,7 +2759,7 @@
"description_width": ""
}
},
- "e939fbb3ee754005af82be95a89463b8": {
+ "3e463765bc424c67b88b5b522fd12f36": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
@@ -2757,14 +2774,14 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
- "IPY_MODEL_d3a9ec5bcdfb47cab61068f27fea8752",
- "IPY_MODEL_c10f33f754384f0e91bf06f07966d06e",
- "IPY_MODEL_37c9eff35f32495c826264b85dd7c62a"
+ "IPY_MODEL_9cf66b807829446f9985efbddee49228",
+ "IPY_MODEL_a836c026fe3a4a3d8c981b436b6af487",
+ "IPY_MODEL_fd99cd77c6e2476aaa4f32bbf2fae893"
],
- "layout": "IPY_MODEL_cafced817e064faabc5b9ddc89d2ab09"
+ "layout": "IPY_MODEL_bb4a77f4f8fc4477b1987a0a69ee767e"
}
},
- "d3a9ec5bcdfb47cab61068f27fea8752": {
+ "9cf66b807829446f9985efbddee49228": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
@@ -2779,13 +2796,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_d52d7c537c8b4c8b99440a6e148b69c7",
+ "layout": "IPY_MODEL_9cb14f593e754af19eaab25521b92907",
"placeholder": "",
- "style": "IPY_MODEL_79f4d6c4daeb485098f9ed2c1f11cc2a",
+ "style": "IPY_MODEL_2237cb2d037e4945a7858c3550d12588",
"value": "tokenizer.model: 100%"
}
},
- "c10f33f754384f0e91bf06f07966d06e": {
+ "a836c026fe3a4a3d8c981b436b6af487": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
@@ -2801,15 +2818,15 @@
"bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_5a3e2433453b416e8504e09bc16f8263",
+ "layout": "IPY_MODEL_c694dd6f0d3b4971b11b662b156fc773",
"max": 493443,
"min": 0,
"orientation": "horizontal",
- "style": "IPY_MODEL_3bcd7c150f2b4afaada356efdfee3924",
+ "style": "IPY_MODEL_13578e0496f644a4a454d96645dbf65f",
"value": 493443
}
},
- "37c9eff35f32495c826264b85dd7c62a": {
+ "fd99cd77c6e2476aaa4f32bbf2fae893": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
@@ -2824,13 +2841,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_3e102a5c4ed246e89bb8fbe13078d573",
+ "layout": "IPY_MODEL_abdfbaceb7e24276958b71512b35ddc9",
"placeholder": "",
- "style": "IPY_MODEL_499406e283f7496ba857bed6a50d4d2b",
- "value": " 493k/493k [00:00<00:00, 19.2MB/s]"
+ "style": "IPY_MODEL_8ebff9bab3d240c4a056c6c88a864773",
+ "value": " 493k/493k [00:00<00:00, 23.1MB/s]"
}
},
- "cafced817e064faabc5b9ddc89d2ab09": {
+ "bb4a77f4f8fc4477b1987a0a69ee767e": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -2882,7 +2899,7 @@
"width": null
}
},
- "d52d7c537c8b4c8b99440a6e148b69c7": {
+ "9cb14f593e754af19eaab25521b92907": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -2934,7 +2951,7 @@
"width": null
}
},
- "79f4d6c4daeb485098f9ed2c1f11cc2a": {
+ "2237cb2d037e4945a7858c3550d12588": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
@@ -2949,7 +2966,7 @@
"description_width": ""
}
},
- "5a3e2433453b416e8504e09bc16f8263": {
+ "c694dd6f0d3b4971b11b662b156fc773": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -3001,7 +3018,7 @@
"width": null
}
},
- "3bcd7c150f2b4afaada356efdfee3924": {
+ "13578e0496f644a4a454d96645dbf65f": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
@@ -3017,7 +3034,7 @@
"description_width": ""
}
},
- "3e102a5c4ed246e89bb8fbe13078d573": {
+ "abdfbaceb7e24276958b71512b35ddc9": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -3069,7 +3086,7 @@
"width": null
}
},
- "499406e283f7496ba857bed6a50d4d2b": {
+ "8ebff9bab3d240c4a056c6c88a864773": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
@@ -3084,7 +3101,7 @@
"description_width": ""
}
},
- "4f7a08f57ddf4824b5e82d04ebbeb96c": {
+ "ae42b52c748240f2bcbfea01b4573622": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
@@ -3099,14 +3116,14 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
- "IPY_MODEL_7cbb0a91cf7b4d198f1773d8c63c2788",
- "IPY_MODEL_4f3254087468482fac59300a6b5bb9e9",
- "IPY_MODEL_268fb5e00f5a47189bc8210079c81587"
+ "IPY_MODEL_c590336dde92421c8126df142cc1d05c",
+ "IPY_MODEL_c2326fa217954f389b973478abd98275",
+ "IPY_MODEL_b82fba3690c74fc08ec2e8b382245809"
],
- "layout": "IPY_MODEL_5caa3a3253c14b12a86b49b6551ea092"
+ "layout": "IPY_MODEL_bc231a99984a4c0d9e6081b339d690e9"
}
},
- "7cbb0a91cf7b4d198f1773d8c63c2788": {
+ "c590336dde92421c8126df142cc1d05c": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
@@ -3121,13 +3138,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_4f94c5fc491c446490a58228479ca9fa",
+ "layout": "IPY_MODEL_f2f113c785114890b3eaed0219e2d0f3",
"placeholder": "",
- "style": "IPY_MODEL_7f21b2a6e4824a4eadf60f6a29b08c9a",
+ "style": "IPY_MODEL_bffa3542ab7f4b009da51ba63d56e478",
"value": "tokenizer.json: 100%"
}
},
- "4f3254087468482fac59300a6b5bb9e9": {
+ "c2326fa217954f389b973478abd98275": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
@@ -3143,15 +3160,15 @@
"bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_fe705ea4feb4453286e85c12d7d6b94c",
+ "layout": "IPY_MODEL_e50f02bb85d44156887f90ad6aca8102",
"max": 1795303,
"min": 0,
"orientation": "horizontal",
- "style": "IPY_MODEL_51a5e3f6174643899c76a0e956c44557",
+ "style": "IPY_MODEL_53ceff04ca854c38838dd982b75c5b05",
"value": 1795303
}
},
- "268fb5e00f5a47189bc8210079c81587": {
+ "b82fba3690c74fc08ec2e8b382245809": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
@@ -3166,13 +3183,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_e114ba4cc5c9487287c5d86f7d1bf286",
+ "layout": "IPY_MODEL_2d6d42bf728c42fea2c225e7fb59d582",
"placeholder": "",
- "style": "IPY_MODEL_ba7c9655843b44a0a8837dcf71053a70",
- "value": " 1.80M/1.80M [00:00<00:00, 18.8MB/s]"
+ "style": "IPY_MODEL_b0543ff9bb5d40fba101c988bfbc027d",
+ "value": " 1.80M/1.80M [00:00<00:00, 22.7MB/s]"
}
},
- "5caa3a3253c14b12a86b49b6551ea092": {
+ "bc231a99984a4c0d9e6081b339d690e9": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -3224,7 +3241,7 @@
"width": null
}
},
- "4f94c5fc491c446490a58228479ca9fa": {
+ "f2f113c785114890b3eaed0219e2d0f3": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -3276,7 +3293,7 @@
"width": null
}
},
- "7f21b2a6e4824a4eadf60f6a29b08c9a": {
+ "bffa3542ab7f4b009da51ba63d56e478": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
@@ -3291,7 +3308,7 @@
"description_width": ""
}
},
- "fe705ea4feb4453286e85c12d7d6b94c": {
+ "e50f02bb85d44156887f90ad6aca8102": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -3343,7 +3360,7 @@
"width": null
}
},
- "51a5e3f6174643899c76a0e956c44557": {
+ "53ceff04ca854c38838dd982b75c5b05": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
@@ -3359,7 +3376,7 @@
"description_width": ""
}
},
- "e114ba4cc5c9487287c5d86f7d1bf286": {
+ "2d6d42bf728c42fea2c225e7fb59d582": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -3411,7 +3428,7 @@
"width": null
}
},
- "ba7c9655843b44a0a8837dcf71053a70": {
+ "b0543ff9bb5d40fba101c988bfbc027d": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
@@ -3426,7 +3443,7 @@
"description_width": ""
}
},
- "b24b629c56774be2a728f3c7f18f4360": {
+ "b5eae4bf90bc4f10baa3cef668109188": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
@@ -3441,14 +3458,14 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
- "IPY_MODEL_69c702c247bb42799203eccb9f26d8bf",
- "IPY_MODEL_32ff881c6b0a4f088023cc6f7947c7bd",
- "IPY_MODEL_cc73abb46ce6419aac339959b74a1b2e"
+ "IPY_MODEL_f15b829dd14a4c95a390721dfd15e44c",
+ "IPY_MODEL_c5ca8a1293aa46c397bc95bbc239f7e1",
+ "IPY_MODEL_a7705bbedfcc45f8b227186a619fdb88"
],
- "layout": "IPY_MODEL_fcf0b55acc4d4baea800e43bc24e4542"
+ "layout": "IPY_MODEL_238205803c234c7fac3106429d86ceee"
}
},
- "69c702c247bb42799203eccb9f26d8bf": {
+ "f15b829dd14a4c95a390721dfd15e44c": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
@@ -3463,13 +3480,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_8d12fc38cec64f8eb727d15d96de6fe8",
+ "layout": "IPY_MODEL_f8d4f91fcd8440bbb41efbdcaed2128f",
"placeholder": "",
- "style": "IPY_MODEL_82d1f7fdf00d40c7adea470e917ceff0",
+ "style": "IPY_MODEL_2223525ba0014e018e4833305c7eb26a",
"value": "special_tokens_map.json: 100%"
}
},
- "32ff881c6b0a4f088023cc6f7947c7bd": {
+ "c5ca8a1293aa46c397bc95bbc239f7e1": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
@@ -3485,15 +3502,15 @@
"bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_4f97a49627a645d2a6a55496bc6c7072",
+ "layout": "IPY_MODEL_36082006c1d84d0e8a291e05714d4419",
"max": 438,
"min": 0,
"orientation": "horizontal",
- "style": "IPY_MODEL_18d3cc93c137498bbc21b0c70953da88",
+ "style": "IPY_MODEL_0332ff4a20b34672bae74bebf98cc6e2",
"value": 438
}
},
- "cc73abb46ce6419aac339959b74a1b2e": {
+ "a7705bbedfcc45f8b227186a619fdb88": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
@@ -3508,13 +3525,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_b4aa410b9bb54acdbde194f186aecc34",
+ "layout": "IPY_MODEL_ac5ff6c3f94840e0a856e748d614f985",
"placeholder": "",
- "style": "IPY_MODEL_d1be9d94bcab40cab73ef3cc1b371c1f",
- "value": " 438/438 [00:00<00:00, 22.9kB/s]"
+ "style": "IPY_MODEL_2ab87d2720a243e9ba6942a8a3953c15",
+ "value": " 438/438 [00:00<00:00, 25.2kB/s]"
}
},
- "fcf0b55acc4d4baea800e43bc24e4542": {
+ "238205803c234c7fac3106429d86ceee": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -3566,7 +3583,7 @@
"width": null
}
},
- "8d12fc38cec64f8eb727d15d96de6fe8": {
+ "f8d4f91fcd8440bbb41efbdcaed2128f": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -3618,7 +3635,7 @@
"width": null
}
},
- "82d1f7fdf00d40c7adea470e917ceff0": {
+ "2223525ba0014e018e4833305c7eb26a": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
@@ -3633,7 +3650,7 @@
"description_width": ""
}
},
- "4f97a49627a645d2a6a55496bc6c7072": {
+ "36082006c1d84d0e8a291e05714d4419": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -3685,7 +3702,7 @@
"width": null
}
},
- "18d3cc93c137498bbc21b0c70953da88": {
+ "0332ff4a20b34672bae74bebf98cc6e2": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
@@ -3701,7 +3718,7 @@
"description_width": ""
}
},
- "b4aa410b9bb54acdbde194f186aecc34": {
+ "ac5ff6c3f94840e0a856e748d614f985": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -3753,7 +3770,7 @@
"width": null
}
},
- "d1be9d94bcab40cab73ef3cc1b371c1f": {
+ "2ab87d2720a243e9ba6942a8a3953c15": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
@@ -3768,7 +3785,7 @@
"description_width": ""
}
},
- "a8a8adf4394f4ea4be00c9853c2a3ee5": {
+ "e0ea75df3b5c49ce89427e4d245a7646": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
@@ -3783,14 +3800,14 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
- "IPY_MODEL_aca3ffe3a48741418e6ad9832b4c3834",
- "IPY_MODEL_581c364e9f8c44648d9e8808e1923028",
- "IPY_MODEL_7c7a322585654ac6a7bde6488caa2b30"
+ "IPY_MODEL_02237d111eba4155ab5a48a1b33d82a4",
+ "IPY_MODEL_927e1d33248d4653a785049b50b6d814",
+ "IPY_MODEL_09979ecafec9443ba1f7335ed64de778"
],
- "layout": "IPY_MODEL_60468642068c4c1f930517ec6c9dd399"
+ "layout": "IPY_MODEL_088a000de2234c9f94a8b09e8a8abbb2"
}
},
- "aca3ffe3a48741418e6ad9832b4c3834": {
+ "02237d111eba4155ab5a48a1b33d82a4": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
@@ -3805,13 +3822,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_9bc911e88d9240b79aa19c5351664dc9",
+ "layout": "IPY_MODEL_38c7b4ead56b4540bf68fbe3a5496b9c",
"placeholder": "",
- "style": "IPY_MODEL_d78e367940154413a7310304db0a7d89",
+ "style": "IPY_MODEL_9a0787c7c98b49b8a9141e5212faa249",
"value": "Downloading readme: 100%"
}
},
- "581c364e9f8c44648d9e8808e1923028": {
+ "927e1d33248d4653a785049b50b6d814": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
@@ -3827,15 +3844,15 @@
"bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_3f614e47d3164d4fbc5235c44ab14680",
+ "layout": "IPY_MODEL_daf62811f5384d0f9aea58b40f23161a",
"max": 11610,
"min": 0,
"orientation": "horizontal",
- "style": "IPY_MODEL_e0625e2e1e98435c8bb5d2f6838396f4",
+ "style": "IPY_MODEL_6f90172dd5c240c885140d49add6208f",
"value": 11610
}
},
- "7c7a322585654ac6a7bde6488caa2b30": {
+ "09979ecafec9443ba1f7335ed64de778": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
@@ -3850,13 +3867,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_4890d11383634ed7b88fd29abc79bceb",
+ "layout": "IPY_MODEL_187078f1978843f2b873cee2ee55ac91",
"placeholder": "",
- "style": "IPY_MODEL_5202446fa7c341d4af217e46b7be79e4",
- "value": " 11.6k/11.6k [00:00<00:00, 253kB/s]"
+ "style": "IPY_MODEL_ca8af702ee764e7fa620476854a4f2cf",
+ "value": " 11.6k/11.6k [00:00<00:00, 157kB/s]"
}
},
- "60468642068c4c1f930517ec6c9dd399": {
+ "088a000de2234c9f94a8b09e8a8abbb2": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -3908,7 +3925,7 @@
"width": null
}
},
- "9bc911e88d9240b79aa19c5351664dc9": {
+ "38c7b4ead56b4540bf68fbe3a5496b9c": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -3960,7 +3977,7 @@
"width": null
}
},
- "d78e367940154413a7310304db0a7d89": {
+ "9a0787c7c98b49b8a9141e5212faa249": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
@@ -3975,7 +3992,7 @@
"description_width": ""
}
},
- "3f614e47d3164d4fbc5235c44ab14680": {
+ "daf62811f5384d0f9aea58b40f23161a": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -4027,7 +4044,7 @@
"width": null
}
},
- "e0625e2e1e98435c8bb5d2f6838396f4": {
+ "6f90172dd5c240c885140d49add6208f": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
@@ -4043,7 +4060,7 @@
"description_width": ""
}
},
- "4890d11383634ed7b88fd29abc79bceb": {
+ "187078f1978843f2b873cee2ee55ac91": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -4095,7 +4112,7 @@
"width": null
}
},
- "5202446fa7c341d4af217e46b7be79e4": {
+ "ca8af702ee764e7fa620476854a4f2cf": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
@@ -4110,7 +4127,7 @@
"description_width": ""
}
},
- "4eac852431744e40b7dcf9ecca1e1fd1": {
+ "80b9d976e30e40ecaf35a606bca5d647": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
@@ -4125,14 +4142,14 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
- "IPY_MODEL_a066366a6c7a4771a6d5e718fd92f88f",
- "IPY_MODEL_70a536f16d6c431b98b7ef12801d33a2",
- "IPY_MODEL_ff6f563aef26414f829868f1ba6f29c7"
+ "IPY_MODEL_e9b423d370314fdfa3c22e95c3a35d92",
+ "IPY_MODEL_307f44c0a4da4d3ca0d44b54f9a5f6c0",
+ "IPY_MODEL_5503539430024c7586d4f8589c92fd74"
],
- "layout": "IPY_MODEL_5242f675a9d940eb83c5dc6ce08417dd"
+ "layout": "IPY_MODEL_b17542f2cd0f45e79e755df622328358"
}
},
- "a066366a6c7a4771a6d5e718fd92f88f": {
+ "e9b423d370314fdfa3c22e95c3a35d92": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
@@ -4147,13 +4164,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_a576ce5ff14a4f1a8a78a4fad7caf2ed",
+ "layout": "IPY_MODEL_fe6d1bab4fd042b5af89f6bb8a73cc39",
"placeholder": "",
- "style": "IPY_MODEL_aa5794124ec74a29bce5663bbae3b4ec",
+ "style": "IPY_MODEL_8cb7748eaa354d4ea0e3222685f1d9b4",
"value": "Downloading data: 100%"
}
},
- "70a536f16d6c431b98b7ef12801d33a2": {
+ "307f44c0a4da4d3ca0d44b54f9a5f6c0": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
@@ -4169,15 +4186,15 @@
"bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_beaa198d254e4521b795d4cff4b4df6e",
+ "layout": "IPY_MODEL_53bfefa3e2c04cce9ab7d2b3fbca59d9",
"max": 44307561,
"min": 0,
"orientation": "horizontal",
- "style": "IPY_MODEL_f7146f6127a2489cb4c02b714d67f783",
+ "style": "IPY_MODEL_aa58f2124335451890857ded72414ecf",
"value": 44307561
}
},
- "ff6f563aef26414f829868f1ba6f29c7": {
+ "5503539430024c7586d4f8589c92fd74": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
@@ -4192,13 +4209,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_0b8cff5afa7242c1b817df3fd509cd04",
+ "layout": "IPY_MODEL_b331b446e257441387b331d822f570a0",
"placeholder": "",
- "style": "IPY_MODEL_423df2448502498a85107a594562cea9",
- "value": " 44.3M/44.3M [00:03<00:00, 12.3MB/s]"
+ "style": "IPY_MODEL_49e3298fbe054c7abb6a041ecd63737c",
+ "value": " 44.3M/44.3M [00:01<00:00, 37.8MB/s]"
}
},
- "5242f675a9d940eb83c5dc6ce08417dd": {
+ "b17542f2cd0f45e79e755df622328358": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -4250,7 +4267,7 @@
"width": null
}
},
- "a576ce5ff14a4f1a8a78a4fad7caf2ed": {
+ "fe6d1bab4fd042b5af89f6bb8a73cc39": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -4302,7 +4319,7 @@
"width": null
}
},
- "aa5794124ec74a29bce5663bbae3b4ec": {
+ "8cb7748eaa354d4ea0e3222685f1d9b4": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
@@ -4317,7 +4334,7 @@
"description_width": ""
}
},
- "beaa198d254e4521b795d4cff4b4df6e": {
+ "53bfefa3e2c04cce9ab7d2b3fbca59d9": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -4369,7 +4386,7 @@
"width": null
}
},
- "f7146f6127a2489cb4c02b714d67f783": {
+ "aa58f2124335451890857ded72414ecf": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
@@ -4385,7 +4402,7 @@
"description_width": ""
}
},
- "0b8cff5afa7242c1b817df3fd509cd04": {
+ "b331b446e257441387b331d822f570a0": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -4437,7 +4454,7 @@
"width": null
}
},
- "423df2448502498a85107a594562cea9": {
+ "49e3298fbe054c7abb6a041ecd63737c": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
@@ -4452,7 +4469,7 @@
"description_width": ""
}
},
- "c57f151c22ca4bb49c25613b06036b00": {
+ "6b104e7242cf4a608cfd0c4fc6f44db1": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
@@ -4467,14 +4484,14 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
- "IPY_MODEL_19efa2caad3e477185a566bad2d2d6d5",
- "IPY_MODEL_3f6f62974c1a4163ad2dc437aa705e7f",
- "IPY_MODEL_706f7cda0ebd47fb88fea4bc75db6761"
+ "IPY_MODEL_1a6288e052884d5aa486415880acf134",
+ "IPY_MODEL_289c8b4d1686443f8bed7441673a2c15",
+ "IPY_MODEL_1318a594d2df47779b84f22e4b0c0702"
],
- "layout": "IPY_MODEL_15aeeaa33efd4933b52e234a8ce9b98f"
+ "layout": "IPY_MODEL_355ecaa94d1a43b09e1d0b3f6e6ac8e3"
}
},
- "19efa2caad3e477185a566bad2d2d6d5": {
+ "1a6288e052884d5aa486415880acf134": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
@@ -4489,13 +4506,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_97dfc903d38944458f094f5d7a79e4ee",
+ "layout": "IPY_MODEL_156432d2f1b74697bd74604e1bd5bf13",
"placeholder": "",
- "style": "IPY_MODEL_ce44aae35b1642bda5d76a9ab5b635f9",
+ "style": "IPY_MODEL_976fa37d0fa14282bc96b3c948b9da94",
"value": "Generating train split: "
}
},
- "3f6f62974c1a4163ad2dc437aa705e7f": {
+ "289c8b4d1686443f8bed7441673a2c15": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
@@ -4511,15 +4528,15 @@
"bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_e6de9852ddb9426ea43edaeb79569b00",
+ "layout": "IPY_MODEL_24768bbd587d4b1ba09b6c52dcd6237c",
"max": 1,
"min": 0,
"orientation": "horizontal",
- "style": "IPY_MODEL_96fda888005f4934ac13e68182bf71cf",
+ "style": "IPY_MODEL_cdf054995f314976b7124de9564cbd9b",
"value": 1
}
},
- "706f7cda0ebd47fb88fea4bc75db6761": {
+ "1318a594d2df47779b84f22e4b0c0702": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
@@ -4534,13 +4551,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_5ff8951b0da7438097cc58b509a97f4a",
+ "layout": "IPY_MODEL_1eec25504a6f41d199940c4232b0a114",
"placeholder": "",
- "style": "IPY_MODEL_35e25cff723e4dcfab3eeb891699d67f",
- "value": " 51760/0 [00:01<00:00, 42069.63 examples/s]"
+ "style": "IPY_MODEL_007a9dbfb5c84efd8ffd801bc04c0c20",
+ "value": " 51760/0 [00:01<00:00, 45735.67 examples/s]"
}
},
- "15aeeaa33efd4933b52e234a8ce9b98f": {
+ "355ecaa94d1a43b09e1d0b3f6e6ac8e3": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -4592,7 +4609,7 @@
"width": null
}
},
- "97dfc903d38944458f094f5d7a79e4ee": {
+ "156432d2f1b74697bd74604e1bd5bf13": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -4644,7 +4661,7 @@
"width": null
}
},
- "ce44aae35b1642bda5d76a9ab5b635f9": {
+ "976fa37d0fa14282bc96b3c948b9da94": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
@@ -4659,7 +4676,7 @@
"description_width": ""
}
},
- "e6de9852ddb9426ea43edaeb79569b00": {
+ "24768bbd587d4b1ba09b6c52dcd6237c": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -4711,7 +4728,7 @@
"width": "20px"
}
},
- "96fda888005f4934ac13e68182bf71cf": {
+ "cdf054995f314976b7124de9564cbd9b": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
@@ -4727,7 +4744,7 @@
"description_width": ""
}
},
- "5ff8951b0da7438097cc58b509a97f4a": {
+ "1eec25504a6f41d199940c4232b0a114": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -4779,7 +4796,7 @@
"width": null
}
},
- "35e25cff723e4dcfab3eeb891699d67f": {
+ "007a9dbfb5c84efd8ffd801bc04c0c20": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
@@ -4794,7 +4811,7 @@
"description_width": ""
}
},
- "cc4186d840ae4644a45d330480b15322": {
+ "2ffddabe91124b279f9a3ac41d1ead9d": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
@@ -4809,14 +4826,14 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
- "IPY_MODEL_abb7a90a330e42b491fe4a1ca6b10bfc",
- "IPY_MODEL_ca7a0ff127f84bedaad3009d6c9fa0fb",
- "IPY_MODEL_7d0a83dbc8774bd0832aced31e6c8901"
+ "IPY_MODEL_f97edc77840e49c49aed8e7ab80f45d1",
+ "IPY_MODEL_33761916bce24fde9bcff866736ddad7",
+ "IPY_MODEL_726aae420987454e87a08b9314844895"
],
- "layout": "IPY_MODEL_3066b61c1e9d4c4ba8cbab9cd106e8c9"
+ "layout": "IPY_MODEL_071858b3801e4844a4fc5a91205335c4"
}
},
- "abb7a90a330e42b491fe4a1ca6b10bfc": {
+ "f97edc77840e49c49aed8e7ab80f45d1": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
@@ -4831,13 +4848,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_146cbaafb0114bce94b306cd96b958e8",
+ "layout": "IPY_MODEL_6a98441b0ff74361a79c96178834d8bc",
"placeholder": "",
- "style": "IPY_MODEL_f55c54affd70418b8c3a5a22603d4320",
+ "style": "IPY_MODEL_40e8b59e229548c68ccb339234a5e525",
"value": "Map: 100%"
}
},
- "ca7a0ff127f84bedaad3009d6c9fa0fb": {
+ "33761916bce24fde9bcff866736ddad7": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
@@ -4853,15 +4870,15 @@
"bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_c61e4cb0a3994bab91dd20bc02ed18ad",
+ "layout": "IPY_MODEL_56b011c2482b427483508e259dc231fd",
"max": 51760,
"min": 0,
"orientation": "horizontal",
- "style": "IPY_MODEL_f8233de76001468bbf94151f069c2503",
+ "style": "IPY_MODEL_507c15541fe7489aa1fd1fd81c4aa222",
"value": 51760
}
},
- "7d0a83dbc8774bd0832aced31e6c8901": {
+ "726aae420987454e87a08b9314844895": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
@@ -4876,13 +4893,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_86643f0ef91740db9b4bffe394f709d4",
+ "layout": "IPY_MODEL_4bf05ee528bb4bb2979cde4d0a09544b",
"placeholder": "",
- "style": "IPY_MODEL_1744a4f1b0164c10a54a9b912b6149cc",
- "value": " 51760/51760 [00:01<00:00, 51185.57 examples/s]"
+ "style": "IPY_MODEL_d62a5696b9704580b69e6fc3be9ffa8a",
+ "value": " 51760/51760 [00:00<00:00, 55175.06 examples/s]"
}
},
- "3066b61c1e9d4c4ba8cbab9cd106e8c9": {
+ "071858b3801e4844a4fc5a91205335c4": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -4934,7 +4951,7 @@
"width": null
}
},
- "146cbaafb0114bce94b306cd96b958e8": {
+ "6a98441b0ff74361a79c96178834d8bc": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -4986,7 +5003,7 @@
"width": null
}
},
- "f55c54affd70418b8c3a5a22603d4320": {
+ "40e8b59e229548c68ccb339234a5e525": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
@@ -5001,7 +5018,7 @@
"description_width": ""
}
},
- "c61e4cb0a3994bab91dd20bc02ed18ad": {
+ "56b011c2482b427483508e259dc231fd": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -5053,7 +5070,7 @@
"width": null
}
},
- "f8233de76001468bbf94151f069c2503": {
+ "507c15541fe7489aa1fd1fd81c4aa222": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
@@ -5069,7 +5086,7 @@
"description_width": ""
}
},
- "86643f0ef91740db9b4bffe394f709d4": {
+ "4bf05ee528bb4bb2979cde4d0a09544b": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -5121,7 +5138,7 @@
"width": null
}
},
- "1744a4f1b0164c10a54a9b912b6149cc": {
+ "d62a5696b9704580b69e6fc3be9ffa8a": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
@@ -5136,7 +5153,7 @@
"description_width": ""
}
},
- "15a93404b92749c883a8d12457f26c8b": {
+ "477d5041a08f4a3a9f7cfa1d98ab48ff": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
@@ -5151,14 +5168,14 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
- "IPY_MODEL_fb8c3976bab449378f593c98fbb39ee2",
- "IPY_MODEL_a6a8d886daee4efca0367499a4017bf2",
- "IPY_MODEL_10e360552c7449bd883a92609d7fa0c6"
+ "IPY_MODEL_25eecdf89b8845a989ce2c8c4d9edbeb",
+ "IPY_MODEL_e02470ee64ad4f0fb2160b088cdcba7f",
+ "IPY_MODEL_b7c0858a80684aed9c19ce00dda85815"
],
- "layout": "IPY_MODEL_4877845709dd408892e890dfb960cc43"
+ "layout": "IPY_MODEL_d0b82646d6f549d7ad59e9ff5f426e88"
}
},
- "fb8c3976bab449378f593c98fbb39ee2": {
+ "25eecdf89b8845a989ce2c8c4d9edbeb": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
@@ -5173,13 +5190,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_ad01c612601d4397baa49462ea9a072e",
+ "layout": "IPY_MODEL_d94a8d1f9d294abbb156e39da065910f",
"placeholder": "",
- "style": "IPY_MODEL_aa3b6b80b097473abf5a668122c6fe53",
+ "style": "IPY_MODEL_ebb0f92e750447a39ff23a23ea73b445",
"value": "tokenizer_config.json: 100%"
}
},
- "a6a8d886daee4efca0367499a4017bf2": {
+ "e02470ee64ad4f0fb2160b088cdcba7f": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
@@ -5195,15 +5212,15 @@
"bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_f32eaa45bf984a8297966aa51cfeecaa",
+ "layout": "IPY_MODEL_d4d01dc3290b4174ab13454a28faf972",
"max": 971,
"min": 0,
"orientation": "horizontal",
- "style": "IPY_MODEL_6085d90e846a4f35aab61d8b69e792c1",
+ "style": "IPY_MODEL_c6941f8c60ef49a8a79ed265c46652c2",
"value": 971
}
},
- "10e360552c7449bd883a92609d7fa0c6": {
+ "b7c0858a80684aed9c19ce00dda85815": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
@@ -5218,13 +5235,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_42a87fc42c434a29bf3b4fefaa7303b9",
+ "layout": "IPY_MODEL_24aa300026334db1b545bf0fa906112e",
"placeholder": "",
- "style": "IPY_MODEL_5ec7290c9829407eb9118e7e80b361ab",
- "value": " 971/971 [00:00<00:00, 23.9kB/s]"
+ "style": "IPY_MODEL_6d0d021108b54147a62e50fea1ba88ea",
+ "value": " 971/971 [00:00<00:00, 17.4kB/s]"
}
},
- "4877845709dd408892e890dfb960cc43": {
+ "d0b82646d6f549d7ad59e9ff5f426e88": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -5276,7 +5293,7 @@
"width": null
}
},
- "ad01c612601d4397baa49462ea9a072e": {
+ "d94a8d1f9d294abbb156e39da065910f": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -5328,7 +5345,7 @@
"width": null
}
},
- "aa3b6b80b097473abf5a668122c6fe53": {
+ "ebb0f92e750447a39ff23a23ea73b445": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
@@ -5343,7 +5360,7 @@
"description_width": ""
}
},
- "f32eaa45bf984a8297966aa51cfeecaa": {
+ "d4d01dc3290b4174ab13454a28faf972": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -5395,7 +5412,7 @@
"width": null
}
},
- "6085d90e846a4f35aab61d8b69e792c1": {
+ "c6941f8c60ef49a8a79ed265c46652c2": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
@@ -5411,7 +5428,7 @@
"description_width": ""
}
},
- "42a87fc42c434a29bf3b4fefaa7303b9": {
+ "24aa300026334db1b545bf0fa906112e": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -5463,7 +5480,7 @@
"width": null
}
},
- "5ec7290c9829407eb9118e7e80b361ab": {
+ "6d0d021108b54147a62e50fea1ba88ea": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
@@ -5478,7 +5495,7 @@
"description_width": ""
}
},
- "2e59b8ebd1d746a6a3fc712792b113a9": {
+ "deb2982b19764ed5aec0b4d80e776279": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
@@ -5493,14 +5510,14 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
- "IPY_MODEL_581aa9bfab964c34a321614bd6fe5f24",
- "IPY_MODEL_cc56c401fdb24eac97eac7a2ebb02941",
- "IPY_MODEL_12773f1437de4ad59231d2fc8f3e07c0"
+ "IPY_MODEL_c24904c0a7294f3a93bb64aa38e70316",
+ "IPY_MODEL_26a77ab74a4a4e21b9afd9798a9f9a29",
+ "IPY_MODEL_7189bac8d0474bcea50cf8711259516c"
],
- "layout": "IPY_MODEL_dbcee7f6de434667877d8a77122f2eec"
+ "layout": "IPY_MODEL_ce81350896a44331aa6b6960b7370325"
}
},
- "581aa9bfab964c34a321614bd6fe5f24": {
+ "c24904c0a7294f3a93bb64aa38e70316": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
@@ -5515,13 +5532,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_6efad27478a848a79741a57f42b69569",
+ "layout": "IPY_MODEL_73d4af57ddc64fb3afd0e2ab068cbcb4",
"placeholder": "",
- "style": "IPY_MODEL_521938814b4b4ee8a294313e9ecce8cf",
+ "style": "IPY_MODEL_672d990adee44df6b58e27fe5804986f",
"value": "tokenizer.model: 100%"
}
},
- "cc56c401fdb24eac97eac7a2ebb02941": {
+ "26a77ab74a4a4e21b9afd9798a9f9a29": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
@@ -5537,15 +5554,15 @@
"bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_d90435a8d6b344f39e4334791015b7fa",
+ "layout": "IPY_MODEL_3fe95fc9bc034a2db85ed19aedfd4250",
"max": 493443,
"min": 0,
"orientation": "horizontal",
- "style": "IPY_MODEL_a66f92cd6a8446d985eccfc0c4f755a1",
+ "style": "IPY_MODEL_c1c0053b8e674ed6ac81316d4af82c48",
"value": 493443
}
},
- "12773f1437de4ad59231d2fc8f3e07c0": {
+ "7189bac8d0474bcea50cf8711259516c": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
@@ -5560,13 +5577,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_8a691a6099e3475e91d7eac4c05adcea",
+ "layout": "IPY_MODEL_74a0e53405cd4d64bd597ad5461ed5dd",
"placeholder": "",
- "style": "IPY_MODEL_4ae0fa029fe9450994b3ff0c067748dd",
- "value": " 493k/493k [00:00<00:00, 6.90MB/s]"
+ "style": "IPY_MODEL_278d35f6e08d45e2a49c3509dd442f0c",
+ "value": " 493k/493k [00:00<00:00, 7.71MB/s]"
}
},
- "dbcee7f6de434667877d8a77122f2eec": {
+ "ce81350896a44331aa6b6960b7370325": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -5618,7 +5635,7 @@
"width": null
}
},
- "6efad27478a848a79741a57f42b69569": {
+ "73d4af57ddc64fb3afd0e2ab068cbcb4": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -5670,7 +5687,7 @@
"width": null
}
},
- "521938814b4b4ee8a294313e9ecce8cf": {
+ "672d990adee44df6b58e27fe5804986f": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
@@ -5685,7 +5702,7 @@
"description_width": ""
}
},
- "d90435a8d6b344f39e4334791015b7fa": {
+ "3fe95fc9bc034a2db85ed19aedfd4250": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -5737,7 +5754,7 @@
"width": null
}
},
- "a66f92cd6a8446d985eccfc0c4f755a1": {
+ "c1c0053b8e674ed6ac81316d4af82c48": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
@@ -5753,7 +5770,7 @@
"description_width": ""
}
},
- "8a691a6099e3475e91d7eac4c05adcea": {
+ "74a0e53405cd4d64bd597ad5461ed5dd": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -5805,7 +5822,7 @@
"width": null
}
},
- "4ae0fa029fe9450994b3ff0c067748dd": {
+ "278d35f6e08d45e2a49c3509dd442f0c": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
@@ -5820,7 +5837,7 @@
"description_width": ""
}
},
- "6dd689dc12d04fba8398b026658710ab": {
+ "b19d83c6f5ad4f04941e6a684678ac07": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
@@ -5835,14 +5852,14 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
- "IPY_MODEL_e9151dd6e8214242b2160e6669411605",
- "IPY_MODEL_9aae260518204f4cbb2bb311ca63465a",
- "IPY_MODEL_97cb0c3e4b714794b31c9f632395585f"
+ "IPY_MODEL_88e100a175e64a3dab6f772847deffd6",
+ "IPY_MODEL_457b5df3a4294c8a966e233d34c15a82",
+ "IPY_MODEL_18af2c44a24b4aaabfd192e3fc4bf655"
],
- "layout": "IPY_MODEL_41454da47d524b238d57707d0adec739"
+ "layout": "IPY_MODEL_61944d9473394be5b19cfd48fd504481"
}
},
- "e9151dd6e8214242b2160e6669411605": {
+ "88e100a175e64a3dab6f772847deffd6": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
@@ -5857,13 +5874,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_f642257584994fc8912725796fe8fb05",
+ "layout": "IPY_MODEL_68d18369acc540a594aef61a2de07e63",
"placeholder": "",
- "style": "IPY_MODEL_e02eb8727d92467bb059c8d2167b9ab5",
+ "style": "IPY_MODEL_69c676782e0b496b820b55c45424177d",
"value": "tokenizer.json: 100%"
}
},
- "9aae260518204f4cbb2bb311ca63465a": {
+ "457b5df3a4294c8a966e233d34c15a82": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
@@ -5879,15 +5896,15 @@
"bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_7d44a58f494b454d9252275f02dc82bc",
+ "layout": "IPY_MODEL_08dcaabc623c4759a00fbee5430e3ba9",
"max": 1795303,
"min": 0,
"orientation": "horizontal",
- "style": "IPY_MODEL_d2edb8443f76499f9b77650905060ec1",
+ "style": "IPY_MODEL_45a3bcaffc3f4184b9ae869f7b0ccef4",
"value": 1795303
}
},
- "97cb0c3e4b714794b31c9f632395585f": {
+ "18af2c44a24b4aaabfd192e3fc4bf655": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
@@ -5902,13 +5919,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_6279562bf9e545bdbe69d7138a14ce96",
+ "layout": "IPY_MODEL_c45f02fbb40e4041ba7f95074f8e1e82",
"placeholder": "",
- "style": "IPY_MODEL_e7ed16effd4e4ebab99eff7ed31f345e",
- "value": " 1.80M/1.80M [00:00<00:00, 32.0MB/s]"
+ "style": "IPY_MODEL_0fc1037a17e541eba92a2d6f400ac6eb",
+ "value": " 1.80M/1.80M [00:00<00:00, 13.7MB/s]"
}
},
- "41454da47d524b238d57707d0adec739": {
+ "61944d9473394be5b19cfd48fd504481": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -5960,7 +5977,7 @@
"width": null
}
},
- "f642257584994fc8912725796fe8fb05": {
+ "68d18369acc540a594aef61a2de07e63": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -6012,7 +6029,7 @@
"width": null
}
},
- "e02eb8727d92467bb059c8d2167b9ab5": {
+ "69c676782e0b496b820b55c45424177d": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
@@ -6027,7 +6044,7 @@
"description_width": ""
}
},
- "7d44a58f494b454d9252275f02dc82bc": {
+ "08dcaabc623c4759a00fbee5430e3ba9": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -6079,7 +6096,7 @@
"width": null
}
},
- "d2edb8443f76499f9b77650905060ec1": {
+ "45a3bcaffc3f4184b9ae869f7b0ccef4": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
@@ -6095,7 +6112,7 @@
"description_width": ""
}
},
- "6279562bf9e545bdbe69d7138a14ce96": {
+ "c45f02fbb40e4041ba7f95074f8e1e82": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -6147,7 +6164,7 @@
"width": null
}
},
- "e7ed16effd4e4ebab99eff7ed31f345e": {
+ "0fc1037a17e541eba92a2d6f400ac6eb": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
@@ -6162,7 +6179,7 @@
"description_width": ""
}
},
- "24ba4d106a9441d99564c4686d271e08": {
+ "7bd2cc9aa724408fa9e70795744cad85": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
@@ -6177,14 +6194,14 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
- "IPY_MODEL_3d339c599ea94d3687731f7028e30217",
- "IPY_MODEL_accc31937ca341c4814552a6718bf1e0",
- "IPY_MODEL_ff0284561a9147929a844112d99eb3ed"
+ "IPY_MODEL_fb0588bffd7a4238bac3f73052e09335",
+ "IPY_MODEL_68ff2006b3794e23b4ccbc2c83c52b9b",
+ "IPY_MODEL_910f2e6fffd24cd7b6e68c932c2a2524"
],
- "layout": "IPY_MODEL_c6af98fea280457e92e73be95b5283d2"
+ "layout": "IPY_MODEL_6345dc6f40c6444aa05ed2aba7809a3c"
}
},
- "3d339c599ea94d3687731f7028e30217": {
+ "fb0588bffd7a4238bac3f73052e09335": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
@@ -6199,13 +6216,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_7f2c7b33282d409ea560de7d1a707ad3",
+ "layout": "IPY_MODEL_92eab7fadbed4bc2bc2935b4e3d800cf",
"placeholder": "",
- "style": "IPY_MODEL_ea40866a478d430880435a9d52543b88",
+ "style": "IPY_MODEL_2dfef2cd79c8463cb7eadad6a04aba91",
"value": "special_tokens_map.json: 100%"
}
},
- "accc31937ca341c4814552a6718bf1e0": {
+ "68ff2006b3794e23b4ccbc2c83c52b9b": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
@@ -6221,15 +6238,15 @@
"bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_6b84ee03c9504488a9c20a41097d18be",
+ "layout": "IPY_MODEL_3be5c37493e742aebf0aa29b6723283b",
"max": 438,
"min": 0,
"orientation": "horizontal",
- "style": "IPY_MODEL_fe3f069852624450a384348a611141f2",
+ "style": "IPY_MODEL_273be47263384901b6cf9f249ee3409d",
"value": 438
}
},
- "ff0284561a9147929a844112d99eb3ed": {
+ "910f2e6fffd24cd7b6e68c932c2a2524": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
@@ -6244,13 +6261,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_95d18e87dac747da80b248f8a3d1ce64",
+ "layout": "IPY_MODEL_2ff515b72bbb43c889e2172c83933803",
"placeholder": "",
- "style": "IPY_MODEL_6ee77e3cb845462d9fcae86d55277fad",
- "value": " 438/438 [00:00<00:00, 5.25kB/s]"
+ "style": "IPY_MODEL_a1cd830a712d490181d176267ce7b6f0",
+ "value": " 438/438 [00:00<00:00, 8.44kB/s]"
}
},
- "c6af98fea280457e92e73be95b5283d2": {
+ "6345dc6f40c6444aa05ed2aba7809a3c": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -6302,7 +6319,7 @@
"width": null
}
},
- "7f2c7b33282d409ea560de7d1a707ad3": {
+ "92eab7fadbed4bc2bc2935b4e3d800cf": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -6354,7 +6371,7 @@
"width": null
}
},
- "ea40866a478d430880435a9d52543b88": {
+ "2dfef2cd79c8463cb7eadad6a04aba91": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
@@ -6369,7 +6386,7 @@
"description_width": ""
}
},
- "6b84ee03c9504488a9c20a41097d18be": {
+ "3be5c37493e742aebf0aa29b6723283b": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -6421,7 +6438,7 @@
"width": null
}
},
- "fe3f069852624450a384348a611141f2": {
+ "273be47263384901b6cf9f249ee3409d": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
@@ -6437,7 +6454,7 @@
"description_width": ""
}
},
- "95d18e87dac747da80b248f8a3d1ce64": {
+ "2ff515b72bbb43c889e2172c83933803": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -6489,7 +6506,7 @@
"width": null
}
},
- "6ee77e3cb845462d9fcae86d55277fad": {
+ "a1cd830a712d490181d176267ce7b6f0": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
@@ -6504,7 +6521,7 @@
"description_width": ""
}
},
- "900a9076b00d4bcebf40c97eeec7ebe9": {
+ "1a8da471604841ec9f6c8e0073471c00": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
@@ -6519,14 +6536,14 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
- "IPY_MODEL_0c9c1f29c76b48f0b5db845c93835d69",
- "IPY_MODEL_bbc7cbdac1b246b4ab777becfc19aae8",
- "IPY_MODEL_114373f9b133498da03f0f73dcc2a066"
+ "IPY_MODEL_f899ae16708544379d63960be07b7c32",
+ "IPY_MODEL_0bdbf9b92f7b4925a5ac28df93fd0fb0",
+ "IPY_MODEL_c1d8820a789f4899a839e6d28a4f333c"
],
- "layout": "IPY_MODEL_3b766d8d98bb43ceb844f571d41a2ddb"
+ "layout": "IPY_MODEL_e711d7f85eee4fe195fad9fbddcfece2"
}
},
- "0c9c1f29c76b48f0b5db845c93835d69": {
+ "f899ae16708544379d63960be07b7c32": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
@@ -6541,13 +6558,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_e937e9cbd01f4287befd13aeaade6712",
+ "layout": "IPY_MODEL_56ed5fd876d94ebbaa8b4e905c348a0d",
"placeholder": "",
- "style": "IPY_MODEL_1a033034e75f421f9e546beec5b4d77c",
- "value": "Map (num_proc=4): 100%"
+ "style": "IPY_MODEL_5d461f10bdc44c6b95d070fa9d7425d1",
+ "value": "Map (num_proc=2): 100%"
}
},
- "bbc7cbdac1b246b4ab777becfc19aae8": {
+ "0bdbf9b92f7b4925a5ac28df93fd0fb0": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
@@ -6563,15 +6580,15 @@
"bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_814be9f3d9444d96b4c5e51472fd4fb8",
+ "layout": "IPY_MODEL_f4e0e7a39ad9484f930e6673c35c2f5d",
"max": 51760,
"min": 0,
"orientation": "horizontal",
- "style": "IPY_MODEL_51efbd9d8a0d45b9b53cb4cf467954ac",
+ "style": "IPY_MODEL_baad9118cade4cee9600a7fbf6426e0a",
"value": 51760
}
},
- "114373f9b133498da03f0f73dcc2a066": {
+ "c1d8820a789f4899a839e6d28a4f333c": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
@@ -6586,13 +6603,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_6bf5fa33ab64465b9fe087c22719bdc6",
+ "layout": "IPY_MODEL_16fac1aad22444c4ad42ad0e6e1dfdc9",
"placeholder": "",
- "style": "IPY_MODEL_d24cc25d7973414890b15e262f29e418",
- "value": " 51760/51760 [00:43<00:00, 2566.15 examples/s]"
+ "style": "IPY_MODEL_ac35368de2d746b4bed736459d187dbd",
+ "value": " 51760/51760 [00:44<00:00, 1814.65 examples/s]"
}
},
- "3b766d8d98bb43ceb844f571d41a2ddb": {
+ "e711d7f85eee4fe195fad9fbddcfece2": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -6644,7 +6661,7 @@
"width": null
}
},
- "e937e9cbd01f4287befd13aeaade6712": {
+ "56ed5fd876d94ebbaa8b4e905c348a0d": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -6696,7 +6713,7 @@
"width": null
}
},
- "1a033034e75f421f9e546beec5b4d77c": {
+ "5d461f10bdc44c6b95d070fa9d7425d1": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
@@ -6711,7 +6728,7 @@
"description_width": ""
}
},
- "814be9f3d9444d96b4c5e51472fd4fb8": {
+ "f4e0e7a39ad9484f930e6673c35c2f5d": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -6763,7 +6780,7 @@
"width": null
}
},
- "51efbd9d8a0d45b9b53cb4cf467954ac": {
+ "baad9118cade4cee9600a7fbf6426e0a": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
@@ -6779,7 +6796,7 @@
"description_width": ""
}
},
- "6bf5fa33ab64465b9fe087c22719bdc6": {
+ "16fac1aad22444c4ad42ad0e6e1dfdc9": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
@@ -6831,7 +6848,7 @@
"width": null
}
},
- "d24cc25d7973414890b15e262f29e418": {
+ "ac35368de2d746b4bed736459d187dbd": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",