Upload 5 files
Browse files- README.md +71 -0
- data/fapesp-v2.zip +3 -0
- dataset_info.json +57 -0
- fapesp-v2.py +61 -0
- wmt_utils.py +549 -0
README.md
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
- es
|
5 |
+
- pt
|
6 |
+
license:
|
7 |
+
- cc-by-2.0
|
8 |
+
multilinguality:
|
9 |
+
- translation
|
10 |
+
task_categories:
|
11 |
+
- translation
|
12 |
+
task_ids: []
|
13 |
+
dataset_info:
|
14 |
+
- config_name: en-pt
|
15 |
+
features:
|
16 |
+
- name: translation
|
17 |
+
dtype:
|
18 |
+
translation:
|
19 |
+
languages:
|
20 |
+
- en
|
21 |
+
- pt
|
22 |
+
splits:
|
23 |
+
- name: train
|
24 |
+
num_bytes: 47417503
|
25 |
+
num_examples: 160975
|
26 |
+
- name: validation
|
27 |
+
num_bytes: 405055
|
28 |
+
num_examples: 1375
|
29 |
+
- name: test
|
30 |
+
num_bytes: 407579
|
31 |
+
num_examples: 1447
|
32 |
+
download_size: 29615550
|
33 |
+
dataset_size: 48230137
|
34 |
+
- config_name: es-pt
|
35 |
+
features:
|
36 |
+
- name: translation
|
37 |
+
dtype:
|
38 |
+
translation:
|
39 |
+
languages:
|
40 |
+
- es
|
41 |
+
- pt
|
42 |
+
splits:
|
43 |
+
- name: train
|
44 |
+
num_bytes: 47480897
|
45 |
+
num_examples: 158197
|
46 |
+
- name: validation
|
47 |
+
num_bytes: 377101
|
48 |
+
num_examples: 1302
|
49 |
+
- name: test
|
50 |
+
num_bytes: 400915
|
51 |
+
num_examples: 1379
|
52 |
+
download_size: 29829573
|
53 |
+
dataset_size: 48258913
|
54 |
+
configs:
|
55 |
+
- config_name: en-pt
|
56 |
+
data_files:
|
57 |
+
- split: train
|
58 |
+
path: en-pt/train-*
|
59 |
+
- split: validation
|
60 |
+
path: en-pt/validation-*
|
61 |
+
- split: test
|
62 |
+
path: en-pt/test-*
|
63 |
+
- config_name: es-pt
|
64 |
+
data_files:
|
65 |
+
- split: train
|
66 |
+
path: es-pt/train-*
|
67 |
+
- split: validation
|
68 |
+
path: es-pt/validation-*
|
69 |
+
- split: test
|
70 |
+
path: es-pt/test-*
|
71 |
+
---
|
data/fapesp-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cf6bdf40cd2de72fe8b8bd1a260dd975aaf1b2b0d51a6f2bcad868ef77777d3f
|
3 |
+
size 35276668
|
dataset_info.json
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"description": "Translation dataset based on the data from statmt.org.\n\nVersions exist for different years using a combination of data\nsources. The base `wmt` allows you to create a custom dataset by choosing\nyour own data/language pair. This can be done as follows:\n\n```python\nfrom datasets import inspect_dataset, load_dataset_builder\n\ninspect_dataset(\"wmt16\", \"path/to/scripts\")\nbuilder = load_dataset_builder(\n \"path/to/scripts/wmt_utils.py\",\n language_pair=(\"fr\", \"de\"),\n subsets={\n datasets.Split.TRAIN: [\"commoncrawl_frde\"],\n datasets.Split.VALIDATION: [\"euelections_dev2019\"],\n },\n)\n\n# Standard version\nbuilder.download_and_prepare()\nds = builder.as_dataset()\n\n# Streamable version\nds = builder.as_streaming_dataset()\n```\n\n",
|
3 |
+
"citation": "\n@inproceedings{aziz-specia-2011-fully,\n title = "Fully Automatic Compilation of {P}ortuguese-{E}nglish and {P}ortuguese-{S}panish Parallel Corpora",\n author = "Aziz, Wilker and
|
4 |
+
Specia, Lucia",\n booktitle = "Proceedings of the 8th {B}razilian Symposium in Information and Human Language Technology",\n year = "2011",\n url = "https://aclanthology.org/W11-4533",\n}\n",
|
5 |
+
"homepage": "http://www.nilc.icmc.usp.br/nilc/tools/Fapesp%20Corpora.htm",
|
6 |
+
"license": "",
|
7 |
+
"features": {
|
8 |
+
"translation": {
|
9 |
+
"languages": [
|
10 |
+
"es",
|
11 |
+
"pt"
|
12 |
+
],
|
13 |
+
"_type": "Translation"
|
14 |
+
}
|
15 |
+
},
|
16 |
+
"supervised_keys": {
|
17 |
+
"input": "es",
|
18 |
+
"output": "pt"
|
19 |
+
},
|
20 |
+
"builder_name": "fapesp-v2",
|
21 |
+
"config_name": "es-pt",
|
22 |
+
"version": {
|
23 |
+
"version_str": "1.0.0",
|
24 |
+
"major": 1,
|
25 |
+
"minor": 0,
|
26 |
+
"patch": 0
|
27 |
+
},
|
28 |
+
"splits": {
|
29 |
+
"train": {
|
30 |
+
"name": "train",
|
31 |
+
"num_bytes": 47480897,
|
32 |
+
"num_examples": 158197,
|
33 |
+
"dataset_name": "fapesp-v2"
|
34 |
+
},
|
35 |
+
"validation": {
|
36 |
+
"name": "validation",
|
37 |
+
"num_bytes": 377101,
|
38 |
+
"num_examples": 1302,
|
39 |
+
"dataset_name": "fapesp-v2"
|
40 |
+
},
|
41 |
+
"test": {
|
42 |
+
"name": "test",
|
43 |
+
"num_bytes": 400915,
|
44 |
+
"num_examples": 1379,
|
45 |
+
"dataset_name": "fapesp-v2"
|
46 |
+
}
|
47 |
+
},
|
48 |
+
"download_checksums": {
|
49 |
+
"https://huggingface.co/datasets/vgaraujov/fapesp-v2/resolve/main/data/fapesp-v2.zip": {
|
50 |
+
"num_bytes": 35276668,
|
51 |
+
"checksum": "cf6bdf40cd2de72fe8b8bd1a260dd975aaf1b2b0d51a6f2bcad868ef77777d3f"
|
52 |
+
}
|
53 |
+
},
|
54 |
+
"download_size": 35276668,
|
55 |
+
"dataset_size": 48258913,
|
56 |
+
"size_in_bytes": 83535581
|
57 |
+
}
|
fapesp-v2.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""Portuguese-English and Portuguese-Spanish bilingual collections."""
|
18 |
+
|
19 |
+
import datasets
|
20 |
+
|
21 |
+
from .wmt_utils import Wmt, WmtConfig
|
22 |
+
|
23 |
+
|
24 |
+
_URL = "http://www.nilc.icmc.usp.br/nilc/tools/Fapesp%20Corpora.htm"
|
25 |
+
_CITATION = """
|
26 |
+
@inproceedings{aziz-specia-2011-fully,
|
27 |
+
title = "Fully Automatic Compilation of {P}ortuguese-{E}nglish and {P}ortuguese-{S}panish Parallel Corpora",
|
28 |
+
author = "Aziz, Wilker and
|
29 |
+
Specia, Lucia",
|
30 |
+
booktitle = "Proceedings of the 8th {B}razilian Symposium in Information and Human Language Technology",
|
31 |
+
year = "2011",
|
32 |
+
url = "https://aclanthology.org/W11-4533",
|
33 |
+
}
|
34 |
+
"""
|
35 |
+
|
36 |
+
_LANGUAGE_PAIRS = [(lang, "pt") for lang in ["es", "en"]]
|
37 |
+
|
38 |
+
|
39 |
+
class Fapespv2(Wmt):
|
40 |
+
"""Fapesp v2 translation datasets for all {xx, "pt"} language pairs."""
|
41 |
+
|
42 |
+
BUILDER_CONFIGS = [
|
43 |
+
WmtConfig( # pylint:disable=g-complex-comprehension
|
44 |
+
description="Fapesp v2 %s-%s translation task dataset." % (l1, l2),
|
45 |
+
url=_URL,
|
46 |
+
citation=_CITATION,
|
47 |
+
language_pair=(l1, l2),
|
48 |
+
version=datasets.Version("1.0.0"),
|
49 |
+
)
|
50 |
+
for l1, l2 in _LANGUAGE_PAIRS
|
51 |
+
]
|
52 |
+
|
53 |
+
@property
|
54 |
+
def _subsets(self):
|
55 |
+
return {
|
56 |
+
datasets.Split.TRAIN: [
|
57 |
+
"fapesp-v2",
|
58 |
+
],
|
59 |
+
datasets.Split.VALIDATION: ["dev"],
|
60 |
+
datasets.Split.TEST: ["test-b"],
|
61 |
+
}
|
wmt_utils.py
ADDED
@@ -0,0 +1,549 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
#
|
16 |
+
# Script borrewed and adapted from https://huggingface.co/datasets/wmt16.
|
17 |
+
|
18 |
+
# Lint as: python3
|
19 |
+
"""WMT: Translate dataset."""
|
20 |
+
|
21 |
+
|
22 |
+
import codecs
|
23 |
+
import functools
|
24 |
+
import glob
|
25 |
+
import gzip
|
26 |
+
import itertools
|
27 |
+
import os
|
28 |
+
import re
|
29 |
+
import xml.etree.cElementTree as ElementTree
|
30 |
+
|
31 |
+
import datasets
|
32 |
+
|
33 |
+
|
34 |
+
logger = datasets.logging.get_logger(__name__)
|
35 |
+
|
36 |
+
|
37 |
+
_DESCRIPTION = """\
|
38 |
+
Translation dataset based on the data from statmt.org.
|
39 |
+
|
40 |
+
Versions exist for different years using a combination of data
|
41 |
+
sources. The base `wmt` allows you to create a custom dataset by choosing
|
42 |
+
your own data/language pair. This can be done as follows:
|
43 |
+
|
44 |
+
```python
|
45 |
+
from datasets import inspect_dataset, load_dataset_builder
|
46 |
+
|
47 |
+
inspect_dataset("wmt16", "path/to/scripts")
|
48 |
+
builder = load_dataset_builder(
|
49 |
+
"path/to/scripts/wmt_utils.py",
|
50 |
+
language_pair=("fr", "de"),
|
51 |
+
subsets={
|
52 |
+
datasets.Split.TRAIN: ["commoncrawl_frde"],
|
53 |
+
datasets.Split.VALIDATION: ["euelections_dev2019"],
|
54 |
+
},
|
55 |
+
)
|
56 |
+
|
57 |
+
# Standard version
|
58 |
+
builder.download_and_prepare()
|
59 |
+
ds = builder.as_dataset()
|
60 |
+
|
61 |
+
# Streamable version
|
62 |
+
ds = builder.as_streaming_dataset()
|
63 |
+
```
|
64 |
+
|
65 |
+
"""
|
66 |
+
|
67 |
+
|
68 |
+
class SubDataset:
|
69 |
+
"""Class to keep track of information on a sub-dataset of WMT."""
|
70 |
+
|
71 |
+
def __init__(self, name, target, sources, url, path, manual_dl_files=None):
|
72 |
+
"""Sub-dataset of WMT.
|
73 |
+
|
74 |
+
Args:
|
75 |
+
name: `string`, a unique dataset identifier.
|
76 |
+
target: `string`, the target language code.
|
77 |
+
sources: `set<string>`, the set of source language codes.
|
78 |
+
url: `string` or `(string, string)`, URL(s) or URL template(s) specifying
|
79 |
+
where to download the raw data from. If two strings are provided, the
|
80 |
+
first is used for the source language and the second for the target.
|
81 |
+
Template strings can either contain '{src}' placeholders that will be
|
82 |
+
filled in with the source language code, '{0}' and '{1}' placeholders
|
83 |
+
that will be filled in with the source and target language codes in
|
84 |
+
alphabetical order, or all 3.
|
85 |
+
path: `string` or `(string, string)`, path(s) or path template(s)
|
86 |
+
specifing the path to the raw data relative to the root of the
|
87 |
+
downloaded archive. If two strings are provided, the dataset is assumed
|
88 |
+
to be made up of parallel text files, the first being the source and the
|
89 |
+
second the target. If one string is provided, both languages are assumed
|
90 |
+
to be stored within the same file and the extension is used to determine
|
91 |
+
how to parse it. Template strings should be formatted the same as in
|
92 |
+
`url`.
|
93 |
+
manual_dl_files: `<list>(string)` (optional), the list of files that must
|
94 |
+
be manually downloaded to the data directory.
|
95 |
+
"""
|
96 |
+
self._paths = (path,) if isinstance(path, str) else path
|
97 |
+
self._urls = (url,) if isinstance(url, str) else url
|
98 |
+
self._manual_dl_files = manual_dl_files if manual_dl_files else []
|
99 |
+
self.name = name
|
100 |
+
self.target = target
|
101 |
+
self.sources = set(sources)
|
102 |
+
|
103 |
+
def _inject_language(self, src, strings):
|
104 |
+
"""Injects languages into (potentially) template strings."""
|
105 |
+
if src not in self.sources:
|
106 |
+
raise ValueError(f"Invalid source for '{self.name}': {src}")
|
107 |
+
|
108 |
+
def _format_string(s):
|
109 |
+
if "{0}" in s and "{1}" and "{src}" in s:
|
110 |
+
return s.format(*sorted([src, self.target]), src=src)
|
111 |
+
elif "{0}" in s and "{1}" in s:
|
112 |
+
return s.format(*sorted([src, self.target]))
|
113 |
+
elif "{src}" in s:
|
114 |
+
return s.format(src=src)
|
115 |
+
else:
|
116 |
+
return s
|
117 |
+
|
118 |
+
return [_format_string(s) for s in strings]
|
119 |
+
|
120 |
+
def get_url(self, src):
|
121 |
+
return self._inject_language(src, self._urls)
|
122 |
+
|
123 |
+
def get_manual_dl_files(self, src):
|
124 |
+
return self._inject_language(src, self._manual_dl_files)
|
125 |
+
|
126 |
+
def get_path(self, src):
|
127 |
+
return self._inject_language(src, self._paths)
|
128 |
+
|
129 |
+
|
130 |
+
# Subsets used in the training sets for AmericasNLP 2021 Shared Task on Machine Translation.
|
131 |
+
_TRAIN_SUBSETS = [
|
132 |
+
SubDataset(
|
133 |
+
name="fapesp-v2",
|
134 |
+
target="pt",
|
135 |
+
sources={"es", "en"},
|
136 |
+
url="https://huggingface.co/datasets/vgaraujov/fapesp-v2/resolve/main/data/fapesp-v2.zip",
|
137 |
+
path=("fapesp-v2.pt-{src}.train.{src}", "fapesp-v2.pt-{src}.train.pt"),
|
138 |
+
),
|
139 |
+
]
|
140 |
+
|
141 |
+
_DEV_SUBSETS = [
|
142 |
+
SubDataset(
|
143 |
+
name="dev",
|
144 |
+
target="pt",
|
145 |
+
sources={"es", "en"},
|
146 |
+
url="https://huggingface.co/datasets/vgaraujov/fapesp-v2/resolve/main/data/fapesp-v2.zip",
|
147 |
+
path=("fapesp-v2.pt-{src}.dev.{src}", "fapesp-v2.pt-{src}.dev.pt"),
|
148 |
+
),
|
149 |
+
SubDataset(
|
150 |
+
name="dev-test",
|
151 |
+
target="pt",
|
152 |
+
sources={"es", "en"},
|
153 |
+
url="https://huggingface.co/datasets/vgaraujov/fapesp-v2/resolve/main/data/fapesp-v2.zip",
|
154 |
+
path=("fapesp-v2.pt-{src}.dev-test.{src}", "fapesp-v2.pt-{src}.dev-test.pt"),
|
155 |
+
),
|
156 |
+
SubDataset(
|
157 |
+
name="test-a",
|
158 |
+
target="pt",
|
159 |
+
sources={"es", "en"},
|
160 |
+
url="https://huggingface.co/datasets/vgaraujov/fapesp-v2/resolve/main/data/fapesp-v2.zip",
|
161 |
+
path=("fapesp-v2.pt-{src}.test-a.{src}", "fapesp-v2.pt-{src}.test-a.pt"),
|
162 |
+
),
|
163 |
+
SubDataset(
|
164 |
+
name="test-b",
|
165 |
+
target="pt",
|
166 |
+
sources={"es", "en"},
|
167 |
+
url="https://huggingface.co/datasets/vgaraujov/fapesp-v2/resolve/main/data/fapesp-v2.zip",
|
168 |
+
path=("fapesp-v2.pt-{src}.test-b.{src}", "fapesp-v2.pt-{src}.test-b.pt"),
|
169 |
+
),
|
170 |
+
]
|
171 |
+
|
172 |
+
DATASET_MAP = {dataset.name: dataset for dataset in _TRAIN_SUBSETS + _DEV_SUBSETS}
|
173 |
+
|
174 |
+
|
175 |
+
class WmtConfig(datasets.BuilderConfig):
|
176 |
+
"""BuilderConfig for WMT."""
|
177 |
+
|
178 |
+
def __init__(self, url=None, citation=None, description=None, language_pair=(None, None), subsets=None, **kwargs):
|
179 |
+
"""BuilderConfig for WMT.
|
180 |
+
|
181 |
+
Args:
|
182 |
+
url: The reference URL for the dataset.
|
183 |
+
citation: The paper citation for the dataset.
|
184 |
+
description: The description of the dataset.
|
185 |
+
language_pair: pair of languages that will be used for translation. Should
|
186 |
+
contain 2 letter coded strings. For example: ("en", "de").
|
187 |
+
configuration for the `datasets.features.text.TextEncoder` used for the
|
188 |
+
`datasets.features.text.Translation` features.
|
189 |
+
subsets: Dict[split, list[str]]. List of the subset to use for each of the
|
190 |
+
split. Note that WMT subclasses overwrite this parameter.
|
191 |
+
**kwargs: keyword arguments forwarded to super.
|
192 |
+
"""
|
193 |
+
name = "%s-%s" % (language_pair[0], language_pair[1])
|
194 |
+
if "name" in kwargs: # Add name suffix for custom configs
|
195 |
+
name += "." + kwargs.pop("name")
|
196 |
+
|
197 |
+
super(WmtConfig, self).__init__(name=name, description=description, **kwargs)
|
198 |
+
|
199 |
+
self.url = url or "http://www.statmt.org"
|
200 |
+
self.citation = citation
|
201 |
+
self.language_pair = language_pair
|
202 |
+
self.subsets = subsets
|
203 |
+
|
204 |
+
|
205 |
+
class Wmt(datasets.GeneratorBasedBuilder):
|
206 |
+
"""WMT translation dataset."""
|
207 |
+
|
208 |
+
BUILDER_CONFIG_CLASS = WmtConfig
|
209 |
+
|
210 |
+
def __init__(self, *args, **kwargs):
|
211 |
+
super(Wmt, self).__init__(*args, **kwargs)
|
212 |
+
|
213 |
+
@property
|
214 |
+
def _subsets(self):
|
215 |
+
"""Subsets that make up each split of the dataset."""
|
216 |
+
raise NotImplementedError("This is a abstract method")
|
217 |
+
|
218 |
+
@property
|
219 |
+
def subsets(self):
|
220 |
+
"""Subsets that make up each split of the dataset for the language pair."""
|
221 |
+
source, target = self.config.language_pair
|
222 |
+
filtered_subsets = {}
|
223 |
+
subsets = self._subsets if self.config.subsets is None else self.config.subsets
|
224 |
+
for split, ss_names in subsets.items():
|
225 |
+
filtered_subsets[split] = []
|
226 |
+
for ss_name in ss_names:
|
227 |
+
dataset = DATASET_MAP[ss_name]
|
228 |
+
if dataset.target != target or source not in dataset.sources:
|
229 |
+
logger.info("Skipping sub-dataset that does not include language pair: %s", ss_name)
|
230 |
+
else:
|
231 |
+
filtered_subsets[split].append(ss_name)
|
232 |
+
logger.info("Using sub-datasets: %s", filtered_subsets)
|
233 |
+
return filtered_subsets
|
234 |
+
|
235 |
+
def _info(self):
|
236 |
+
src, target = self.config.language_pair
|
237 |
+
return datasets.DatasetInfo(
|
238 |
+
description=_DESCRIPTION,
|
239 |
+
features=datasets.Features(
|
240 |
+
{"translation": datasets.features.Translation(languages=self.config.language_pair)}
|
241 |
+
),
|
242 |
+
supervised_keys=(src, target),
|
243 |
+
homepage=self.config.url,
|
244 |
+
citation=self.config.citation,
|
245 |
+
)
|
246 |
+
|
247 |
+
def _vocab_text_gen(self, split_subsets, extraction_map, language):
|
248 |
+
for _, ex in self._generate_examples(split_subsets, extraction_map, with_translation=False):
|
249 |
+
yield ex[language]
|
250 |
+
|
251 |
+
def _split_generators(self, dl_manager):
|
252 |
+
source, _ = self.config.language_pair
|
253 |
+
manual_paths_dict = {}
|
254 |
+
urls_to_download = {}
|
255 |
+
for ss_name in itertools.chain.from_iterable(self.subsets.values()):
|
256 |
+
|
257 |
+
# get dataset
|
258 |
+
dataset = DATASET_MAP[ss_name]
|
259 |
+
if dataset.get_manual_dl_files(source):
|
260 |
+
# TODO(PVP): following two lines skip configs that are incomplete for now
|
261 |
+
# +++++++++++++++++++++
|
262 |
+
logger.info("Skipping {dataset.name} for now. Incomplete dataset for {self.config.name}")
|
263 |
+
continue
|
264 |
+
# +++++++++++++++++++++
|
265 |
+
|
266 |
+
manual_dl_files = dataset.get_manual_dl_files(source)
|
267 |
+
manual_paths = [
|
268 |
+
os.path.join(os.path.abspath(os.path.expanduser(dl_manager.manual_dir)), fname)
|
269 |
+
for fname in manual_dl_files
|
270 |
+
]
|
271 |
+
assert all(
|
272 |
+
os.path.exists(path) for path in manual_paths
|
273 |
+
), f"For {dataset.name}, you must manually download the following file(s) from {dataset.get_url(source)} and place them in {dl_manager.manual_dir}: {', '.join(manual_dl_files)}"
|
274 |
+
|
275 |
+
# set manual path for correct subset
|
276 |
+
manual_paths_dict[ss_name] = manual_paths
|
277 |
+
else:
|
278 |
+
urls_to_download[ss_name] = dataset.get_url(source)
|
279 |
+
|
280 |
+
# Download and extract files from URLs.
|
281 |
+
downloaded_files = dl_manager.download_and_extract(urls_to_download)
|
282 |
+
# Extract manually downloaded files.
|
283 |
+
manual_files = dl_manager.extract(manual_paths_dict)
|
284 |
+
extraction_map = dict(downloaded_files, **manual_files)
|
285 |
+
|
286 |
+
for language in self.config.language_pair:
|
287 |
+
self._vocab_text_gen(self.subsets[datasets.Split.TRAIN], extraction_map, language)
|
288 |
+
|
289 |
+
return [
|
290 |
+
datasets.SplitGenerator( # pylint:disable=g-complex-comprehension
|
291 |
+
name=split, gen_kwargs={"split_subsets": split_subsets, "extraction_map": extraction_map}
|
292 |
+
)
|
293 |
+
for split, split_subsets in self.subsets.items()
|
294 |
+
]
|
295 |
+
|
296 |
+
def _generate_examples(self, split_subsets, extraction_map, with_translation=True):
|
297 |
+
"""Returns the examples in the raw (text) form."""
|
298 |
+
source, _ = self.config.language_pair
|
299 |
+
|
300 |
+
def _get_local_paths(dataset, extract_dirs):
|
301 |
+
rel_paths = dataset.get_path(source)
|
302 |
+
if len(extract_dirs) == 1:
|
303 |
+
extract_dirs = extract_dirs * len(rel_paths)
|
304 |
+
return [
|
305 |
+
os.path.join(ex_dir, rel_path) if rel_path else ex_dir
|
306 |
+
for ex_dir, rel_path in zip(extract_dirs, rel_paths)
|
307 |
+
]
|
308 |
+
|
309 |
+
def _get_filenames(dataset):
|
310 |
+
rel_paths = dataset.get_path(source)
|
311 |
+
urls = dataset.get_url(source)
|
312 |
+
if len(urls) == 1:
|
313 |
+
urls = urls * len(rel_paths)
|
314 |
+
return [rel_path if rel_path else os.path.basename(url) for url, rel_path in zip(urls, rel_paths)]
|
315 |
+
|
316 |
+
for ss_name in split_subsets:
|
317 |
+
# TODO(PVP) remove following five lines when manual data works
|
318 |
+
# +++++++++++++++++++++
|
319 |
+
dataset = DATASET_MAP[ss_name]
|
320 |
+
source, _ = self.config.language_pair
|
321 |
+
if dataset.get_manual_dl_files(source):
|
322 |
+
logger.info(f"Skipping {dataset.name} for now. Incomplete dataset for {self.config.name}")
|
323 |
+
continue
|
324 |
+
# +++++++++++++++++++++
|
325 |
+
|
326 |
+
logger.info("Generating examples from: %s", ss_name)
|
327 |
+
dataset = DATASET_MAP[ss_name]
|
328 |
+
extract_dirs = extraction_map[ss_name]
|
329 |
+
files = _get_local_paths(dataset, extract_dirs)
|
330 |
+
filenames = _get_filenames(dataset)
|
331 |
+
|
332 |
+
sub_generator_args = tuple(files)
|
333 |
+
|
334 |
+
if ss_name.startswith("czeng"):
|
335 |
+
if ss_name.endswith("16pre"):
|
336 |
+
sub_generator = functools.partial(_parse_tsv, language_pair=("en", "cs"))
|
337 |
+
sub_generator_args += tuple(filenames)
|
338 |
+
else:
|
339 |
+
sub_generator = _parse_czeng
|
340 |
+
elif ss_name == "hindencorp_01":
|
341 |
+
sub_generator = _parse_hindencorp
|
342 |
+
elif len(files) == 2:
|
343 |
+
if ss_name.endswith("_frde"):
|
344 |
+
sub_generator = _parse_frde_bitext
|
345 |
+
else:
|
346 |
+
sub_generator = _parse_parallel_sentences
|
347 |
+
sub_generator_args += tuple(filenames)
|
348 |
+
elif len(files) == 1:
|
349 |
+
fname = filenames[0]
|
350 |
+
# Note: Due to formatting used by `download_manager`, the file
|
351 |
+
# extension may not be at the end of the file path.
|
352 |
+
if ".tsv" in fname:
|
353 |
+
sub_generator = _parse_tsv
|
354 |
+
sub_generator_args += tuple(filenames)
|
355 |
+
elif (
|
356 |
+
ss_name.startswith("newscommentary_v14")
|
357 |
+
or ss_name.startswith("europarl_v9")
|
358 |
+
or ss_name.startswith("wikititles_v1")
|
359 |
+
):
|
360 |
+
sub_generator = functools.partial(_parse_tsv, language_pair=self.config.language_pair)
|
361 |
+
sub_generator_args += tuple(filenames)
|
362 |
+
elif "tmx" in fname or ss_name.startswith("paracrawl_v3"):
|
363 |
+
sub_generator = _parse_tmx
|
364 |
+
elif ss_name.startswith("wikiheadlines"):
|
365 |
+
sub_generator = _parse_wikiheadlines
|
366 |
+
else:
|
367 |
+
raise ValueError("Unsupported file format: %s" % fname)
|
368 |
+
else:
|
369 |
+
raise ValueError("Invalid number of files: %d" % len(files))
|
370 |
+
|
371 |
+
for sub_key, ex in sub_generator(*sub_generator_args):
|
372 |
+
if not all(ex.values()):
|
373 |
+
continue
|
374 |
+
# TODO(adarob): Add subset feature.
|
375 |
+
# ex["subset"] = subset
|
376 |
+
key = f"{ss_name}/{sub_key}"
|
377 |
+
if with_translation is True:
|
378 |
+
ex = {"translation": ex}
|
379 |
+
yield key, ex
|
380 |
+
|
381 |
+
|
382 |
+
def _parse_parallel_sentences(f1, f2, filename1, filename2):
|
383 |
+
"""Returns examples from parallel SGML or text files, which may be gzipped."""
|
384 |
+
|
385 |
+
def _parse_text(path, original_filename):
|
386 |
+
"""Returns the sentences from a single text file, which may be gzipped."""
|
387 |
+
split_path = original_filename.split(".")
|
388 |
+
|
389 |
+
if split_path[-1] == "gz":
|
390 |
+
lang = split_path[-2]
|
391 |
+
|
392 |
+
def gen():
|
393 |
+
with open(path, "rb") as f, gzip.GzipFile(fileobj=f) as g:
|
394 |
+
for line in g:
|
395 |
+
yield line.decode("utf-8").rstrip()
|
396 |
+
|
397 |
+
return gen(), lang
|
398 |
+
|
399 |
+
if split_path[-1] == "txt":
|
400 |
+
# CWMT
|
401 |
+
lang = split_path[-2].split("_")[-1]
|
402 |
+
lang = "zh" if lang in ("ch", "cn", "c[hn]") else lang
|
403 |
+
else:
|
404 |
+
lang = split_path[-1]
|
405 |
+
|
406 |
+
def gen():
|
407 |
+
with open(path, "rb") as f:
|
408 |
+
for line in f:
|
409 |
+
yield line.decode("utf-8").rstrip()
|
410 |
+
|
411 |
+
return gen(), lang
|
412 |
+
|
413 |
+
def _parse_sgm(path, original_filename):
|
414 |
+
"""Returns sentences from a single SGML file."""
|
415 |
+
lang = original_filename.split(".")[-2]
|
416 |
+
# Note: We can't use the XML parser since some of the files are badly
|
417 |
+
# formatted.
|
418 |
+
seg_re = re.compile(r"<seg id=\"\d+\">(.*)</seg>")
|
419 |
+
|
420 |
+
def gen():
|
421 |
+
with open(path, encoding="utf-8") as f:
|
422 |
+
for line in f:
|
423 |
+
seg_match = re.match(seg_re, line)
|
424 |
+
if seg_match:
|
425 |
+
assert len(seg_match.groups()) == 1
|
426 |
+
yield seg_match.groups()[0]
|
427 |
+
|
428 |
+
return gen(), lang
|
429 |
+
|
430 |
+
parse_file = _parse_sgm if os.path.basename(f1).endswith(".sgm") else _parse_text
|
431 |
+
|
432 |
+
# Some datasets (e.g., CWMT) contain multiple parallel files specified with
|
433 |
+
# a wildcard. We sort both sets to align them and parse them one by one.
|
434 |
+
f1_files = sorted(glob.glob(f1))
|
435 |
+
f2_files = sorted(glob.glob(f2))
|
436 |
+
|
437 |
+
assert f1_files and f2_files, "No matching files found: %s, %s." % (f1, f2)
|
438 |
+
assert len(f1_files) == len(f2_files), "Number of files do not match: %d vs %d for %s vs %s." % (
|
439 |
+
len(f1_files),
|
440 |
+
len(f2_files),
|
441 |
+
f1,
|
442 |
+
f2,
|
443 |
+
)
|
444 |
+
|
445 |
+
for f_id, (f1_i, f2_i) in enumerate(zip(sorted(f1_files), sorted(f2_files))):
|
446 |
+
l1_sentences, l1 = parse_file(f1_i, filename1)
|
447 |
+
l2_sentences, l2 = parse_file(f2_i, filename2)
|
448 |
+
|
449 |
+
for line_id, (s1, s2) in enumerate(zip(l1_sentences, l2_sentences)):
|
450 |
+
key = f"{f_id}/{line_id}"
|
451 |
+
yield key, {l1: s1, l2: s2}
|
452 |
+
|
453 |
+
|
454 |
+
def _parse_frde_bitext(fr_path, de_path):
|
455 |
+
with open(fr_path, encoding="utf-8") as fr_f:
|
456 |
+
with open(de_path, encoding="utf-8") as de_f:
|
457 |
+
for line_id, (s1, s2) in enumerate(zip(fr_f, de_f)):
|
458 |
+
yield line_id, {"fr": s1.rstrip(), "de": s2.rstrip()}
|
459 |
+
|
460 |
+
|
461 |
+
def _parse_tmx(path):
|
462 |
+
"""Generates examples from TMX file."""
|
463 |
+
|
464 |
+
def _get_tuv_lang(tuv):
|
465 |
+
for k, v in tuv.items():
|
466 |
+
if k.endswith("}lang"):
|
467 |
+
return v
|
468 |
+
raise AssertionError("Language not found in `tuv` attributes.")
|
469 |
+
|
470 |
+
def _get_tuv_seg(tuv):
|
471 |
+
segs = tuv.findall("seg")
|
472 |
+
assert len(segs) == 1, "Invalid number of segments: %d" % len(segs)
|
473 |
+
return segs[0].text
|
474 |
+
|
475 |
+
with open(path, "rb") as f:
|
476 |
+
# Workaround due to: https://github.com/tensorflow/tensorflow/issues/33563
|
477 |
+
utf_f = codecs.getreader("utf-8")(f)
|
478 |
+
for line_id, (_, elem) in enumerate(ElementTree.iterparse(utf_f)):
|
479 |
+
if elem.tag == "tu":
|
480 |
+
yield line_id, {_get_tuv_lang(tuv): _get_tuv_seg(tuv) for tuv in elem.iterfind("tuv")}
|
481 |
+
elem.clear()
|
482 |
+
|
483 |
+
|
484 |
+
def _parse_tsv(path, filename, language_pair=None):
|
485 |
+
"""Generates examples from TSV file."""
|
486 |
+
if language_pair is None:
|
487 |
+
lang_match = re.match(r".*\.([a-z][a-z])-([a-z][a-z])\.tsv", filename)
|
488 |
+
assert lang_match is not None, "Invalid TSV filename: %s" % filename
|
489 |
+
l1, l2 = lang_match.groups()
|
490 |
+
else:
|
491 |
+
l1, l2 = language_pair
|
492 |
+
with open(path, encoding="utf-8") as f:
|
493 |
+
for j, line in enumerate(f):
|
494 |
+
cols = line.split("\t")
|
495 |
+
if len(cols) != 2:
|
496 |
+
logger.warning("Skipping line %d in TSV (%s) with %d != 2 columns.", j, path, len(cols))
|
497 |
+
continue
|
498 |
+
s1, s2 = cols
|
499 |
+
yield j, {l1: s1.strip(), l2: s2.strip()}
|
500 |
+
|
501 |
+
|
502 |
+
def _parse_wikiheadlines(path):
|
503 |
+
"""Generates examples from Wikiheadlines dataset file."""
|
504 |
+
lang_match = re.match(r".*\.([a-z][a-z])-([a-z][a-z])$", path)
|
505 |
+
assert lang_match is not None, "Invalid Wikiheadlines filename: %s" % path
|
506 |
+
l1, l2 = lang_match.groups()
|
507 |
+
with open(path, encoding="utf-8") as f:
|
508 |
+
for line_id, line in enumerate(f):
|
509 |
+
s1, s2 = line.split("|||")
|
510 |
+
yield line_id, {l1: s1.strip(), l2: s2.strip()}
|
511 |
+
|
512 |
+
|
513 |
+
def _parse_czeng(*paths, **kwargs):
|
514 |
+
"""Generates examples from CzEng v1.6, with optional filtering for v1.7."""
|
515 |
+
filter_path = kwargs.get("filter_path", None)
|
516 |
+
if filter_path:
|
517 |
+
re_block = re.compile(r"^[^-]+-b(\d+)-\d\d[tde]")
|
518 |
+
with open(filter_path, encoding="utf-8") as f:
|
519 |
+
bad_blocks = {blk for blk in re.search(r"qw{([\s\d]*)}", f.read()).groups()[0].split()}
|
520 |
+
logger.info("Loaded %d bad blocks to filter from CzEng v1.6 to make v1.7.", len(bad_blocks))
|
521 |
+
|
522 |
+
for path in paths:
|
523 |
+
for gz_path in sorted(glob.glob(path)):
|
524 |
+
with open(gz_path, "rb") as g, gzip.GzipFile(fileobj=g) as f:
|
525 |
+
filename = os.path.basename(gz_path)
|
526 |
+
for line_id, line in enumerate(f):
|
527 |
+
line = line.decode("utf-8") # required for py3
|
528 |
+
if not line.strip():
|
529 |
+
continue
|
530 |
+
id_, unused_score, cs, en = line.split("\t")
|
531 |
+
if filter_path:
|
532 |
+
block_match = re.match(re_block, id_)
|
533 |
+
if block_match and block_match.groups()[0] in bad_blocks:
|
534 |
+
continue
|
535 |
+
sub_key = f"{filename}/{line_id}"
|
536 |
+
yield sub_key, {
|
537 |
+
"cs": cs.strip(),
|
538 |
+
"en": en.strip(),
|
539 |
+
}
|
540 |
+
|
541 |
+
|
542 |
+
def _parse_hindencorp(path):
|
543 |
+
with open(path, encoding="utf-8") as f:
|
544 |
+
for line_id, line in enumerate(f):
|
545 |
+
split_line = line.split("\t")
|
546 |
+
if len(split_line) != 5:
|
547 |
+
logger.warning("Skipping invalid HindEnCorp line: %s", line)
|
548 |
+
continue
|
549 |
+
yield line_id, {"translation": {"en": split_line[3].strip(), "hi": split_line[4].strip()}}
|