w11wo commited on
Commit
fc4c558
1 Parent(s): 20e5599

First version of imdb-javanese.

Browse files
Files changed (1) hide show
  1. imdb-javanese.py +87 -0
imdb-javanese.py ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Javanese IMDB movie reviews dataset."""
2
+
3
+ from __future__ import absolute_import, division, print_function
4
+
5
+ import csv
6
+ import os
7
+
8
+ import datasets
9
+
10
+
11
+ _CITATION = """\
12
+ @InProceedings{maas-EtAl:2011:ACL-HLT2011,
13
+ author = {Maas, Andrew L. and Daly, Raymond E. and Pham, Peter T. and Huang, Dan and Ng, Andrew Y. and Potts, Christopher},
14
+ title = {Learning Word Vectors for Sentiment Analysis},
15
+ booktitle = {Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies},
16
+ month = {June},
17
+ year = {2011},
18
+ address = {Portland, Oregon, USA},
19
+ publisher = {Association for Computational Linguistics},
20
+ pages = {142--150},
21
+ url = {http://www.aclweb.org/anthology/P11-1015}
22
+ }
23
+ """
24
+
25
+ _DESCRIPTION = """\
26
+ Large Movie Review Dataset translated to Javanese.
27
+ This is a dataset for binary sentiment classification containing substantially \
28
+ more data than previous benchmark datasets. We provide a set of 25,000 highly \
29
+ polar movie reviews for training, and 25,000 for testing. There is additional \
30
+ unlabeled data for use as well. We translated the original IMDB Dataset to \
31
+ Javanese using the multi-lingual MarianMT Transformer model from \
32
+ `Helsinki-NLP/opus-mt-en-mul`.
33
+ """
34
+
35
+ _URL = "https://github.com/w11wo/javanese-nlp/blob/main/imdb-javanese/javanese_imdb_csv.zip?raw=true"
36
+
37
+ _HOMEPAGE = "https://github.com/w11wo/javanese-nlp"
38
+
39
+
40
+ class JavaneseImdbReviews(datasets.GeneratorBasedBuilder):
41
+ VERSION = datasets.Version("1.0.0")
42
+
43
+ def _info(self):
44
+ return datasets.DatasetInfo(
45
+ description=_DESCRIPTION,
46
+ features=datasets.Features(
47
+ {
48
+ "text": datasets.Value("string"),
49
+ "label": datasets.ClassLabel(names=["0", "1", "-1"]),
50
+ }
51
+ ),
52
+ citation=_CITATION,
53
+ homepage=_HOMEPAGE,
54
+ )
55
+
56
+ def _split_generators(self, dl_manager):
57
+ """Returns SplitGenerators."""
58
+ dl_path = dl_manager.download_and_extract(_URL)
59
+ return [
60
+ datasets.SplitGenerator(
61
+ name=datasets.Split.TRAIN,
62
+ gen_kwargs={
63
+ "filepath": os.path.join(dl_path, "javanese_imdb_train.csv")
64
+ },
65
+ ),
66
+ datasets.SplitGenerator(
67
+ name=datasets.Split.TEST,
68
+ gen_kwargs={
69
+ "filepath": os.path.join(dl_path, "javanese_imdb_test.csv")
70
+ },
71
+ ),
72
+ datasets.SplitGenerator(
73
+ name=datasets.Split("unsupervised"),
74
+ gen_kwargs={
75
+ "filepath": os.path.join(dl_path, "javanese_imdb_unsup.csv")
76
+ },
77
+ ),
78
+ ]
79
+
80
+ def _generate_examples(self, filepath):
81
+ """Yields examples."""
82
+ with open(filepath, encoding="utf-8") as f:
83
+ reader = csv.reader(f, delimiter=",")
84
+ for id_, row in enumerate(reader):
85
+ if id_ == 0:
86
+ continue
87
+ yield id_, {"label": row[0], "text": row[1]}