File size: 3,573 Bytes
f8be18d
 
4a7553f
f8be18d
4a7553f
 
c4f6f4c
4a7553f
f8be18d
4a7553f
f8be18d
 
 
 
4a7553f
 
1ede165
 
 
 
 
4a7553f
 
 
 
 
 
 
 
 
 
 
1ede165
4a7553f
 
 
 
 
 
 
 
 
f8be18d
4a7553f
 
f8be18d
 
 
 
4a7553f
f8be18d
4a7553f
f8be18d
 
4a7553f
f8be18d
4a7553f
 
 
f8be18d
4a7553f
 
 
f8be18d
 
 
 
 
 
 
 
 
 
 
56661e2
f8be18d
 
4a7553f
f8be18d
4a7553f
 
 
 
 
 
 
f8be18d
 
 
 
 
 
 
 
40c1e35
f8be18d
 
 
c4f6f4c
f8be18d
4a7553f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import argparse

from datasets import load_dataset

import open3d as o3d
import numpy as np
import random


def vis_hit_sample(sample):
    """
    :param sample: HIT dataset sample
    :return:
    """
    # get point-cloud from sample
    pc = np.asarray(sample['body_cont_pc'])
    # get mesh and mesh-free-verts from sample
    mesh_verts = np.asarray(sample['smpl_dict']['verts'])
    mesh_verts_free = np.asarray(sample['smpl_dict']['verts_free'])
    mesh_faces = np.asarray(sample['smpl_dict']['faces'])

    # create point-cloud
    pcd = o3d.geometry.PointCloud()
    pcd.points = o3d.utility.Vector3dVector(pc)
    pcd.paint_uniform_color([0.6509803922, 0.2901960784, 0.2823529412])
    pcd_front = pcd.__copy__()

    # create mesh
    mesh = o3d.geometry.TriangleMesh()
    mesh.vertices = o3d.utility.Vector3dVector(mesh_verts)
    mesh.triangles = o3d.utility.Vector3iVector(mesh_faces)
    mesh.paint_uniform_color([0.737254902, 0.7960784314, 0.8196078431])

    # create mesh-free-verts
    mesh_free = o3d.geometry.TriangleMesh()
    mesh_free.vertices = o3d.utility.Vector3dVector(mesh_verts_free)
    mesh_free.triangles = o3d.utility.Vector3iVector(mesh_faces)
    mesh_free.paint_uniform_color([0.737254902, 0.7960784314, 0.8196078431])

    # visualize sample
    vis = o3d.visualization.Visualizer()
    vis.create_window()
    # side-view
    xyz = (-np.pi / 2, 0, 0)
    R1 = o3d.geometry.get_rotation_matrix_from_xyz(xyz)
    # vis mesh with pointcloud
    vis.add_geometry(mesh.rotate(R1, center=(0, 0, 0)))
    vis.add_geometry(pcd.rotate(R1, center=(0, 0, 0)))
    # vis mesh-free-verts with pointcloud
    vis.add_geometry(mesh_free.translate((1.2, 0, 0)))
    vis.add_geometry(mesh_free.rotate(R1, center=(0, 0, 0)))
    vis.add_geometry(pcd_front.translate((1.2, 0, 0)))
    vis.add_geometry(pcd_front.rotate(R1, center=(0, 0, 0)))
    # render
    vis.get_render_option().mesh_show_wireframe = True
    vis.get_render_option().point_size = 2
    vis.poll_events()
    vis.update_renderer()
    vis.run()
    return 0


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='HIT dataset visualization')
    parser.add_argument('--gender', type=str, default='male')
    parser.add_argument('--split', type=str, default='train')
    parser.add_argument('--idx', type=int, default=None)

    # get args
    args = parser.parse_args()
    assert args.gender in ['male', 'female']
    assert args.split in ['train', 'validation', 'test']

    # load split
    hit_dataset = load_dataset("varora/hit", name=args.gender, split=args.split)

    # to load specific split, use:
    # male splits
    #male_val = load_dataset("varora/hit", "male", split="validation")
    #male_val = load_dataset("varora/hit", "male", split="validation")
    #male_test = load_dataset("varora/hit", "male", split="test")
    # female splits
    #female_train = load_dataset("varora/hit", "female", split="train")
    #female_val = load_dataset("varora/hit", "female", split="validation")
    #female_test = load_dataset("varora/hit", "female", split="test")

    # len of split
    N_dataset = hit_dataset.__len__()

    # get idx for sample
    if not args.idx:
        idx = random.randint(0, N_dataset)
    else:
        idx = args.idx
        assert idx < N_dataset, f"{idx} in {args.gender}:{args.split} is out of range for dataset of length {N_dataset}."

    # get sample
    hit_sample = hit_dataset[idx]
    # visualize the sample
    print(f"Visualizing sample no. {idx} in {args.gender}:{args.split}.")
    vis_hit_sample(hit_sample)