|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""WMT MLQE Shared task 3.""" |
|
|
|
|
|
import csv |
|
import glob |
|
import os |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """ |
|
Not available. |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
This shared task (part of WMT20) will build on its previous editions |
|
to further examine automatic methods for estimating the quality |
|
of neural machine translation output at run-time, without relying |
|
on reference translations. As in previous years, we cover estimation |
|
at various levels. Important elements introduced this year include: a new |
|
task where sentences are annotated with Direct Assessment (DA) |
|
scores instead of labels based on post-editing; a new multilingual |
|
sentence-level dataset mainly from Wikipedia articles, where the |
|
source articles can be retrieved for document-wide context; the |
|
availability of NMT models to explore system-internal information for the task. |
|
|
|
The goal of this task 3 is to predict document-level quality scores as well as fine-grained annotations. |
|
""" |
|
|
|
_HOMEPAGE = "http://www.statmt.org/wmt20/quality-estimation-task.html" |
|
|
|
_LICENSE = "Unknown" |
|
|
|
_URLs = { |
|
"train+dev": "https://github.com/deep-spin/deep-spin.github.io/raw/master/docs/data/wmt2020_qe/qe-task3-enfr-traindev.tar.gz", |
|
"test": "https://github.com/deep-spin/deep-spin.github.io/raw/master/docs/data/wmt2020_qe/qe-enfr-blindtest.tar.gz", |
|
} |
|
|
|
|
|
_ANNOTATION_CATEGORIES = [ |
|
"Addition", |
|
"Agreement", |
|
"Ambiguous Translation", |
|
"Capitalization", |
|
"Character Encoding", |
|
"Company Terminology", |
|
"Date/Time", |
|
"Diacritics", |
|
"Duplication", |
|
"False Friend", |
|
"Grammatical Register", |
|
"Hyphenation", |
|
"Inconsistency", |
|
"Lexical Register", |
|
"Lexical Selection", |
|
"Named Entity", |
|
"Number", |
|
"Omitted Auxiliary Verb", |
|
"Omitted Conjunction", |
|
"Omitted Determiner", |
|
"Omitted Preposition", |
|
"Omitted Pronoun", |
|
"Orthography", |
|
"Other POS Omitted", |
|
"Over-translation", |
|
"Overly Literal", |
|
"POS", |
|
"Punctuation", |
|
"Shouldn't Have Been Translated", |
|
"Shouldn't have been translated", |
|
"Spelling", |
|
"Tense/Mood/Aspect", |
|
"Under-translation", |
|
"Unidiomatic", |
|
"Unintelligible", |
|
"Unit Conversion", |
|
"Untranslated", |
|
"Whitespace", |
|
"Word Order", |
|
"Wrong Auxiliary Verb", |
|
"Wrong Conjunction", |
|
"Wrong Determiner", |
|
"Wrong Language Variety", |
|
"Wrong Preposition", |
|
"Wrong Pronoun", |
|
] |
|
|
|
|
|
class Wmt20MlqeTask3(datasets.GeneratorBasedBuilder): |
|
"""WMT MLQE Shared task 3.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="plain_text", |
|
version=datasets.Version("1.1.0"), |
|
description="Plain text", |
|
) |
|
] |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"document_id": datasets.Value("string"), |
|
"source_segments": datasets.Sequence(datasets.Value("string")), |
|
"source_tokenized": datasets.Sequence(datasets.Value("string")), |
|
"mt_segments": datasets.Sequence(datasets.Value("string")), |
|
"mt_tokenized": datasets.Sequence(datasets.Value("string")), |
|
"annotations": datasets.Sequence( |
|
{ |
|
"segment_id": datasets.Sequence(datasets.Value("int32")), |
|
"annotation_start": datasets.Sequence(datasets.Value("int32")), |
|
"annotation_length": datasets.Sequence(datasets.Value("int32")), |
|
"severity": datasets.ClassLabel(names=["minor", "major", "critical"]), |
|
"severity_weight": datasets.Value("float32"), |
|
"category": datasets.ClassLabel(names=_ANNOTATION_CATEGORIES), |
|
} |
|
), |
|
"token_annotations": datasets.Sequence( |
|
{ |
|
"segment_id": datasets.Sequence(datasets.Value("int32")), |
|
"first_token": datasets.Sequence(datasets.Value("int32")), |
|
"last_token": datasets.Sequence(datasets.Value("int32")), |
|
"token_after_gap": datasets.Sequence(datasets.Value("int32")), |
|
"severity": datasets.ClassLabel(names=["minor", "major", "critical"]), |
|
"category": datasets.ClassLabel(names=_ANNOTATION_CATEGORIES), |
|
} |
|
), |
|
"token_index": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("int32")))), |
|
"total_words": datasets.Value("int32"), |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
data_dir = dl_manager.download_and_extract(_URLs) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir["train+dev"], "task3", "train"), |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir["test"], "test-blind"), |
|
"split": "test", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir["train+dev"], "task3", "dev"), |
|
"split": "dev", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, split): |
|
"""Yields examples.""" |
|
|
|
def open_and_read(fp): |
|
with open(fp, encoding="utf-8") as f: |
|
return f.read().splitlines() |
|
|
|
for id_, folder in enumerate(sorted(glob.glob(os.path.join(filepath, "*")))): |
|
source_segments = open_and_read(os.path.join(folder, "source.segments")) |
|
source_tokenized = open_and_read(os.path.join(folder, "source.tokenized")) |
|
mt_segments = open_and_read(os.path.join(folder, "mt.segments")) |
|
mt_tokenized = open_and_read(os.path.join(folder, "mt.tokenized")) |
|
|
|
if split in ["train", "dev"] and not os.path.exists(os.path.join(folder, "token_index")): |
|
token_index = [] |
|
else: |
|
token_index = [ |
|
[idx.split(" ") for idx in line.split("\t")] |
|
for line in open_and_read(os.path.join(folder, "token_index")) |
|
if line != "" |
|
] |
|
total_words = open_and_read(os.path.join(folder, "total_words"))[0] |
|
|
|
if split in ["train", "dev"]: |
|
with open(os.path.join(folder, "annotations.tsv"), encoding="utf-8") as f: |
|
reader = csv.DictReader(f, delimiter="\t") |
|
annotations = [ |
|
{ |
|
"segment_id": row["segment_id"].split(" "), |
|
"annotation_start": row["annotation_start"].split(" "), |
|
"annotation_length": row["annotation_length"].split(" "), |
|
"severity": row["severity"], |
|
"severity_weight": row["severity_weight"], |
|
"category": row["category"], |
|
} |
|
for row in reader |
|
] |
|
with open(os.path.join(folder, "token_annotations.tsv"), encoding="utf-8") as f: |
|
reader = csv.DictReader(f, delimiter="\t") |
|
token_annotations = [ |
|
{ |
|
"segment_id": row["segment_id"].split(" "), |
|
"first_token": row["first_token"].replace("-", "-1").split(" "), |
|
"last_token": row["last_token"].replace("-", "-1").split(" "), |
|
"token_after_gap": row["token_after_gap"].replace("-", "-1").split(" "), |
|
"severity": row["severity"], |
|
"category": row["category"], |
|
} |
|
for row in reader |
|
] |
|
else: |
|
annotations = [] |
|
token_annotations = [] |
|
|
|
yield id_, { |
|
"document_id": os.path.basename(folder), |
|
"source_segments": source_segments, |
|
"source_tokenized": source_tokenized, |
|
"mt_segments": mt_segments, |
|
"mt_tokenized": mt_tokenized, |
|
"annotations": annotations, |
|
"token_annotations": token_annotations, |
|
"token_index": token_index, |
|
"total_words": total_words, |
|
} |
|
|