Datasets:

Modalities:
Image
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
License:
File size: 7,125 Bytes
8fe29d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""""WIT (Wikipedia-based Image Text Dataset) dataset (Wikimedia version)."""

import base64
import gzip
import json

import datasets

from .corrected_examples import CORRECTED_EXAMPLES


_CITATION = """\
@article{srinivasan2021wit,
  title={WIT: Wikipedia-based Image Text Dataset for Multimodal Multilingual Machine Learning},
  author={Srinivasan, Krishna and Raman, Karthik and Chen, Jiecao and Bendersky, Michael and Najork, Marc},
  journal={arXiv preprint arXiv:2103.01913},
  year={2021}
}
"""

_DESCRIPTION = """\
Wikipedia-based Image Text (WIT) Dataset is a large multimodal multilingual dataset. 
It contains more than six million images from Wikipedia articles in 100+ languages, which correspond to almost all captioned images in Google's version of the WIT dataset.
Images are provided at a 300-px resolution, a size that is suitable for most of the learning frameworks used to classify and analyze images.
This version of the WIT dataset was released by Wikimedia Research team.
"""

_LICENSE = "CC BY-SA 4.0 international license"

_HOMEPAGE = "https://techblog.wikimedia.org/2021/09/09/the-wikipedia-image-caption-matching-challenge-and-a-huge-release-of-image-data-for-research/"

_BASE_URL = "https://storage.googleapis.com/huggingface-nlp/datasets/wit/"

_URLS = [_BASE_URL + f"part-{'%05d' % i}-48a6f07e-bb86-4735-aac7-883349f41a28-c000.json.gz" for i in range(400)]


class Wit(datasets.GeneratorBasedBuilder):
    """Builder for WIT dataset (Wikimedia version)."""

    DEFAULT_WRITER_BATCH_SIZE = 1000

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "image": datasets.Image(),
                    "image_url": datasets.Value("string"),
                    "embedding": datasets.Sequence(datasets.Value("float64"), length=2048),
                    "metadata_url": datasets.Value("string"),
                    "original_height": datasets.Value("int32"),
                    "original_width": datasets.Value("int32"),
                    "mime_type": datasets.Value("string"),
                    "caption_attribution_description": datasets.Value("string"),
                    "wit_features": datasets.Sequence(
                        {
                            "language": datasets.Value("string"),
                            "page_url": datasets.Value("string"),
                            "attribution_passes_lang_id": datasets.Value("bool"),
                            "caption_alt_text_description": datasets.Value("string"),
                            "caption_reference_description": datasets.Value("string"),
                            "caption_title_and_reference_description": datasets.Value("string"),
                            "context_page_description": datasets.Value("string"),
                            "context_section_description": datasets.Value("string"),
                            "hierarchical_section_title": datasets.Value("string"),
                            "is_main_image": datasets.Value("bool"),
                            "page_changed_recently": datasets.Value("bool"),
                            "page_title": datasets.Value("string"),
                            "section_title": datasets.Value("string"),
                        }
                    ),
                }
            ),
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        downloaded_files = dl_manager.download(_URLS)
        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"data_files": downloaded_files}),
        ]

    def _generate_examples(self, data_files):
        """Yields examples."""
        wit_feature_names = self.info.features["wit_features"].feature.keys()
        idx = 0
        for data_file_idx, data_file in enumerate(data_files):
            with gzip.open(open(data_file, "rb"), mode="rt", encoding="utf-8") as f:
                for row_idx, row in enumerate(f):
                    example = json.loads(row)
                    ex_wit_features_non_empty = []
                    for feature in example["wit_features"]:
                        # If a feature is missing from feature dict, add it as None
                        for wit_feature_name in wit_feature_names:
                            if wit_feature_name not in feature:
                                feature[wit_feature_name] = None
                        # Here we take redundant values from wit_features and add them to example to avoid unnecessary duplication
                        extra_wit_feature_keys = [k for k in feature.keys() if k not in wit_feature_names]
                        for extra_wit_feature_key in extra_wit_feature_keys:
                            extra_wit_feature_value = feature.pop(extra_wit_feature_key)
                            if isinstance(extra_wit_feature_value, list):
                                extra_wit_feature_value = extra_wit_feature_value[0]
                            example[extra_wit_feature_key] = extra_wit_feature_value
                        # Remove empty wit features
                        if any(v is not None for v in feature.values()):
                            ex_wit_features_non_empty.append(feature)
                    example["wit_features"] = ex_wit_features_non_empty
                    # Check example now for missing keys, adding None to avoid failures
                    missing_keys = [k for k in self.info.features.keys() if k not in example]
                    for missing_key in missing_keys:
                        example[missing_key] = None
                    # Decode base64 encoded image bytes
                    b64_image_bytes = example.pop("b64_bytes")
                    example["image"] = (
                        {"path": None, "bytes": base64.b64decode(b64_image_bytes)}
                        if b64_image_bytes is not None
                        else None
                    )
                    corrections = CORRECTED_EXAMPLES.get((data_file_idx, row_idx))
                    if corrections is not None:
                        assert example["metadata_url"] == corrections["metadata_url"]
                        example.update(corrections)
                    yield idx, example
                    idx += 1