update notebooks
Browse files- add_image.ipynb +393 -0
- doc-image-10.parquet +3 -0
- merge.ipynb +0 -0
add_image.ipynb
ADDED
@@ -0,0 +1,393 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"from datasets import load_dataset\n",
|
10 |
+
"\n",
|
11 |
+
"dataset = load_dataset(\"dnth/pets-enriched\")"
|
12 |
+
]
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"cell_type": "code",
|
16 |
+
"execution_count": 2,
|
17 |
+
"metadata": {},
|
18 |
+
"outputs": [
|
19 |
+
{
|
20 |
+
"data": {
|
21 |
+
"text/plain": [
|
22 |
+
"{'filename': Value(dtype='string', id=None),\n",
|
23 |
+
" 'caption': Value(dtype='string', id=None),\n",
|
24 |
+
" 'image_labels': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None),\n",
|
25 |
+
" 'objects': [{'bbox': Sequence(feature=Value(dtype='float64', id=None), length=-1, id=None),\n",
|
26 |
+
" 'confidence': Value(dtype='float64', id=None),\n",
|
27 |
+
" 'label': Value(dtype='string', id=None)}]}"
|
28 |
+
]
|
29 |
+
},
|
30 |
+
"execution_count": 2,
|
31 |
+
"metadata": {},
|
32 |
+
"output_type": "execute_result"
|
33 |
+
}
|
34 |
+
],
|
35 |
+
"source": [
|
36 |
+
"dataset['train'].features"
|
37 |
+
]
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"cell_type": "code",
|
41 |
+
"execution_count": 3,
|
42 |
+
"metadata": {},
|
43 |
+
"outputs": [
|
44 |
+
{
|
45 |
+
"data": {
|
46 |
+
"text/plain": [
|
47 |
+
"{'filename': 'oxford-iiit-pet/images/Abyssinian_144.jpg',\n",
|
48 |
+
" 'caption': 'a cat standing on a wooden floor next to a glass',\n",
|
49 |
+
" 'image_labels': ['cat'],\n",
|
50 |
+
" 'objects': [{'bbox': [91.0, 13.0, 408.0, 345.0],\n",
|
51 |
+
" 'confidence': 0.9800000190734863,\n",
|
52 |
+
" 'label': 'cat'}]}"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
"execution_count": 3,
|
56 |
+
"metadata": {},
|
57 |
+
"output_type": "execute_result"
|
58 |
+
}
|
59 |
+
],
|
60 |
+
"source": [
|
61 |
+
"dataset['train'][0]"
|
62 |
+
]
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"cell_type": "code",
|
66 |
+
"execution_count": 4,
|
67 |
+
"metadata": {},
|
68 |
+
"outputs": [
|
69 |
+
{
|
70 |
+
"data": {
|
71 |
+
"text/plain": [
|
72 |
+
"{'filename': 'oxford-iiit-pet/images/Abyssinian_100.jpg',\n",
|
73 |
+
" 'caption': 'a cat is sitting in a bag',\n",
|
74 |
+
" 'image_labels': ['cat'],\n",
|
75 |
+
" 'objects': [{'bbox': [48.0, 72.0, 288.0, 371.0],\n",
|
76 |
+
" 'confidence': 0.9539999961853027,\n",
|
77 |
+
" 'label': 'cat'},\n",
|
78 |
+
" {'bbox': [0.0, 31.0, 148.0, 92.0],\n",
|
79 |
+
" 'confidence': 0.4880000054836273,\n",
|
80 |
+
" 'label': 'strap'},\n",
|
81 |
+
" {'bbox': [241.0, 341.0, 153.0, 160.0],\n",
|
82 |
+
" 'confidence': 0.4309999942779541,\n",
|
83 |
+
" 'label': 'strap'},\n",
|
84 |
+
" {'bbox': [193.0, 1.0, 202.0, 179.0],\n",
|
85 |
+
" 'confidence': 0.3700000047683716,\n",
|
86 |
+
" 'label': 'pillow'}]}"
|
87 |
+
]
|
88 |
+
},
|
89 |
+
"execution_count": 4,
|
90 |
+
"metadata": {},
|
91 |
+
"output_type": "execute_result"
|
92 |
+
}
|
93 |
+
],
|
94 |
+
"source": [
|
95 |
+
"dataset['train'][10]"
|
96 |
+
]
|
97 |
+
},
|
98 |
+
{
|
99 |
+
"cell_type": "code",
|
100 |
+
"execution_count": 5,
|
101 |
+
"metadata": {},
|
102 |
+
"outputs": [],
|
103 |
+
"source": [
|
104 |
+
"import os\n",
|
105 |
+
"from PIL import Image\n",
|
106 |
+
"import io\n",
|
107 |
+
"import datasets\n",
|
108 |
+
"\n",
|
109 |
+
"def load_image(example):\n",
|
110 |
+
" image_path = example['filename'] # Assuming 'filename' contains the path\n",
|
111 |
+
" if os.path.exists(image_path):\n",
|
112 |
+
" with Image.open(image_path) as img:\n",
|
113 |
+
" buf = io.BytesIO()\n",
|
114 |
+
" img.save(buf, format='PNG')\n",
|
115 |
+
" example['image'] = buf.getvalue()\n",
|
116 |
+
" else:\n",
|
117 |
+
" example['image'] = None\n",
|
118 |
+
" return example\n",
|
119 |
+
"\n",
|
120 |
+
"# Assuming your dataset is called 'dataset'\n",
|
121 |
+
"dataset = dataset.map(load_image)\n",
|
122 |
+
"\n",
|
123 |
+
"# Update the features of the dataset\n",
|
124 |
+
"dataset = dataset.cast_column(\"image\", datasets.Image())"
|
125 |
+
]
|
126 |
+
},
|
127 |
+
{
|
128 |
+
"cell_type": "code",
|
129 |
+
"execution_count": 6,
|
130 |
+
"metadata": {},
|
131 |
+
"outputs": [
|
132 |
+
{
|
133 |
+
"data": {
|
134 |
+
"text/plain": [
|
135 |
+
"Dataset({\n",
|
136 |
+
" features: ['filename', 'caption', 'image_labels', 'objects', 'image'],\n",
|
137 |
+
" num_rows: 7275\n",
|
138 |
+
"})"
|
139 |
+
]
|
140 |
+
},
|
141 |
+
"execution_count": 6,
|
142 |
+
"metadata": {},
|
143 |
+
"output_type": "execute_result"
|
144 |
+
}
|
145 |
+
],
|
146 |
+
"source": [
|
147 |
+
"dataset['train']"
|
148 |
+
]
|
149 |
+
},
|
150 |
+
{
|
151 |
+
"cell_type": "code",
|
152 |
+
"execution_count": 10,
|
153 |
+
"metadata": {},
|
154 |
+
"outputs": [
|
155 |
+
{
|
156 |
+
"data": {
|
157 |
+
"application/vnd.jupyter.widget-view+json": {
|
158 |
+
"model_id": "f35fb0f0588e477b985cc75dfdc00569",
|
159 |
+
"version_major": 2,
|
160 |
+
"version_minor": 0
|
161 |
+
},
|
162 |
+
"text/plain": [
|
163 |
+
"Uploading the dataset shards: 0%| | 0/5 [00:00<?, ?it/s]"
|
164 |
+
]
|
165 |
+
},
|
166 |
+
"metadata": {},
|
167 |
+
"output_type": "display_data"
|
168 |
+
},
|
169 |
+
{
|
170 |
+
"data": {
|
171 |
+
"application/vnd.jupyter.widget-view+json": {
|
172 |
+
"model_id": "ca299917858a4d9e8b2264da5c609be1",
|
173 |
+
"version_major": 2,
|
174 |
+
"version_minor": 0
|
175 |
+
},
|
176 |
+
"text/plain": [
|
177 |
+
"Map: 0%| | 0/1455 [00:00<?, ? examples/s]"
|
178 |
+
]
|
179 |
+
},
|
180 |
+
"metadata": {},
|
181 |
+
"output_type": "display_data"
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"data": {
|
185 |
+
"application/vnd.jupyter.widget-view+json": {
|
186 |
+
"model_id": "21e2c7755e1c4890b8710a0fc3fb2e25",
|
187 |
+
"version_major": 2,
|
188 |
+
"version_minor": 0
|
189 |
+
},
|
190 |
+
"text/plain": [
|
191 |
+
"Creating parquet from Arrow format: 0%| | 0/15 [00:00<?, ?ba/s]"
|
192 |
+
]
|
193 |
+
},
|
194 |
+
"metadata": {},
|
195 |
+
"output_type": "display_data"
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"data": {
|
199 |
+
"application/vnd.jupyter.widget-view+json": {
|
200 |
+
"model_id": "05c256e8a8b54c4a8a9c905f7fcf78ab",
|
201 |
+
"version_major": 2,
|
202 |
+
"version_minor": 0
|
203 |
+
},
|
204 |
+
"text/plain": [
|
205 |
+
"Map: 0%| | 0/1455 [00:00<?, ? examples/s]"
|
206 |
+
]
|
207 |
+
},
|
208 |
+
"metadata": {},
|
209 |
+
"output_type": "display_data"
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"data": {
|
213 |
+
"application/vnd.jupyter.widget-view+json": {
|
214 |
+
"model_id": "0aa862e525f8403fa1489c11a08d9626",
|
215 |
+
"version_major": 2,
|
216 |
+
"version_minor": 0
|
217 |
+
},
|
218 |
+
"text/plain": [
|
219 |
+
"Creating parquet from Arrow format: 0%| | 0/15 [00:00<?, ?ba/s]"
|
220 |
+
]
|
221 |
+
},
|
222 |
+
"metadata": {},
|
223 |
+
"output_type": "display_data"
|
224 |
+
},
|
225 |
+
{
|
226 |
+
"data": {
|
227 |
+
"application/vnd.jupyter.widget-view+json": {
|
228 |
+
"model_id": "1ae4a025e0a54f92a7932a2bfe104789",
|
229 |
+
"version_major": 2,
|
230 |
+
"version_minor": 0
|
231 |
+
},
|
232 |
+
"text/plain": [
|
233 |
+
"Map: 0%| | 0/1455 [00:00<?, ? examples/s]"
|
234 |
+
]
|
235 |
+
},
|
236 |
+
"metadata": {},
|
237 |
+
"output_type": "display_data"
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"data": {
|
241 |
+
"application/vnd.jupyter.widget-view+json": {
|
242 |
+
"model_id": "da530e1109d6437dbdd39fe40e091724",
|
243 |
+
"version_major": 2,
|
244 |
+
"version_minor": 0
|
245 |
+
},
|
246 |
+
"text/plain": [
|
247 |
+
"Creating parquet from Arrow format: 0%| | 0/15 [00:00<?, ?ba/s]"
|
248 |
+
]
|
249 |
+
},
|
250 |
+
"metadata": {},
|
251 |
+
"output_type": "display_data"
|
252 |
+
},
|
253 |
+
{
|
254 |
+
"data": {
|
255 |
+
"application/vnd.jupyter.widget-view+json": {
|
256 |
+
"model_id": "9b71da5cc1cb4f12af4b04fc5597e4d1",
|
257 |
+
"version_major": 2,
|
258 |
+
"version_minor": 0
|
259 |
+
},
|
260 |
+
"text/plain": [
|
261 |
+
"Map: 0%| | 0/1455 [00:00<?, ? examples/s]"
|
262 |
+
]
|
263 |
+
},
|
264 |
+
"metadata": {},
|
265 |
+
"output_type": "display_data"
|
266 |
+
},
|
267 |
+
{
|
268 |
+
"data": {
|
269 |
+
"application/vnd.jupyter.widget-view+json": {
|
270 |
+
"model_id": "a3f3ec986b044612a653fc7e27faa3b0",
|
271 |
+
"version_major": 2,
|
272 |
+
"version_minor": 0
|
273 |
+
},
|
274 |
+
"text/plain": [
|
275 |
+
"Creating parquet from Arrow format: 0%| | 0/15 [00:00<?, ?ba/s]"
|
276 |
+
]
|
277 |
+
},
|
278 |
+
"metadata": {},
|
279 |
+
"output_type": "display_data"
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"data": {
|
283 |
+
"application/vnd.jupyter.widget-view+json": {
|
284 |
+
"model_id": "8761c776867044e0a39c5be67b5e4536",
|
285 |
+
"version_major": 2,
|
286 |
+
"version_minor": 0
|
287 |
+
},
|
288 |
+
"text/plain": [
|
289 |
+
"Map: 0%| | 0/1455 [00:00<?, ? examples/s]"
|
290 |
+
]
|
291 |
+
},
|
292 |
+
"metadata": {},
|
293 |
+
"output_type": "display_data"
|
294 |
+
},
|
295 |
+
{
|
296 |
+
"data": {
|
297 |
+
"application/vnd.jupyter.widget-view+json": {
|
298 |
+
"model_id": "2d64775cae0e46c2b96db080977f7caf",
|
299 |
+
"version_major": 2,
|
300 |
+
"version_minor": 0
|
301 |
+
},
|
302 |
+
"text/plain": [
|
303 |
+
"Creating parquet from Arrow format: 0%| | 0/15 [00:00<?, ?ba/s]"
|
304 |
+
]
|
305 |
+
},
|
306 |
+
"metadata": {},
|
307 |
+
"output_type": "display_data"
|
308 |
+
},
|
309 |
+
{
|
310 |
+
"data": {
|
311 |
+
"application/vnd.jupyter.widget-view+json": {
|
312 |
+
"model_id": "81348e1aa35f41b9b68e178c9f7fd203",
|
313 |
+
"version_major": 2,
|
314 |
+
"version_minor": 0
|
315 |
+
},
|
316 |
+
"text/plain": [
|
317 |
+
"README.md: 0%| | 0.00/478 [00:00<?, ?B/s]"
|
318 |
+
]
|
319 |
+
},
|
320 |
+
"metadata": {},
|
321 |
+
"output_type": "display_data"
|
322 |
+
},
|
323 |
+
{
|
324 |
+
"data": {
|
325 |
+
"text/plain": [
|
326 |
+
"CommitInfo(commit_url='https://huggingface.co/datasets/dnth/pets-enriched/commit/1e0711eae3c228b4bdd45096d28ae167f1ae49e7', commit_message='Upload dataset', commit_description='', oid='1e0711eae3c228b4bdd45096d28ae167f1ae49e7', pr_url=None, pr_revision=None, pr_num=None)"
|
327 |
+
]
|
328 |
+
},
|
329 |
+
"execution_count": 10,
|
330 |
+
"metadata": {},
|
331 |
+
"output_type": "execute_result"
|
332 |
+
}
|
333 |
+
],
|
334 |
+
"source": [
|
335 |
+
"dataset.push_to_hub('dnth/pets-enriched')"
|
336 |
+
]
|
337 |
+
},
|
338 |
+
{
|
339 |
+
"cell_type": "code",
|
340 |
+
"execution_count": 9,
|
341 |
+
"metadata": {},
|
342 |
+
"outputs": [
|
343 |
+
{
|
344 |
+
"data": {
|
345 |
+
"application/vnd.jupyter.widget-view+json": {
|
346 |
+
"model_id": "421ffbe1dea442bc956d20ccedc539f8",
|
347 |
+
"version_major": 2,
|
348 |
+
"version_minor": 0
|
349 |
+
},
|
350 |
+
"text/plain": [
|
351 |
+
"VBox(children=(HTML(value='<center> <img\\nsrc=https://huggingface.co/front/assets/huggingface_logo-noborder.sv…"
|
352 |
+
]
|
353 |
+
},
|
354 |
+
"metadata": {},
|
355 |
+
"output_type": "display_data"
|
356 |
+
}
|
357 |
+
],
|
358 |
+
"source": [
|
359 |
+
"from huggingface_hub import login\n",
|
360 |
+
"\n",
|
361 |
+
"login()"
|
362 |
+
]
|
363 |
+
},
|
364 |
+
{
|
365 |
+
"cell_type": "code",
|
366 |
+
"execution_count": null,
|
367 |
+
"metadata": {},
|
368 |
+
"outputs": [],
|
369 |
+
"source": []
|
370 |
+
}
|
371 |
+
],
|
372 |
+
"metadata": {
|
373 |
+
"kernelspec": {
|
374 |
+
"display_name": "Python 3",
|
375 |
+
"language": "python",
|
376 |
+
"name": "python3"
|
377 |
+
},
|
378 |
+
"language_info": {
|
379 |
+
"codemirror_mode": {
|
380 |
+
"name": "ipython",
|
381 |
+
"version": 3
|
382 |
+
},
|
383 |
+
"file_extension": ".py",
|
384 |
+
"mimetype": "text/x-python",
|
385 |
+
"name": "python",
|
386 |
+
"nbconvert_exporter": "python",
|
387 |
+
"pygments_lexer": "ipython3",
|
388 |
+
"version": "3.10.12"
|
389 |
+
}
|
390 |
+
},
|
391 |
+
"nbformat": 4,
|
392 |
+
"nbformat_minor": 2
|
393 |
+
}
|
doc-image-10.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:31d22c17d8178238571741400429875d3e7d23d23cef144affcfb3df3af0869c
|
3 |
+
size 224379
|
merge.ipynb
CHANGED
The diff for this file is too large to render.
See raw diff
|
|