Datasets:
Commit
·
fff8d5d
0
Parent(s):
Update files from the datasets library (from 1.0.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.0.0
- .gitattributes +27 -0
- dataset_infos.json +1 -0
- dummy/cs-en/1.0.0/dummy_data.zip +3 -0
- wmt14.py +81 -0
- wmt_utils.py +1018 -0
.gitattributes
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
dataset_infos.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"cs-en": {"description": "Translate dataset based on the data from statmt.org.\n\nVersions exists for the different years using a combination of multiple data\nsources. The base `wmt_translate` allows you to create your own config to choose\nyour own data/language pair by creating a custom `datasets.translate.wmt.WmtConfig`.\n\n```\nconfig = datasets.wmt.WmtConfig(\n version=\"0.0.1\",\n language_pair=(\"fr\", \"de\"),\n subsets={\n datasets.Split.TRAIN: [\"commoncrawl_frde\"],\n datasets.Split.VALIDATION: [\"euelections_dev2019\"],\n },\n)\nbuilder = datasets.builder(\"wmt_translate\", config=config)\n```\n\n", "citation": "\n@InProceedings{bojar-EtAl:2014:W14-33,\n author = {Bojar, Ondrej and Buck, Christian and Federmann, Christian and Haddow, Barry and Koehn, Philipp and Leveling, Johannes and Monz, Christof and Pecina, Pavel and Post, Matt and Saint-Amand, Herve and Soricut, Radu and Specia, Lucia and Tamchyna, Ale\u000b{s}},\n title = {Findings of the 2014 Workshop on Statistical Machine Translation},\n booktitle = {Proceedings of the Ninth Workshop on Statistical Machine Translation},\n month = {June},\n year = {2014},\n address = {Baltimore, Maryland, USA},\n publisher = {Association for Computational Linguistics},\n pages = {12--58},\n url = {http://www.aclweb.org/anthology/W/W14/W14-3302}\n}\n", "homepage": "http://www.statmt.org/wmt14/translation-task.html", "license": "", "features": {"translation": {"languages": ["cs", "en"], "id": null, "_type": "Translation"}}, "supervised_keys": {"input": "cs", "output": "en"}, "builder_name": "wmt14", "config_name": "cs-en", "version": {"version_str": "1.0.0", "description": null, "datasets_version_to_prepare": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 759321, "num_examples": 3003, "dataset_name": "wmt14"}, "train": {"name": "train", "num_bytes": 281479898, "num_examples": 953621, "dataset_name": "wmt14"}, "validation": {"name": "validation", "num_bytes": 703973, "num_examples": 3000, "dataset_name": "wmt14"}}, "download_checksums": {"http://www.statmt.org/wmt13/training-parallel-europarl-v7.tgz": {"num_bytes": 657632379, "checksum": "0224c7c710c8a063dfd893b0cc0830202d61f4c75c17eb8e31836103d27d96e7"}, "http://www.statmt.org/wmt13/training-parallel-commoncrawl.tgz": {"num_bytes": 918311367, "checksum": "c7a74e2ea01ac6c920123108627e35278d4ccb5701e15428ffa34de86fa3a9e5"}, "http://www.statmt.org/wmt14/training-parallel-nc-v9.tgz": {"num_bytes": 80418416, "checksum": "cb8953f292298e6877ae433c98912b927cb0766b303f4540512ddd286c748485"}, "http://data.statmt.org/wmt19/translation-task/dev.tgz": {"num_bytes": 38654961, "checksum": "7a7deccf82ebb05ba508dba5eb21356492224e8f630ec4f992132b029b4b25e7"}}, "download_size": 1695017123, "dataset_size": 282943192, "size_in_bytes": 1977960315}}
|
dummy/cs-en/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4ff6b16c27e76fefe543e636f655065163a43fdbece6584a5e2ca85be812b2f5
|
3 |
+
size 4364
|
wmt14.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""WMT14: Translate dataset."""
|
18 |
+
|
19 |
+
import datasets
|
20 |
+
|
21 |
+
from .wmt_utils import Wmt, WmtConfig
|
22 |
+
|
23 |
+
|
24 |
+
_URL = "http://www.statmt.org/wmt14/translation-task.html"
|
25 |
+
_CITATION = """
|
26 |
+
@InProceedings{bojar-EtAl:2014:W14-33,
|
27 |
+
author = {Bojar, Ondrej and Buck, Christian and Federmann, Christian and Haddow, Barry and Koehn, Philipp and Leveling, Johannes and Monz, Christof and Pecina, Pavel and Post, Matt and Saint-Amand, Herve and Soricut, Radu and Specia, Lucia and Tamchyna, Ale\v{s}},
|
28 |
+
title = {Findings of the 2014 Workshop on Statistical Machine Translation},
|
29 |
+
booktitle = {Proceedings of the Ninth Workshop on Statistical Machine Translation},
|
30 |
+
month = {June},
|
31 |
+
year = {2014},
|
32 |
+
address = {Baltimore, Maryland, USA},
|
33 |
+
publisher = {Association for Computational Linguistics},
|
34 |
+
pages = {12--58},
|
35 |
+
url = {http://www.aclweb.org/anthology/W/W14/W14-3302}
|
36 |
+
}
|
37 |
+
"""
|
38 |
+
|
39 |
+
_LANGUAGE_PAIRS = [(lang, "en") for lang in ["cs", "de", "fr", "hi", "ru"]]
|
40 |
+
|
41 |
+
|
42 |
+
class Wmt14(Wmt):
|
43 |
+
"""WMT 14 translation datasets for all {xx, "en"} language pairs."""
|
44 |
+
|
45 |
+
# Version history:
|
46 |
+
# 1.0.0: S3 (new shuffling, sharding and slicing mechanism).
|
47 |
+
BUILDER_CONFIGS = [
|
48 |
+
WmtConfig( # pylint:disable=g-complex-comprehension
|
49 |
+
description="WMT 2014 %s-%s translation task dataset." % (l1, l2),
|
50 |
+
url=_URL,
|
51 |
+
citation=_CITATION,
|
52 |
+
language_pair=(l1, l2),
|
53 |
+
version=datasets.Version("1.0.0"),
|
54 |
+
)
|
55 |
+
for l1, l2 in _LANGUAGE_PAIRS
|
56 |
+
]
|
57 |
+
|
58 |
+
@property
|
59 |
+
def manual_download_instructions(self):
|
60 |
+
if self.config.language_pair[1] in ["cs", "hi", "ru"]:
|
61 |
+
return "Please download the data manually as explained. TODO(PVP)"
|
62 |
+
return None
|
63 |
+
|
64 |
+
@property
|
65 |
+
def _subsets(self):
|
66 |
+
return {
|
67 |
+
datasets.Split.TRAIN: [
|
68 |
+
"europarl_v7",
|
69 |
+
"commoncrawl",
|
70 |
+
"multiun",
|
71 |
+
"newscommentary_v9",
|
72 |
+
"gigafren",
|
73 |
+
"czeng_10",
|
74 |
+
"yandexcorpus",
|
75 |
+
"wikiheadlines_hi",
|
76 |
+
"wikiheadlines_ru",
|
77 |
+
"hindencorp_01",
|
78 |
+
],
|
79 |
+
datasets.Split.VALIDATION: ["newsdev2014", "newstest2013"],
|
80 |
+
datasets.Split.TEST: ["newstest2014"],
|
81 |
+
}
|
wmt_utils.py
ADDED
@@ -0,0 +1,1018 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""WMT: Translate dataset."""
|
18 |
+
|
19 |
+
from __future__ import absolute_import, division, print_function
|
20 |
+
|
21 |
+
import codecs
|
22 |
+
import functools
|
23 |
+
import glob
|
24 |
+
import gzip
|
25 |
+
import itertools
|
26 |
+
import logging
|
27 |
+
import os
|
28 |
+
import re
|
29 |
+
import xml.etree.cElementTree as ElementTree
|
30 |
+
from abc import ABC, abstractmethod
|
31 |
+
|
32 |
+
import six
|
33 |
+
|
34 |
+
import datasets
|
35 |
+
|
36 |
+
|
37 |
+
_DESCRIPTION = """\
|
38 |
+
Translate dataset based on the data from statmt.org.
|
39 |
+
|
40 |
+
Versions exists for the different years using a combination of multiple data
|
41 |
+
sources. The base `wmt_translate` allows you to create your own config to choose
|
42 |
+
your own data/language pair by creating a custom `datasets.translate.wmt.WmtConfig`.
|
43 |
+
|
44 |
+
```
|
45 |
+
config = datasets.wmt.WmtConfig(
|
46 |
+
version="0.0.1",
|
47 |
+
language_pair=("fr", "de"),
|
48 |
+
subsets={
|
49 |
+
datasets.Split.TRAIN: ["commoncrawl_frde"],
|
50 |
+
datasets.Split.VALIDATION: ["euelections_dev2019"],
|
51 |
+
},
|
52 |
+
)
|
53 |
+
builder = datasets.builder("wmt_translate", config=config)
|
54 |
+
```
|
55 |
+
|
56 |
+
"""
|
57 |
+
|
58 |
+
|
59 |
+
CWMT_SUBSET_NAMES = ["casia2015", "casict2011", "casict2015", "datum2015", "datum2017", "neu2017"]
|
60 |
+
|
61 |
+
|
62 |
+
class SubDataset(object):
|
63 |
+
"""Class to keep track of information on a sub-dataset of WMT."""
|
64 |
+
|
65 |
+
def __init__(self, name, target, sources, url, path, manual_dl_files=None):
|
66 |
+
"""Sub-dataset of WMT.
|
67 |
+
|
68 |
+
Args:
|
69 |
+
name: `string`, a unique dataset identifier.
|
70 |
+
target: `string`, the target language code.
|
71 |
+
sources: `set<string>`, the set of source language codes.
|
72 |
+
url: `string` or `(string, string)`, URL(s) or URL template(s) specifying
|
73 |
+
where to download the raw data from. If two strings are provided, the
|
74 |
+
first is used for the source language and the second for the target.
|
75 |
+
Template strings can either contain '{src}' placeholders that will be
|
76 |
+
filled in with the source language code, '{0}' and '{1}' placeholders
|
77 |
+
that will be filled in with the source and target language codes in
|
78 |
+
alphabetical order, or all 3.
|
79 |
+
path: `string` or `(string, string)`, path(s) or path template(s)
|
80 |
+
specifing the path to the raw data relative to the root of the
|
81 |
+
downloaded archive. If two strings are provided, the dataset is assumed
|
82 |
+
to be made up of parallel text files, the first being the source and the
|
83 |
+
second the target. If one string is provided, both languages are assumed
|
84 |
+
to be stored within the same file and the extension is used to determine
|
85 |
+
how to parse it. Template strings should be formatted the same as in
|
86 |
+
`url`.
|
87 |
+
manual_dl_files: `<list>(string)` (optional), the list of files that must
|
88 |
+
be manually downloaded to the data directory.
|
89 |
+
"""
|
90 |
+
self._paths = (path,) if isinstance(path, six.string_types) else path
|
91 |
+
self._urls = (url,) if isinstance(url, six.string_types) else url
|
92 |
+
self._manual_dl_files = manual_dl_files if manual_dl_files else []
|
93 |
+
self.name = name
|
94 |
+
self.target = target
|
95 |
+
self.sources = set(sources)
|
96 |
+
|
97 |
+
def _inject_language(self, src, strings):
|
98 |
+
"""Injects languages into (potentially) template strings."""
|
99 |
+
if src not in self.sources:
|
100 |
+
raise ValueError("Invalid source for '{0}': {1}".format(self.name, src))
|
101 |
+
|
102 |
+
def _format_string(s):
|
103 |
+
if "{0}" in s and "{1}" and "{src}" in s:
|
104 |
+
return s.format(*sorted([src, self.target]), src=src)
|
105 |
+
elif "{0}" in s and "{1}" in s:
|
106 |
+
return s.format(*sorted([src, self.target]))
|
107 |
+
elif "{src}" in s:
|
108 |
+
return s.format(src=src)
|
109 |
+
else:
|
110 |
+
return s
|
111 |
+
|
112 |
+
return [_format_string(s) for s in strings]
|
113 |
+
|
114 |
+
def get_url(self, src):
|
115 |
+
return self._inject_language(src, self._urls)
|
116 |
+
|
117 |
+
def get_manual_dl_files(self, src):
|
118 |
+
return self._inject_language(src, self._manual_dl_files)
|
119 |
+
|
120 |
+
def get_path(self, src):
|
121 |
+
return self._inject_language(src, self._paths)
|
122 |
+
|
123 |
+
|
124 |
+
# Subsets used in the training sets for various years of WMT.
|
125 |
+
_TRAIN_SUBSETS = [
|
126 |
+
# pylint:disable=line-too-long
|
127 |
+
SubDataset(
|
128 |
+
name="commoncrawl",
|
129 |
+
target="en", # fr-de pair in commoncrawl_frde
|
130 |
+
sources={"cs", "de", "es", "fr", "ru"},
|
131 |
+
url="http://www.statmt.org/wmt13/training-parallel-commoncrawl.tgz",
|
132 |
+
path=("commoncrawl.{src}-en.{src}", "commoncrawl.{src}-en.en"),
|
133 |
+
),
|
134 |
+
SubDataset(
|
135 |
+
name="commoncrawl_frde",
|
136 |
+
target="de",
|
137 |
+
sources={"fr"},
|
138 |
+
url=(
|
139 |
+
"http://data.statmt.org/wmt19/translation-task/fr-de/bitexts/commoncrawl.fr.gz",
|
140 |
+
"http://data.statmt.org/wmt19/translation-task/fr-de/bitexts/commoncrawl.de.gz",
|
141 |
+
),
|
142 |
+
path=("", ""),
|
143 |
+
),
|
144 |
+
SubDataset(
|
145 |
+
name="czeng_10",
|
146 |
+
target="en",
|
147 |
+
sources={"cs"},
|
148 |
+
url="http://ufal.mff.cuni.cz/czeng/czeng10",
|
149 |
+
manual_dl_files=["data-plaintext-format.%d.tar" % i for i in range(10)],
|
150 |
+
# Each tar contains multiple files, which we process specially in
|
151 |
+
# _parse_czeng.
|
152 |
+
path=("data.plaintext-format/??train.gz",) * 10,
|
153 |
+
),
|
154 |
+
SubDataset(
|
155 |
+
name="czeng_16pre",
|
156 |
+
target="en",
|
157 |
+
sources={"cs"},
|
158 |
+
url="http://ufal.mff.cuni.cz/czeng/czeng16pre",
|
159 |
+
manual_dl_files=["czeng16pre.deduped-ignoring-sections.txt.gz"],
|
160 |
+
path="",
|
161 |
+
),
|
162 |
+
SubDataset(
|
163 |
+
name="czeng_16",
|
164 |
+
target="en",
|
165 |
+
sources={"cs"},
|
166 |
+
url="http://ufal.mff.cuni.cz/czeng",
|
167 |
+
manual_dl_files=["data-plaintext-format.%d.tar" % i for i in range(10)],
|
168 |
+
# Each tar contains multiple files, which we process specially in
|
169 |
+
# _parse_czeng.
|
170 |
+
path=("data.plaintext-format/??train.gz",) * 10,
|
171 |
+
),
|
172 |
+
SubDataset(
|
173 |
+
# This dataset differs from the above in the filtering that is applied
|
174 |
+
# during parsing.
|
175 |
+
name="czeng_17",
|
176 |
+
target="en",
|
177 |
+
sources={"cs"},
|
178 |
+
url="http://ufal.mff.cuni.cz/czeng",
|
179 |
+
manual_dl_files=["data-plaintext-format.%d.tar" % i for i in range(10)],
|
180 |
+
# Each tar contains multiple files, which we process specially in
|
181 |
+
# _parse_czeng.
|
182 |
+
path=("data.plaintext-format/??train.gz",) * 10,
|
183 |
+
),
|
184 |
+
SubDataset(
|
185 |
+
name="dcep_v1",
|
186 |
+
target="en",
|
187 |
+
sources={"lv"},
|
188 |
+
url="http://data.statmt.org/wmt17/translation-task/dcep.lv-en.v1.tgz",
|
189 |
+
path=("dcep.en-lv/dcep.lv", "dcep.en-lv/dcep.en"),
|
190 |
+
),
|
191 |
+
SubDataset(
|
192 |
+
name="europarl_v7",
|
193 |
+
target="en",
|
194 |
+
sources={"cs", "de", "es", "fr"},
|
195 |
+
url="http://www.statmt.org/wmt13/training-parallel-europarl-v7.tgz",
|
196 |
+
path=("training/europarl-v7.{src}-en.{src}", "training/europarl-v7.{src}-en.en"),
|
197 |
+
),
|
198 |
+
SubDataset(
|
199 |
+
name="europarl_v7_frde",
|
200 |
+
target="de",
|
201 |
+
sources={"fr"},
|
202 |
+
url=(
|
203 |
+
"http://data.statmt.org/wmt19/translation-task/fr-de/bitexts/europarl-v7.fr.gz",
|
204 |
+
"http://data.statmt.org/wmt19/translation-task/fr-de/bitexts/europarl-v7.de.gz",
|
205 |
+
),
|
206 |
+
path=("", ""),
|
207 |
+
),
|
208 |
+
SubDataset(
|
209 |
+
name="europarl_v8_18",
|
210 |
+
target="en",
|
211 |
+
sources={"et", "fi"},
|
212 |
+
url="http://data.statmt.org/wmt18/translation-task/training-parallel-ep-v8.tgz",
|
213 |
+
path=("training/europarl-v8.{src}-en.{src}", "training/europarl-v8.{src}-en.en"),
|
214 |
+
),
|
215 |
+
SubDataset(
|
216 |
+
name="europarl_v8_16",
|
217 |
+
target="en",
|
218 |
+
sources={"fi", "ro"},
|
219 |
+
url="http://data.statmt.org/wmt16/translation-task/training-parallel-ep-v8.tgz",
|
220 |
+
path=("training-parallel-ep-v8/europarl-v8.{src}-en.{src}", "training-parallel-ep-v8/europarl-v8.{src}-en.en"),
|
221 |
+
),
|
222 |
+
SubDataset(
|
223 |
+
name="europarl_v9",
|
224 |
+
target="en",
|
225 |
+
sources={"cs", "de", "fi", "lt"},
|
226 |
+
url="http://www.statmt.org/europarl/v9/training/europarl-v9.{src}-en.tsv.gz",
|
227 |
+
path="",
|
228 |
+
),
|
229 |
+
SubDataset(
|
230 |
+
name="gigafren",
|
231 |
+
target="en",
|
232 |
+
sources={"fr"},
|
233 |
+
url="http://www.statmt.org/wmt10/training-giga-fren.tar",
|
234 |
+
path=("giga-fren.release2.fixed.fr.gz", "giga-fren.release2.fixed.en.gz"),
|
235 |
+
),
|
236 |
+
SubDataset(
|
237 |
+
name="hindencorp_01",
|
238 |
+
target="en",
|
239 |
+
sources={"hi"},
|
240 |
+
url="http://ufallab.ms.mff.cuni.cz/~bojar/hindencorp",
|
241 |
+
manual_dl_files=["hindencorp0.1.gz"],
|
242 |
+
path="",
|
243 |
+
),
|
244 |
+
SubDataset(
|
245 |
+
name="leta_v1",
|
246 |
+
target="en",
|
247 |
+
sources={"lv"},
|
248 |
+
url="http://data.statmt.org/wmt17/translation-task/leta.v1.tgz",
|
249 |
+
path=("LETA-lv-en/leta.lv", "LETA-lv-en/leta.en"),
|
250 |
+
),
|
251 |
+
SubDataset(
|
252 |
+
name="multiun",
|
253 |
+
target="en",
|
254 |
+
sources={"es", "fr"},
|
255 |
+
url="http://www.statmt.org/wmt13/training-parallel-un.tgz",
|
256 |
+
path=("un/undoc.2000.{src}-en.{src}", "un/undoc.2000.{src}-en.en"),
|
257 |
+
),
|
258 |
+
SubDataset(
|
259 |
+
name="newscommentary_v9",
|
260 |
+
target="en",
|
261 |
+
sources={"cs", "de", "fr", "ru"},
|
262 |
+
url="http://www.statmt.org/wmt14/training-parallel-nc-v9.tgz",
|
263 |
+
path=("training/news-commentary-v9.{src}-en.{src}", "training/news-commentary-v9.{src}-en.en"),
|
264 |
+
),
|
265 |
+
SubDataset(
|
266 |
+
name="newscommentary_v10",
|
267 |
+
target="en",
|
268 |
+
sources={"cs", "de", "fr", "ru"},
|
269 |
+
url="http://www.statmt.org/wmt15/training-parallel-nc-v10.tgz",
|
270 |
+
path=("news-commentary-v10.{src}-en.{src}", "news-commentary-v10.{src}-en.en"),
|
271 |
+
),
|
272 |
+
SubDataset(
|
273 |
+
name="newscommentary_v11",
|
274 |
+
target="en",
|
275 |
+
sources={"cs", "de", "ru"},
|
276 |
+
url="http://data.statmt.org/wmt16/translation-task/training-parallel-nc-v11.tgz",
|
277 |
+
path=(
|
278 |
+
"training-parallel-nc-v11/news-commentary-v11.{src}-en.{src}",
|
279 |
+
"training-parallel-nc-v11/news-commentary-v11.{src}-en.en",
|
280 |
+
),
|
281 |
+
),
|
282 |
+
SubDataset(
|
283 |
+
name="newscommentary_v12",
|
284 |
+
target="en",
|
285 |
+
sources={"cs", "de", "ru", "zh"},
|
286 |
+
url="http://data.statmt.org/wmt17/translation-task/training-parallel-nc-v12.tgz",
|
287 |
+
path=("training/news-commentary-v12.{src}-en.{src}", "training/news-commentary-v12.{src}-en.en"),
|
288 |
+
),
|
289 |
+
SubDataset(
|
290 |
+
name="newscommentary_v13",
|
291 |
+
target="en",
|
292 |
+
sources={"cs", "de", "ru", "zh"},
|
293 |
+
url="http://data.statmt.org/wmt18/translation-task/training-parallel-nc-v13.tgz",
|
294 |
+
path=(
|
295 |
+
"training-parallel-nc-v13/news-commentary-v13.{src}-en.{src}",
|
296 |
+
"training-parallel-nc-v13/news-commentary-v13.{src}-en.en",
|
297 |
+
),
|
298 |
+
),
|
299 |
+
SubDataset(
|
300 |
+
name="newscommentary_v14",
|
301 |
+
target="en", # fr-de pair in newscommentary_v14_frde
|
302 |
+
sources={"cs", "de", "kk", "ru", "zh"},
|
303 |
+
url="http://data.statmt.org/news-commentary/v14/training/news-commentary-v14.{0}-{1}.tsv.gz",
|
304 |
+
path="",
|
305 |
+
),
|
306 |
+
SubDataset(
|
307 |
+
name="newscommentary_v14_frde",
|
308 |
+
target="de",
|
309 |
+
sources={"fr"},
|
310 |
+
url="http://data.statmt.org/news-commentary/v14/training/news-commentary-v14.de-fr.tsv.gz",
|
311 |
+
path="",
|
312 |
+
),
|
313 |
+
SubDataset(
|
314 |
+
name="onlinebooks_v1",
|
315 |
+
target="en",
|
316 |
+
sources={"lv"},
|
317 |
+
url="http://data.statmt.org/wmt17/translation-task/books.lv-en.v1.tgz",
|
318 |
+
path=("farewell/farewell.lv", "farewell/farewell.en"),
|
319 |
+
),
|
320 |
+
SubDataset(
|
321 |
+
name="paracrawl_v1",
|
322 |
+
target="en",
|
323 |
+
sources={"cs", "de", "et", "fi", "ru"},
|
324 |
+
url="https://s3.amazonaws.com/web-language-models/paracrawl/release1/paracrawl-release1.en-{src}.zipporah0-dedup-clean.tgz",
|
325 |
+
path=(
|
326 |
+
"paracrawl-release1.en-{src}.zipporah0-dedup-clean.{src}",
|
327 |
+
"paracrawl-release1.en-{src}.zipporah0-dedup-clean.en",
|
328 |
+
),
|
329 |
+
),
|
330 |
+
SubDataset(
|
331 |
+
name="paracrawl_v1_ru",
|
332 |
+
target="en",
|
333 |
+
sources={"ru"},
|
334 |
+
url="https://s3.amazonaws.com/web-language-models/paracrawl/release1/paracrawl-release1.en-ru.zipporah0-dedup-clean.tgz",
|
335 |
+
path=(
|
336 |
+
"paracrawl-release1.en-ru.zipporah0-dedup-clean.ru",
|
337 |
+
"paracrawl-release1.en-ru.zipporah0-dedup-clean.en",
|
338 |
+
),
|
339 |
+
),
|
340 |
+
SubDataset(
|
341 |
+
name="paracrawl_v3",
|
342 |
+
target="en", # fr-de pair in paracrawl_v3_frde
|
343 |
+
sources={"cs", "de", "fi", "lt"},
|
344 |
+
url="https://s3.amazonaws.com/web-language-models/paracrawl/release3/en-{src}.bicleaner07.tmx.gz",
|
345 |
+
path="",
|
346 |
+
),
|
347 |
+
SubDataset(
|
348 |
+
name="paracrawl_v3_frde",
|
349 |
+
target="de",
|
350 |
+
sources={"fr"},
|
351 |
+
url=(
|
352 |
+
"http://data.statmt.org/wmt19/translation-task/fr-de/bitexts/de-fr.bicleaner07.de.gz",
|
353 |
+
"http://data.statmt.org/wmt19/translation-task/fr-de/bitexts/de-fr.bicleaner07.fr.gz",
|
354 |
+
),
|
355 |
+
path=("", ""),
|
356 |
+
),
|
357 |
+
SubDataset(
|
358 |
+
name="rapid_2016",
|
359 |
+
target="en",
|
360 |
+
sources={"de", "et", "fi"},
|
361 |
+
url="http://data.statmt.org/wmt18/translation-task/rapid2016.tgz",
|
362 |
+
path=("rapid2016.{0}-{1}.{src}", "rapid2016.{0}-{1}.en"),
|
363 |
+
),
|
364 |
+
SubDataset(
|
365 |
+
name="rapid_2016_ltfi",
|
366 |
+
target="en",
|
367 |
+
sources={"fi", "lt"},
|
368 |
+
url="https://tilde-model.s3-eu-west-1.amazonaws.com/rapid2016.en-{src}.tmx.zip",
|
369 |
+
path="rapid2016.en-{src}.tmx",
|
370 |
+
),
|
371 |
+
SubDataset(
|
372 |
+
name="rapid_2019",
|
373 |
+
target="en",
|
374 |
+
sources={"de"},
|
375 |
+
url="https://s3-eu-west-1.amazonaws.com/tilde-model/rapid2019.de-en.zip",
|
376 |
+
path=("rapid2019.de-en.de", "rapid2019.de-en.en"),
|
377 |
+
),
|
378 |
+
SubDataset(
|
379 |
+
name="setimes_2",
|
380 |
+
target="en",
|
381 |
+
sources={"ro", "tr"},
|
382 |
+
url="http://opus.nlpl.eu/download.php?f=SETIMES/v2/tmx/en-{src}.tmx.gz",
|
383 |
+
path="",
|
384 |
+
),
|
385 |
+
SubDataset(
|
386 |
+
name="uncorpus_v1",
|
387 |
+
target="en",
|
388 |
+
sources={"ru", "zh"},
|
389 |
+
url="https://storage.googleapis.com/tfdataset-data/downloadataset/uncorpus/UNv1.0.en-{src}.tar.gz",
|
390 |
+
path=("en-{src}/UNv1.0.en-{src}.{src}", "en-{src}/UNv1.0.en-{src}.en"),
|
391 |
+
),
|
392 |
+
SubDataset(
|
393 |
+
name="wikiheadlines_fi",
|
394 |
+
target="en",
|
395 |
+
sources={"fi"},
|
396 |
+
url="http://www.statmt.org/wmt15/wiki-titles.tgz",
|
397 |
+
path="wiki/fi-en/titles.fi-en",
|
398 |
+
),
|
399 |
+
SubDataset(
|
400 |
+
name="wikiheadlines_hi",
|
401 |
+
target="en",
|
402 |
+
sources={"hi"},
|
403 |
+
url="http://www.statmt.org/wmt14/wiki-titles.tgz",
|
404 |
+
path="wiki/hi-en/wiki-titles.hi-en",
|
405 |
+
),
|
406 |
+
SubDataset(
|
407 |
+
# Verified that wmt14 and wmt15 files are identical.
|
408 |
+
name="wikiheadlines_ru",
|
409 |
+
target="en",
|
410 |
+
sources={"ru"},
|
411 |
+
url="http://www.statmt.org/wmt15/wiki-titles.tgz",
|
412 |
+
path="wiki/ru-en/wiki.ru-en",
|
413 |
+
),
|
414 |
+
SubDataset(
|
415 |
+
name="wikititles_v1",
|
416 |
+
target="en",
|
417 |
+
sources={"cs", "de", "fi", "gu", "kk", "lt", "ru", "zh"},
|
418 |
+
url="http://data.statmt.org/wikititles/v1/wikititles-v1.{src}-en.tsv.gz",
|
419 |
+
path="",
|
420 |
+
),
|
421 |
+
SubDataset(
|
422 |
+
name="yandexcorpus",
|
423 |
+
target="en",
|
424 |
+
sources={"ru"},
|
425 |
+
url="https://translate.yandex.ru/corpus?lang=en",
|
426 |
+
manual_dl_files=["1mcorpus.zip"],
|
427 |
+
path=("corpus.en_ru.1m.ru", "corpus.en_ru.1m.en"),
|
428 |
+
),
|
429 |
+
# pylint:enable=line-too-long
|
430 |
+
] + [
|
431 |
+
SubDataset( # pylint:disable=g-complex-comprehension
|
432 |
+
name=ss,
|
433 |
+
target="en",
|
434 |
+
sources={"zh"},
|
435 |
+
url="ftp://cwmt-wmt:cwmt-wmt@datasets.nju.edu.cn/parallel/%s.zip" % ss,
|
436 |
+
path=("%s/*_c[hn].txt" % ss, "%s/*_en.txt" % ss),
|
437 |
+
)
|
438 |
+
for ss in CWMT_SUBSET_NAMES
|
439 |
+
]
|
440 |
+
|
441 |
+
_DEV_SUBSETS = [
|
442 |
+
SubDataset(
|
443 |
+
name="euelections_dev2019",
|
444 |
+
target="de",
|
445 |
+
sources={"fr"},
|
446 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
447 |
+
path=("dev/euelections_dev2019.fr-de.src.fr", "dev/euelections_dev2019.fr-de.tgt.de"),
|
448 |
+
),
|
449 |
+
SubDataset(
|
450 |
+
name="newsdev2014",
|
451 |
+
target="en",
|
452 |
+
sources={"hi"},
|
453 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
454 |
+
path=("dev/newsdev2014.hi", "dev/newsdev2014.en"),
|
455 |
+
),
|
456 |
+
SubDataset(
|
457 |
+
name="newsdev2015",
|
458 |
+
target="en",
|
459 |
+
sources={"fi"},
|
460 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
461 |
+
path=("dev/newsdev2015-fien-src.{src}.sgm", "dev/newsdev2015-fien-ref.en.sgm"),
|
462 |
+
),
|
463 |
+
SubDataset(
|
464 |
+
name="newsdiscussdev2015",
|
465 |
+
target="en",
|
466 |
+
sources={"ro", "tr"},
|
467 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
468 |
+
path=("dev/newsdiscussdev2015-{src}en-src.{src}.sgm", "dev/newsdiscussdev2015-{src}en-ref.en.sgm"),
|
469 |
+
),
|
470 |
+
SubDataset(
|
471 |
+
name="newsdev2016",
|
472 |
+
target="en",
|
473 |
+
sources={"ro", "tr"},
|
474 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
475 |
+
path=("dev/newsdev2016-{src}en-src.{src}.sgm", "dev/newsdev2016-{src}en-ref.en.sgm"),
|
476 |
+
),
|
477 |
+
SubDataset(
|
478 |
+
name="newsdev2017",
|
479 |
+
target="en",
|
480 |
+
sources={"lv", "zh"},
|
481 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
482 |
+
path=("dev/newsdev2017-{src}en-src.{src}.sgm", "dev/newsdev2017-{src}en-ref.en.sgm"),
|
483 |
+
),
|
484 |
+
SubDataset(
|
485 |
+
name="newsdev2018",
|
486 |
+
target="en",
|
487 |
+
sources={"et"},
|
488 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
489 |
+
path=("dev/newsdev2018-{src}en-src.{src}.sgm", "dev/newsdev2018-{src}en-ref.en.sgm"),
|
490 |
+
),
|
491 |
+
SubDataset(
|
492 |
+
name="newsdev2019",
|
493 |
+
target="en",
|
494 |
+
sources={"gu", "kk", "lt"},
|
495 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
496 |
+
path=("dev/newsdev2019-{src}en-src.{src}.sgm", "dev/newsdev2019-{src}en-ref.en.sgm"),
|
497 |
+
),
|
498 |
+
SubDataset(
|
499 |
+
name="newsdiscussdev2015",
|
500 |
+
target="en",
|
501 |
+
sources={"fr"},
|
502 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
503 |
+
path=("dev/newsdiscussdev2015-{src}en-src.{src}.sgm", "dev/newsdiscussdev2015-{src}en-ref.en.sgm"),
|
504 |
+
),
|
505 |
+
SubDataset(
|
506 |
+
name="newsdiscusstest2015",
|
507 |
+
target="en",
|
508 |
+
sources={"fr"},
|
509 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
510 |
+
path=("dev/newsdiscusstest2015-{src}en-src.{src}.sgm", "dev/newsdiscusstest2015-{src}en-ref.en.sgm"),
|
511 |
+
),
|
512 |
+
SubDataset(
|
513 |
+
name="newssyscomb2009",
|
514 |
+
target="en",
|
515 |
+
sources={"cs", "de", "es", "fr"},
|
516 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
517 |
+
path=("dev/newssyscomb2009.{src}", "dev/newssyscomb2009.en"),
|
518 |
+
),
|
519 |
+
SubDataset(
|
520 |
+
name="newstest2008",
|
521 |
+
target="en",
|
522 |
+
sources={"cs", "de", "es", "fr", "hu"},
|
523 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
524 |
+
path=("dev/news-test2008.{src}", "dev/news-test2008.en"),
|
525 |
+
),
|
526 |
+
SubDataset(
|
527 |
+
name="newstest2009",
|
528 |
+
target="en",
|
529 |
+
sources={"cs", "de", "es", "fr"},
|
530 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
531 |
+
path=("dev/newstest2009.{src}", "dev/newstest2009.en"),
|
532 |
+
),
|
533 |
+
SubDataset(
|
534 |
+
name="newstest2010",
|
535 |
+
target="en",
|
536 |
+
sources={"cs", "de", "es", "fr"},
|
537 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
538 |
+
path=("dev/newstest2010.{src}", "dev/newstest2010.en"),
|
539 |
+
),
|
540 |
+
SubDataset(
|
541 |
+
name="newstest2011",
|
542 |
+
target="en",
|
543 |
+
sources={"cs", "de", "es", "fr"},
|
544 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
545 |
+
path=("dev/newstest2011.{src}", "dev/newstest2011.en"),
|
546 |
+
),
|
547 |
+
SubDataset(
|
548 |
+
name="newstest2012",
|
549 |
+
target="en",
|
550 |
+
sources={"cs", "de", "es", "fr", "ru"},
|
551 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
552 |
+
path=("dev/newstest2012.{src}", "dev/newstest2012.en"),
|
553 |
+
),
|
554 |
+
SubDataset(
|
555 |
+
name="newstest2013",
|
556 |
+
target="en",
|
557 |
+
sources={"cs", "de", "es", "fr", "ru"},
|
558 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
559 |
+
path=("dev/newstest2013.{src}", "dev/newstest2013.en"),
|
560 |
+
),
|
561 |
+
SubDataset(
|
562 |
+
name="newstest2014",
|
563 |
+
target="en",
|
564 |
+
sources={"cs", "de", "es", "fr", "hi", "ru"},
|
565 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
566 |
+
path=("dev/newstest2014-{src}en-src.{src}.sgm", "dev/newstest2014-{src}en-ref.en.sgm"),
|
567 |
+
),
|
568 |
+
SubDataset(
|
569 |
+
name="newstest2015",
|
570 |
+
target="en",
|
571 |
+
sources={"cs", "de", "fi", "ru"},
|
572 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
573 |
+
path=("dev/newstest2015-{src}en-src.{src}.sgm", "dev/newstest2015-{src}en-ref.en.sgm"),
|
574 |
+
),
|
575 |
+
SubDataset(
|
576 |
+
name="newsdiscusstest2015",
|
577 |
+
target="en",
|
578 |
+
sources={"fr"},
|
579 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
580 |
+
path=("dev/newsdiscusstest2015-{src}en-src.{src}.sgm", "dev/newsdiscusstest2015-{src}en-ref.en.sgm"),
|
581 |
+
),
|
582 |
+
SubDataset(
|
583 |
+
name="newstest2016",
|
584 |
+
target="en",
|
585 |
+
sources={"cs", "de", "fi", "ro", "ru", "tr"},
|
586 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
587 |
+
path=("dev/newstest2016-{src}en-src.{src}.sgm", "dev/newstest2016-{src}en-ref.en.sgm"),
|
588 |
+
),
|
589 |
+
SubDataset(
|
590 |
+
name="newstestB2016",
|
591 |
+
target="en",
|
592 |
+
sources={"fi"},
|
593 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
594 |
+
path=("dev/newstestB2016-enfi-ref.{src}.sgm", "dev/newstestB2016-enfi-src.en.sgm"),
|
595 |
+
),
|
596 |
+
SubDataset(
|
597 |
+
name="newstest2017",
|
598 |
+
target="en",
|
599 |
+
sources={"cs", "de", "fi", "lv", "ru", "tr", "zh"},
|
600 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
601 |
+
path=("dev/newstest2017-{src}en-src.{src}.sgm", "dev/newstest2017-{src}en-ref.en.sgm"),
|
602 |
+
),
|
603 |
+
SubDataset(
|
604 |
+
name="newstestB2017",
|
605 |
+
target="en",
|
606 |
+
sources={"fi"},
|
607 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
608 |
+
path=("dev/newstestB2017-fien-src.fi.sgm", "dev/newstestB2017-fien-ref.en.sgm"),
|
609 |
+
),
|
610 |
+
SubDataset(
|
611 |
+
name="newstest2018",
|
612 |
+
target="en",
|
613 |
+
sources={"cs", "de", "et", "fi", "ru", "tr", "zh"},
|
614 |
+
url="http://data.statmt.org/wmt19/translation-task/dev.tgz",
|
615 |
+
path=("dev/newstest2018-{src}en-src.{src}.sgm", "dev/newstest2018-{src}en-ref.en.sgm"),
|
616 |
+
),
|
617 |
+
]
|
618 |
+
|
619 |
+
DATASET_MAP = {dataset.name: dataset for dataset in _TRAIN_SUBSETS + _DEV_SUBSETS}
|
620 |
+
|
621 |
+
_CZENG17_FILTER = SubDataset(
|
622 |
+
name="czeng17_filter",
|
623 |
+
target="en",
|
624 |
+
sources={"cs"},
|
625 |
+
url="http://ufal.mff.cuni.cz/czeng/download.php?f=convert_czeng16_to_17.pl.zip",
|
626 |
+
path="convert_czeng16_to_17.pl",
|
627 |
+
)
|
628 |
+
|
629 |
+
|
630 |
+
class WmtConfig(datasets.BuilderConfig):
|
631 |
+
"""BuilderConfig for WMT."""
|
632 |
+
|
633 |
+
def __init__(self, url=None, citation=None, description=None, language_pair=(None, None), subsets=None, **kwargs):
|
634 |
+
"""BuilderConfig for WMT.
|
635 |
+
|
636 |
+
Args:
|
637 |
+
url: The reference URL for the dataset.
|
638 |
+
citation: The paper citation for the dataset.
|
639 |
+
description: The description of the dataset.
|
640 |
+
language_pair: pair of languages that will be used for translation. Should
|
641 |
+
contain 2 letter coded strings. For example: ("en", "de").
|
642 |
+
configuration for the `datasets.features.text.TextEncoder` used for the
|
643 |
+
`datasets.features.text.Translation` features.
|
644 |
+
subsets: Dict[split, list[str]]. List of the subset to use for each of the
|
645 |
+
split. Note that WMT subclasses overwrite this parameter.
|
646 |
+
**kwargs: keyword arguments forwarded to super.
|
647 |
+
"""
|
648 |
+
name = "%s-%s" % (language_pair[0], language_pair[1])
|
649 |
+
if "name" in kwargs: # Add name suffix for custom configs
|
650 |
+
name += "." + kwargs.pop("name")
|
651 |
+
|
652 |
+
super(WmtConfig, self).__init__(name=name, description=description, **kwargs)
|
653 |
+
|
654 |
+
self.url = url or "http://www.statmt.org"
|
655 |
+
self.citation = citation
|
656 |
+
self.language_pair = language_pair
|
657 |
+
self.subsets = subsets
|
658 |
+
|
659 |
+
# TODO(PVP): remove when manual dir works
|
660 |
+
# +++++++++++++++++++++
|
661 |
+
if language_pair[1] in ["cs", "hi", "ru"]:
|
662 |
+
assert NotImplementedError(
|
663 |
+
"The dataset for {}-en is currently not fully supported.".format(language_pair[1])
|
664 |
+
)
|
665 |
+
# +++++++++++++++++++++
|
666 |
+
|
667 |
+
|
668 |
+
class Wmt(ABC, datasets.GeneratorBasedBuilder):
|
669 |
+
"""WMT translation dataset."""
|
670 |
+
|
671 |
+
def __init__(self, *args, **kwargs):
|
672 |
+
if type(self) == Wmt and "config" not in kwargs: # pylint: disable=unidiomatic-typecheck
|
673 |
+
raise ValueError(
|
674 |
+
"The raw `wmt_translate` can only be instantiated with the config "
|
675 |
+
"kwargs. You may want to use one of the `wmtYY_translate` "
|
676 |
+
"implementation instead to get the WMT dataset for a specific year."
|
677 |
+
)
|
678 |
+
super(Wmt, self).__init__(*args, **kwargs)
|
679 |
+
|
680 |
+
@property
|
681 |
+
@abstractmethod
|
682 |
+
def _subsets(self):
|
683 |
+
"""Subsets that make up each split of the dataset."""
|
684 |
+
raise NotImplementedError("This is a abstract method")
|
685 |
+
|
686 |
+
@property
|
687 |
+
def subsets(self):
|
688 |
+
"""Subsets that make up each split of the dataset for the language pair."""
|
689 |
+
source, target = self.config.language_pair
|
690 |
+
filtered_subsets = {}
|
691 |
+
for split, ss_names in self._subsets.items():
|
692 |
+
filtered_subsets[split] = []
|
693 |
+
for ss_name in ss_names:
|
694 |
+
dataset = DATASET_MAP[ss_name]
|
695 |
+
if dataset.target != target or source not in dataset.sources:
|
696 |
+
logging.info("Skipping sub-dataset that does not include language pair: %s", ss_name)
|
697 |
+
else:
|
698 |
+
filtered_subsets[split].append(ss_name)
|
699 |
+
logging.info("Using sub-datasets: %s", filtered_subsets)
|
700 |
+
return filtered_subsets
|
701 |
+
|
702 |
+
def _info(self):
|
703 |
+
src, target = self.config.language_pair
|
704 |
+
return datasets.DatasetInfo(
|
705 |
+
description=_DESCRIPTION,
|
706 |
+
features=datasets.Features(
|
707 |
+
{"translation": datasets.features.Translation(languages=self.config.language_pair)}
|
708 |
+
),
|
709 |
+
supervised_keys=(src, target),
|
710 |
+
homepage=self.config.url,
|
711 |
+
citation=self.config.citation,
|
712 |
+
)
|
713 |
+
|
714 |
+
def _vocab_text_gen(self, split_subsets, extraction_map, language):
|
715 |
+
for _, ex in self._generate_examples(split_subsets, extraction_map, with_translation=False):
|
716 |
+
yield ex[language]
|
717 |
+
|
718 |
+
def _split_generators(self, dl_manager):
|
719 |
+
source, _ = self.config.language_pair
|
720 |
+
manual_paths_dict = {}
|
721 |
+
urls_to_download = {}
|
722 |
+
for ss_name in itertools.chain.from_iterable(self.subsets.values()):
|
723 |
+
if ss_name == "czeng_17":
|
724 |
+
# CzEng1.7 is CzEng1.6 with some blocks filtered out. We must download
|
725 |
+
# the filtering script so we can parse out which blocks need to be
|
726 |
+
# removed.
|
727 |
+
urls_to_download[_CZENG17_FILTER.name] = _CZENG17_FILTER.get_url(source)
|
728 |
+
|
729 |
+
# get dataset
|
730 |
+
dataset = DATASET_MAP[ss_name]
|
731 |
+
if dataset.get_manual_dl_files(source):
|
732 |
+
# TODO(PVP): following two lines skip configs that are incomplete for now
|
733 |
+
# +++++++++++++++++++++
|
734 |
+
logging.info("Skipping {} for now. Incomplete dataset for {}".format(dataset.name, self.config.name))
|
735 |
+
continue
|
736 |
+
# +++++++++++++++++++++
|
737 |
+
|
738 |
+
manual_dl_files = dataset.get_manual_dl_files(source)
|
739 |
+
manual_paths = [
|
740 |
+
os.path.join(os.path.abspath(os.path.expanduser(dl_manager.manual_dir)), fname)
|
741 |
+
for fname in manual_dl_files
|
742 |
+
]
|
743 |
+
assert all(
|
744 |
+
os.path.exists(path) for path in manual_paths
|
745 |
+
), "For {0}, you must manually download the following file(s) from {1} and place them in {2}: {3}".format(
|
746 |
+
dataset.name, dataset.get_url(source), dl_manager.manual_dir, ", ".join(manual_dl_files)
|
747 |
+
)
|
748 |
+
|
749 |
+
# set manual path for correct subset
|
750 |
+
manual_paths_dict[ss_name] = manual_paths
|
751 |
+
else:
|
752 |
+
urls_to_download[ss_name] = dataset.get_url(source)
|
753 |
+
|
754 |
+
# Download and extract files from URLs.
|
755 |
+
downloaded_files = dl_manager.download_and_extract(urls_to_download)
|
756 |
+
# Extract manually downloaded files.
|
757 |
+
manual_files = dl_manager.extract(manual_paths_dict)
|
758 |
+
extraction_map = dict(downloaded_files, **manual_files)
|
759 |
+
|
760 |
+
for language in self.config.language_pair:
|
761 |
+
self._vocab_text_gen(self.subsets[datasets.Split.TRAIN], extraction_map, language)
|
762 |
+
|
763 |
+
return [
|
764 |
+
datasets.SplitGenerator( # pylint:disable=g-complex-comprehension
|
765 |
+
name=split, gen_kwargs={"split_subsets": split_subsets, "extraction_map": extraction_map}
|
766 |
+
)
|
767 |
+
for split, split_subsets in self.subsets.items()
|
768 |
+
]
|
769 |
+
|
770 |
+
def _generate_examples(self, split_subsets, extraction_map, with_translation=True):
|
771 |
+
"""Returns the examples in the raw (text) form."""
|
772 |
+
source, _ = self.config.language_pair
|
773 |
+
|
774 |
+
def _get_local_paths(dataset, extract_dirs):
|
775 |
+
rel_paths = dataset.get_path(source)
|
776 |
+
if len(extract_dirs) == 1:
|
777 |
+
extract_dirs = extract_dirs * len(rel_paths)
|
778 |
+
return [
|
779 |
+
os.path.join(ex_dir, rel_path) if rel_path else ex_dir
|
780 |
+
for ex_dir, rel_path in zip(extract_dirs, rel_paths)
|
781 |
+
]
|
782 |
+
|
783 |
+
for ss_name in split_subsets:
|
784 |
+
# TODO(PVP) remove following five lines when manual data works
|
785 |
+
# +++++++++++++++++++++
|
786 |
+
dataset = DATASET_MAP[ss_name]
|
787 |
+
source, _ = self.config.language_pair
|
788 |
+
if dataset.get_manual_dl_files(source):
|
789 |
+
logging.info("Skipping {} for now. Incomplete dataset for {}".format(dataset.name, self.config.name))
|
790 |
+
continue
|
791 |
+
# +++++++++++++++++++++
|
792 |
+
|
793 |
+
logging.info("Generating examples from: %s", ss_name)
|
794 |
+
dataset = DATASET_MAP[ss_name]
|
795 |
+
extract_dirs = extraction_map[ss_name]
|
796 |
+
files = _get_local_paths(dataset, extract_dirs)
|
797 |
+
|
798 |
+
if ss_name.startswith("czeng"):
|
799 |
+
if ss_name.endswith("16pre"):
|
800 |
+
sub_generator = functools.partial(_parse_tsv, language_pair=("en", "cs"))
|
801 |
+
elif ss_name.endswith("17"):
|
802 |
+
filter_path = _get_local_paths(_CZENG17_FILTER, extraction_map[_CZENG17_FILTER.name])[0]
|
803 |
+
sub_generator = functools.partial(_parse_czeng, filter_path=filter_path)
|
804 |
+
else:
|
805 |
+
sub_generator = _parse_czeng
|
806 |
+
elif ss_name == "hindencorp_01":
|
807 |
+
sub_generator = _parse_hindencorp
|
808 |
+
elif len(files) == 2:
|
809 |
+
if ss_name.endswith("_frde"):
|
810 |
+
sub_generator = _parse_frde_bitext
|
811 |
+
else:
|
812 |
+
sub_generator = _parse_parallel_sentences
|
813 |
+
elif len(files) == 1:
|
814 |
+
fname = files[0]
|
815 |
+
# Note: Due to formatting used by `download_manager`, the file
|
816 |
+
# extension may not be at the end of the file path.
|
817 |
+
if ".tsv" in fname:
|
818 |
+
sub_generator = _parse_tsv
|
819 |
+
elif (
|
820 |
+
ss_name.startswith("newscommentary_v14")
|
821 |
+
or ss_name.startswith("europarl_v9")
|
822 |
+
or ss_name.startswith("wikititles_v1")
|
823 |
+
):
|
824 |
+
sub_generator = functools.partial(_parse_tsv, language_pair=self.config.language_pair)
|
825 |
+
elif "tmx" in fname or ss_name.startswith("paracrawl_v3"):
|
826 |
+
sub_generator = _parse_tmx
|
827 |
+
elif ss_name.startswith("wikiheadlines"):
|
828 |
+
sub_generator = _parse_wikiheadlines
|
829 |
+
else:
|
830 |
+
raise ValueError("Unsupported file format: %s" % fname)
|
831 |
+
else:
|
832 |
+
raise ValueError("Invalid number of files: %d" % len(files))
|
833 |
+
|
834 |
+
for sub_key, ex in sub_generator(*files):
|
835 |
+
if not all(ex.values()):
|
836 |
+
continue
|
837 |
+
# TODO(adarob): Add subset feature.
|
838 |
+
# ex["subset"] = subset
|
839 |
+
key = "{}/{}".format(ss_name, sub_key)
|
840 |
+
if with_translation is True:
|
841 |
+
ex = {"translation": ex}
|
842 |
+
yield key, ex
|
843 |
+
|
844 |
+
|
845 |
+
def _parse_parallel_sentences(f1, f2):
|
846 |
+
"""Returns examples from parallel SGML or text files, which may be gzipped."""
|
847 |
+
|
848 |
+
def _parse_text(path):
|
849 |
+
"""Returns the sentences from a single text file, which may be gzipped."""
|
850 |
+
split_path = path.split(".")
|
851 |
+
|
852 |
+
if split_path[-1] == "gz":
|
853 |
+
lang = split_path[-2]
|
854 |
+
with open(path, "rb") as f, gzip.GzipFile(fileobj=f) as g:
|
855 |
+
return g.read().decode("utf-8").split("\n"), lang
|
856 |
+
|
857 |
+
if split_path[-1] == "txt":
|
858 |
+
# CWMT
|
859 |
+
lang = split_path[-2].split("_")[-1]
|
860 |
+
lang = "zh" if lang in ("ch", "cn") else lang
|
861 |
+
else:
|
862 |
+
lang = split_path[-1]
|
863 |
+
with open(path, "rb") as f:
|
864 |
+
return f.read().decode("utf-8").split("\n"), lang
|
865 |
+
|
866 |
+
def _parse_sgm(path):
|
867 |
+
"""Returns sentences from a single SGML file."""
|
868 |
+
lang = path.split(".")[-2]
|
869 |
+
sentences = []
|
870 |
+
# Note: We can't use the XML parser since some of the files are badly
|
871 |
+
# formatted.
|
872 |
+
seg_re = re.compile(r"<seg id=\"\d+\">(.*)</seg>")
|
873 |
+
with open(path, encoding="utf-8") as f:
|
874 |
+
for line in f:
|
875 |
+
seg_match = re.match(seg_re, line)
|
876 |
+
if seg_match:
|
877 |
+
assert len(seg_match.groups()) == 1
|
878 |
+
sentences.append(seg_match.groups()[0])
|
879 |
+
return sentences, lang
|
880 |
+
|
881 |
+
parse_file = _parse_sgm if f1.endswith(".sgm") else _parse_text
|
882 |
+
|
883 |
+
# Some datasets (e.g., CWMT) contain multiple parallel files specified with
|
884 |
+
# a wildcard. We sort both sets to align them and parse them one by one.
|
885 |
+
f1_files = sorted(glob.glob(f1))
|
886 |
+
f2_files = sorted(glob.glob(f2))
|
887 |
+
|
888 |
+
assert f1_files and f2_files, "No matching files found: %s, %s." % (f1, f2)
|
889 |
+
assert len(f1_files) == len(f2_files), "Number of files do not match: %d vs %d for %s vs %s." % (
|
890 |
+
len(f1_files),
|
891 |
+
len(f2_files),
|
892 |
+
f1,
|
893 |
+
f2,
|
894 |
+
)
|
895 |
+
|
896 |
+
for f_id, (f1_i, f2_i) in enumerate(zip(sorted(f1_files), sorted(f2_files))):
|
897 |
+
l1_sentences, l1 = parse_file(f1_i)
|
898 |
+
l2_sentences, l2 = parse_file(f2_i)
|
899 |
+
|
900 |
+
assert len(l1_sentences) == len(l2_sentences), "Sizes do not match: %d vs %d for %s vs %s." % (
|
901 |
+
len(l1_sentences),
|
902 |
+
len(l2_sentences),
|
903 |
+
f1_i,
|
904 |
+
f2_i,
|
905 |
+
)
|
906 |
+
|
907 |
+
for line_id, (s1, s2) in enumerate(zip(l1_sentences, l2_sentences)):
|
908 |
+
key = "{}/{}".format(f_id, line_id)
|
909 |
+
yield key, {l1: s1, l2: s2}
|
910 |
+
|
911 |
+
|
912 |
+
def _parse_frde_bitext(fr_path, de_path):
|
913 |
+
with open(fr_path, encoding="utf-8") as f:
|
914 |
+
fr_sentences = f.read().split("\n")
|
915 |
+
with open(de_path, encoding="utf-8") as f:
|
916 |
+
de_sentences = f.read().split("\n")
|
917 |
+
assert len(fr_sentences) == len(de_sentences), "Sizes do not match: %d vs %d for %s vs %s." % (
|
918 |
+
len(fr_sentences),
|
919 |
+
len(de_sentences),
|
920 |
+
fr_path,
|
921 |
+
de_path,
|
922 |
+
)
|
923 |
+
for line_id, (s1, s2) in enumerate(zip(fr_sentences, de_sentences)):
|
924 |
+
yield line_id, {"fr": s1, "de": s2}
|
925 |
+
|
926 |
+
|
927 |
+
def _parse_tmx(path):
|
928 |
+
"""Generates examples from TMX file."""
|
929 |
+
|
930 |
+
def _get_tuv_lang(tuv):
|
931 |
+
for k, v in tuv.items():
|
932 |
+
if k.endswith("}lang"):
|
933 |
+
return v
|
934 |
+
raise AssertionError("Language not found in `tuv` attributes.")
|
935 |
+
|
936 |
+
def _get_tuv_seg(tuv):
|
937 |
+
segs = tuv.findall("seg")
|
938 |
+
assert len(segs) == 1, "Invalid number of segments: %d" % len(segs)
|
939 |
+
return segs[0].text
|
940 |
+
|
941 |
+
with open(path, "rb") as f:
|
942 |
+
if six.PY3:
|
943 |
+
# Workaround due to: https://github.com/tensorflow/tensorflow/issues/33563
|
944 |
+
utf_f = codecs.getreader("utf-8")(f)
|
945 |
+
else:
|
946 |
+
utf_f = f
|
947 |
+
for line_id, (_, elem) in enumerate(ElementTree.iterparse(utf_f)):
|
948 |
+
if elem.tag == "tu":
|
949 |
+
yield line_id, {_get_tuv_lang(tuv): _get_tuv_seg(tuv) for tuv in elem.iterfind("tuv")}
|
950 |
+
elem.clear()
|
951 |
+
|
952 |
+
|
953 |
+
def _parse_tsv(path, language_pair=None):
|
954 |
+
"""Generates examples from TSV file."""
|
955 |
+
if language_pair is None:
|
956 |
+
lang_match = re.match(r".*\.([a-z][a-z])-([a-z][a-z])\.tsv", path)
|
957 |
+
assert lang_match is not None, "Invalid TSV filename: %s" % path
|
958 |
+
l1, l2 = lang_match.groups()
|
959 |
+
else:
|
960 |
+
l1, l2 = language_pair
|
961 |
+
with open(path, encoding="utf-8") as f:
|
962 |
+
for j, line in enumerate(f):
|
963 |
+
cols = line.split("\t")
|
964 |
+
if len(cols) != 2:
|
965 |
+
logging.warning("Skipping line %d in TSV (%s) with %d != 2 columns.", j, path, len(cols))
|
966 |
+
continue
|
967 |
+
s1, s2 = cols
|
968 |
+
yield j, {l1: s1.strip(), l2: s2.strip()}
|
969 |
+
|
970 |
+
|
971 |
+
def _parse_wikiheadlines(path):
|
972 |
+
"""Generates examples from Wikiheadlines dataset file."""
|
973 |
+
lang_match = re.match(r".*\.([a-z][a-z])-([a-z][a-z])$", path)
|
974 |
+
assert lang_match is not None, "Invalid Wikiheadlines filename: %s" % path
|
975 |
+
l1, l2 = lang_match.groups()
|
976 |
+
with open(path, encoding="utf-8") as f:
|
977 |
+
for line_id, line in enumerate(f):
|
978 |
+
s1, s2 = line.split("|||")
|
979 |
+
yield line_id, {l1: s1.strip(), l2: s2.strip()}
|
980 |
+
|
981 |
+
|
982 |
+
def _parse_czeng(*paths, **kwargs):
|
983 |
+
"""Generates examples from CzEng v1.6, with optional filtering for v1.7."""
|
984 |
+
filter_path = kwargs.get("filter_path", None)
|
985 |
+
if filter_path:
|
986 |
+
re_block = re.compile(r"^[^-]+-b(\d+)-\d\d[tde]")
|
987 |
+
with open(filter_path, encoding="utf-8") as f:
|
988 |
+
bad_blocks = {blk for blk in re.search(r"qw{([\s\d]*)}", f.read()).groups()[0].split()}
|
989 |
+
logging.info("Loaded %d bad blocks to filter from CzEng v1.6 to make v1.7.", len(bad_blocks))
|
990 |
+
|
991 |
+
for path in paths:
|
992 |
+
for gz_path in sorted(glob.glob(path)):
|
993 |
+
with open(gz_path, "rb") as g, gzip.GzipFile(fileobj=g) as f:
|
994 |
+
filename = os.path.basename(gz_path)
|
995 |
+
for line_id, line in enumerate(f):
|
996 |
+
line = line.decode("utf-8") # required for py3
|
997 |
+
if not line.strip():
|
998 |
+
continue
|
999 |
+
id_, unused_score, cs, en = line.split("\t")
|
1000 |
+
if filter_path:
|
1001 |
+
block_match = re.match(re_block, id_)
|
1002 |
+
if block_match and block_match.groups()[0] in bad_blocks:
|
1003 |
+
continue
|
1004 |
+
sub_key = "{}/{}".format(filename, line_id)
|
1005 |
+
yield sub_key, {
|
1006 |
+
"cs": cs.strip(),
|
1007 |
+
"en": en.strip(),
|
1008 |
+
}
|
1009 |
+
|
1010 |
+
|
1011 |
+
def _parse_hindencorp(path):
|
1012 |
+
with open(path, encoding="utf-8") as f:
|
1013 |
+
for line_id, line in enumerate(f):
|
1014 |
+
split_line = line.split("\t")
|
1015 |
+
if len(split_line) != 5:
|
1016 |
+
logging.warning("Skipping invalid HindEnCorp line: %s", line)
|
1017 |
+
continue
|
1018 |
+
yield line_id, {"translation": {"en": split_line[3].strip(), "hi": split_line[4].strip()}}
|