Datasets:
wmt
/

Modalities:
Text
Formats:
parquet
Libraries:
Datasets
pandas
License:
File size: 11,627 Bytes
45d2403
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a201ae9
45d2403
a201ae9
45d2403
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ca27d3
45d2403
 
 
 
0ca27d3
45d2403
0ca27d3
45d2403
 
 
 
 
0ca27d3
45d2403
0ca27d3
45d2403
 
 
 
 
0ca27d3
45d2403
0ca27d3
45d2403
 
 
 
0ca27d3
9dd51f8
45d2403
0ca27d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45d2403
 
0ca27d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45d2403
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""WMT MLQE Shared task 3."""


import csv
import os

import datasets


_CITATION = """
Not available.
"""

_DESCRIPTION = """\
This shared task (part of WMT20) will build on its previous editions
to further examine automatic methods for estimating the quality
of neural machine translation output at run-time, without relying
on reference translations. As in previous years, we cover estimation
at various levels. Important elements introduced this year include: a new
task where sentences are annotated with Direct Assessment (DA)
scores instead of labels based on post-editing; a new multilingual
sentence-level dataset mainly from Wikipedia articles, where the
source articles can be retrieved for document-wide context; the
availability of NMT models to explore system-internal information for the task.

The goal of this task 3 is to predict document-level quality scores as well as fine-grained annotations.
"""

_HOMEPAGE = "http://www.statmt.org/wmt20/quality-estimation-task.html"

_LICENSE = "Unknown"

_URLs = {
    "train+dev": "https://github.com/deep-spin/deep-spin.github.io/raw/master/docs/data/wmt2020_qe/qe-task3-enfr-traindev.tar.gz",
    "test": "https://github.com/deep-spin/deep-spin.github.io/raw/master/docs/data/wmt2020_qe/qe-enfr-blindtest.tar.gz",
}


_ANNOTATION_CATEGORIES = [
    "Addition",
    "Agreement",
    "Ambiguous Translation",
    "Capitalization",
    "Character Encoding",
    "Company Terminology",
    "Date/Time",
    "Diacritics",
    "Duplication",
    "False Friend",
    "Grammatical Register",
    "Hyphenation",
    "Inconsistency",
    "Lexical Register",
    "Lexical Selection",
    "Named Entity",
    "Number",
    "Omitted Auxiliary Verb",
    "Omitted Conjunction",
    "Omitted Determiner",
    "Omitted Preposition",
    "Omitted Pronoun",
    "Orthography",
    "Other POS Omitted",
    "Over-translation",
    "Overly Literal",
    "POS",
    "Punctuation",
    "Shouldn't Have Been Translated",
    "Shouldn't have been translated",
    "Spelling",
    "Tense/Mood/Aspect",
    "Under-translation",
    "Unidiomatic",
    "Unintelligible",
    "Unit Conversion",
    "Untranslated",
    "Whitespace",
    "Word Order",
    "Wrong Auxiliary Verb",
    "Wrong Conjunction",
    "Wrong Determiner",
    "Wrong Language Variety",
    "Wrong Preposition",
    "Wrong Pronoun",
]


class Wmt20MlqeTask3(datasets.GeneratorBasedBuilder):
    """WMT MLQE Shared task 3."""

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="plain_text",
            version=datasets.Version("1.1.0"),
            description="Plain text",
        )
    ]

    def _info(self):
        features = datasets.Features(
            {
                "document_id": datasets.Value("string"),
                "source_segments": datasets.Sequence(datasets.Value("string")),
                "source_tokenized": datasets.Sequence(datasets.Value("string")),
                "mt_segments": datasets.Sequence(datasets.Value("string")),
                "mt_tokenized": datasets.Sequence(datasets.Value("string")),
                "annotations": datasets.Sequence(
                    {
                        "segment_id": datasets.Sequence(datasets.Value("int32")),
                        "annotation_start": datasets.Sequence(datasets.Value("int32")),
                        "annotation_length": datasets.Sequence(datasets.Value("int32")),
                        "severity": datasets.ClassLabel(names=["minor", "major", "critical"]),
                        "severity_weight": datasets.Value("float32"),
                        "category": datasets.ClassLabel(names=_ANNOTATION_CATEGORIES),
                    }
                ),
                "token_annotations": datasets.Sequence(
                    {
                        "segment_id": datasets.Sequence(datasets.Value("int32")),
                        "first_token": datasets.Sequence(datasets.Value("int32")),
                        "last_token": datasets.Sequence(datasets.Value("int32")),
                        "token_after_gap": datasets.Sequence(datasets.Value("int32")),
                        "severity": datasets.ClassLabel(names=["minor", "major", "critical"]),
                        "category": datasets.ClassLabel(names=_ANNOTATION_CATEGORIES),
                    }
                ),
                "token_index": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("int32")))),
                "total_words": datasets.Value("int32"),
            }
        )

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        downloaded_files = dl_manager.download(_URLs)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "main_dir": "task3/train",
                    "split": "train",
                    "files": dl_manager.iter_archive(downloaded_files["train+dev"]),
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "main_dir": "test-blind",
                    "split": "test",
                    "files": dl_manager.iter_archive(downloaded_files["test"]),
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "main_dir": "task3/dev",
                    "split": "dev",
                    "files": dl_manager.iter_archive(downloaded_files["train+dev"]),
                },
            ),
        ]

    def _generate_examples(self, main_dir, split, files):
        """Yields examples."""

        prev_folder = None
        source_segments, source_tokenized, mt_segments, mt_tokenized = [None] * 4
        token_index, total_words, annotations, token_annotations = [], [], [], []
        for path, f in files:
            if path.startswith(main_dir):
                dir_name = path.split("/")[main_dir.count("/") + 1]
                folder = main_dir + "/" + dir_name

                if prev_folder is not None and prev_folder != folder:
                    yield prev_folder, {
                        "document_id": os.path.basename(prev_folder),
                        "source_segments": source_segments,
                        "source_tokenized": source_tokenized,
                        "mt_segments": mt_segments,
                        "mt_tokenized": mt_tokenized,
                        "annotations": annotations,
                        "token_annotations": token_annotations,
                        "token_index": token_index,
                        "total_words": total_words,
                    }
                    source_segments, source_tokenized, mt_segments, mt_tokenized = [None] * 4
                    token_index, total_words, annotations, token_annotations = [], [], [], []

                prev_folder = folder

                source_segments_path = "/".join([folder, "source.segments"])
                source_tokenized_path = "/".join([folder, "source.tokenized"])
                mt_segments_path = "/".join([folder, "mt.segments"])
                mt_tokenized_path = "/".join([folder, "mt.tokenized"])
                total_words_path = "/".join([folder, "total_words"])
                token_index_path = "/".join([folder, "token_index"])

                if path == source_segments_path:
                    source_segments = f.read().decode("utf-8").splitlines()
                elif path == source_tokenized_path:
                    source_tokenized = f.read().decode("utf-8").splitlines()
                elif path == mt_segments_path:
                    mt_segments = f.read().decode("utf-8").splitlines()
                elif path == mt_tokenized_path:
                    mt_tokenized = f.read().decode("utf-8").splitlines()
                elif path == total_words_path:
                    total_words = f.read().decode("utf-8").splitlines()[0]
                elif path == token_index_path:
                    token_index = [
                        [idx.split(" ") for idx in line.split("\t")]
                        for line in f.read().decode("utf-8").splitlines()
                        if line != ""
                    ]

                if split in ["train", "dev"]:
                    annotations_path = "/".join([folder, "annotations.tsv"])
                    token_annotations_path = "/".join([folder, "token_annotations.tsv"])

                    if path == annotations_path:
                        lines = (line.decode("utf-8") for line in f)
                        reader = csv.DictReader(lines, delimiter="\t")
                        annotations = [
                            {
                                "segment_id": row["segment_id"].split(" "),
                                "annotation_start": row["annotation_start"].split(" "),
                                "annotation_length": row["annotation_length"].split(" "),
                                "severity": row["severity"],
                                "severity_weight": row["severity_weight"],
                                "category": row["category"],
                            }
                            for row in reader
                        ]
                    elif path == token_annotations_path:
                        lines = (line.decode("utf-8") for line in f)
                        reader = csv.DictReader(lines, delimiter="\t")
                        token_annotations = [
                            {
                                "segment_id": row["segment_id"].split(" "),
                                "first_token": row["first_token"].replace("-", "-1").split(" "),
                                "last_token": row["last_token"].replace("-", "-1").split(" "),
                                "token_after_gap": row["token_after_gap"].replace("-", "-1").split(" "),
                                "severity": row["severity"],
                                "category": row["category"],
                            }
                            for row in reader
                        ]
        if prev_folder is not None:
            yield prev_folder, {
                "document_id": os.path.basename(prev_folder),
                "source_segments": source_segments,
                "source_tokenized": source_tokenized,
                "mt_segments": mt_segments,
                "mt_tokenized": mt_tokenized,
                "annotations": annotations,
                "token_annotations": token_annotations,
                "token_index": token_index,
                "total_words": total_words,
            }