File size: 5,172 Bytes
ab1eda1
 
 
d79de42
 
 
2d5f709
 
62ea0e2
2d5f709
62ea0e2
83a2807
4c49644
d79de42
4c49644
d79de42
ab1eda1
 
 
59c4b73
 
 
 
 
 
 
 
 
 
ab1eda1
 
59c4b73
ab1eda1
 
 
59c4b73
4c49644
ab1eda1
 
 
 
 
 
 
 
 
 
 
 
d79de42
 
 
 
83a2807
 
 
 
 
 
 
 
d79de42
 
2d5f709
 
 
 
 
 
 
 
 
a303b66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d5f709
 
a303b66
2d5f709
 
 
a303b66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d5f709
 
ab1eda1
 
83a2807
 
 
 
 
 
 
a303b66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab1eda1
 
 
 
83a2807
ab1eda1
 
a303b66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab1eda1
 
2d5f709
ab1eda1
 
 
83a2807
ab1eda1
a303b66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
---
license: bsd-3-clause
configs:
- config_name: no-vectors
  data_files: no-vectors/*.parquet
  default: true
- config_name: aws-titan-embed-text-v2
  data_files: aws/titan-embed-text-v2/*.parquet
- config_name: cohere-embed-multilingual-v3
  data_files: cohere/embed-multilingual-v3/*.parquet
- config_name: openai-text-embedding-3-small
  data_files: openai/text-embedding-3-small/*.parquet
- config_name: openai-text-embedding-3-large
  data_files: openai/text-embedding-3-large/*.parquet
- config_name: snowflake-arctic-embed
  data_files: ollama/snowflake-arctic/*.parquet
size_categories:
- 100K<n<1M
---

##  Loading dataset without vector embeddings

You can load the raw dataset without vectors, like this:

```python
from datasets import load_dataset
dataset = load_dataset("weaviate/wiki-sample", split="train", streaming=True)
```

##  Loading dataset with vector embeddings

You can also load the dataset with vectors, like this:

```python
from datasets import load_dataset
dataset = load_dataset("weaviate/wiki-sample", "openai-text-embedding-3-small", split="train", streaming=True)
# dataset = load_dataset("weaviate/wiki-sample", "snowflake-arctic-embed", split="train", streaming=True)

for item in dataset:
    print(item["text"])
    print(item["title"])
    print(item["url"])
    print(item["wiki_id"])
    print(item["vector"])
    print()
```

## Supported Datasets

### Data only - no vectors

```python
from datasets import load_dataset
dataset = load_dataset("weaviate/wiki-sample", "no-vectors", split="train", streaming=True)
```

You can also skip the config name, as "no-vectors is the default dataset:

```python
from datasets import load_dataset
dataset = load_dataset("weaviate/wiki-sample", split="train", streaming=True)
```

### AWS

**aws-titan-embed-text-v2** - 1024d vectors - generated with AWS Bedrock

```python
from datasets import load_dataset
dataset = load_dataset("weaviate/wiki-sample", "aws-titan-embed-text-v2", split="train", streaming=True)
```

#### Weaviate collection configuration:

```python
from weaviate.classes.config import Configure

client.collections.create(
    name="Wiki",
    
    vectorizer_config=[
        Configure.NamedVectors.text2vec_aws(
            name="main_vector",
            model="amazon.titan-embed-text-v2:0",
            region="us-east-1", # make sure to use the correct region for you

            source_properties=['title', 'text'], # which properties should be used to generate a vector
        )
    ],
)
```

### Cohere

**embed-multilingual-v3** - 768d vectors - generated with Ollama

```python
from datasets import load_dataset
dataset = load_dataset("weaviate/wiki-sample", "cohere-embed-multilingual-v3", split="train", streaming=True)
```

#### Weaviate collection configuration:

```python
from weaviate.classes.config import Configure

client.collections.create(
    name="Wiki",
    
    vectorizer_config=[
        Configure.NamedVectors.text2vec_cohere(
            name="main_vector",
            model="embed-multilingual-v3.0",

            source_properties=['title', 'text'], # which properties should be used to generate a vector
        )
    ],
)
```

### OpenAI

**text-embedding-3-small** - 1536d vectors - generated with OpenAI

```python
from datasets import load_dataset
dataset = load_dataset("weaviate/wiki-sample", "openai-text-embedding-3-small", split="train", streaming=True)
```

#### Weaviate collection configuration:

```python
from weaviate.classes.config import Configure

client.collections.create(
    name="Wiki",
    
    vectorizer_config=[
        Configure.NamedVectors.text2vec_openai(
            name="main_vector",
            model="text-embedding-3-small",

            source_properties=['title', 'text'], # which properties should be used to generate a vector
        )
    ],
)
```

**text-embedding-3-large** - 3072d vectors - generated with OpenAI

```python
from datasets import load_dataset
dataset = load_dataset("weaviate/wiki-sample", "openai-text-embedding-3-large", split="train", streaming=True)
```

#### Weaviate collection configuration:

```python
from weaviate.classes.config import Configure

client.collections.create(
    name="Wiki",
    
    vectorizer_config=[
        Configure.NamedVectors.text2vec_openai(
            name="main_vector",
            model="text-embedding-3-large",

            source_properties=['title', 'text'], # which properties should be used to generate a vector
        )
    ],
)
```

### Snowflake

**snowflake-arctic-embed** - 1024d vectors - generated with Ollama

```python
from datasets import load_dataset
dataset = load_dataset("weaviate/wiki-sample", "snowflake-arctic-embed", split="train", streaming=True)
```

#### Weaviate collection configuration:

```python
from weaviate.classes.config import Configure

client.collections.create(
    name="Wiki",
    
    vectorizer_config=[
        Configure.NamedVectors.text2vec_ollama(
            name="main_vector",
            model="snowflake-arctic-embed",
            api_endpoint="http://host.docker.internal:11434", # If using Docker

            source_properties=["title", "text"],
        ),  
    ],
)
```