Datasets:
wmt
/

Modalities:
Text
Formats:
parquet
Libraries:
Datasets
pandas
License:
parquet-converter commited on
Commit
0f91056
1 Parent(s): eab3f6e

Update parquet files

Browse files
.gitattributes DELETED
@@ -1,27 +0,0 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bin.* filter=lfs diff=lfs merge=lfs -text
5
- *.bz2 filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
- *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.model filter=lfs diff=lfs merge=lfs -text
12
- *.msgpack filter=lfs diff=lfs merge=lfs -text
13
- *.onnx filter=lfs diff=lfs merge=lfs -text
14
- *.ot filter=lfs diff=lfs merge=lfs -text
15
- *.parquet filter=lfs diff=lfs merge=lfs -text
16
- *.pb filter=lfs diff=lfs merge=lfs -text
17
- *.pt filter=lfs diff=lfs merge=lfs -text
18
- *.pth filter=lfs diff=lfs merge=lfs -text
19
- *.rar filter=lfs diff=lfs merge=lfs -text
20
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
- *.tar.* filter=lfs diff=lfs merge=lfs -text
22
- *.tflite filter=lfs diff=lfs merge=lfs -text
23
- *.tgz filter=lfs diff=lfs merge=lfs -text
24
- *.xz filter=lfs diff=lfs merge=lfs -text
25
- *.zip filter=lfs diff=lfs merge=lfs -text
26
- *.zstandard filter=lfs diff=lfs merge=lfs -text
27
- *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md DELETED
@@ -1,420 +0,0 @@
1
- ---
2
- pretty_name: WMT20 - MultiLingual Quality Estimation (MLQE) Task3
3
- annotations_creators:
4
- - expert-generated
5
- - machine-generated
6
- language_creators:
7
- - found
8
- language:
9
- - en
10
- - fr
11
- license:
12
- - unknown
13
- multilinguality:
14
- - translation
15
- size_categories:
16
- - 1K<n<10K
17
- source_datasets:
18
- - extended|amazon_us_reviews
19
- task_categories:
20
- - translation
21
- task_ids: []
22
- paperswithcode_id: null
23
- dataset_info:
24
- features:
25
- - name: document_id
26
- dtype: string
27
- - name: source_segments
28
- sequence: string
29
- - name: source_tokenized
30
- sequence: string
31
- - name: mt_segments
32
- sequence: string
33
- - name: mt_tokenized
34
- sequence: string
35
- - name: annotations
36
- sequence:
37
- - name: segment_id
38
- sequence: int32
39
- - name: annotation_start
40
- sequence: int32
41
- - name: annotation_length
42
- sequence: int32
43
- - name: severity
44
- dtype:
45
- class_label:
46
- names:
47
- 0: minor
48
- 1: major
49
- 2: critical
50
- - name: severity_weight
51
- dtype: float32
52
- - name: category
53
- dtype:
54
- class_label:
55
- names:
56
- 0: Addition
57
- 1: Agreement
58
- 2: Ambiguous Translation
59
- 3: Capitalization
60
- 4: Character Encoding
61
- 5: Company Terminology
62
- 6: Date/Time
63
- 7: Diacritics
64
- 8: Duplication
65
- 9: False Friend
66
- 10: Grammatical Register
67
- 11: Hyphenation
68
- 12: Inconsistency
69
- 13: Lexical Register
70
- 14: Lexical Selection
71
- 15: Named Entity
72
- 16: Number
73
- 17: Omitted Auxiliary Verb
74
- 18: Omitted Conjunction
75
- 19: Omitted Determiner
76
- 20: Omitted Preposition
77
- 21: Omitted Pronoun
78
- 22: Orthography
79
- 23: Other POS Omitted
80
- 24: Over-translation
81
- 25: Overly Literal
82
- 26: POS
83
- 27: Punctuation
84
- 28: Shouldn't Have Been Translated
85
- 29: Shouldn't have been translated
86
- 30: Spelling
87
- 31: Tense/Mood/Aspect
88
- 32: Under-translation
89
- 33: Unidiomatic
90
- 34: Unintelligible
91
- 35: Unit Conversion
92
- 36: Untranslated
93
- 37: Whitespace
94
- 38: Word Order
95
- 39: Wrong Auxiliary Verb
96
- 40: Wrong Conjunction
97
- 41: Wrong Determiner
98
- 42: Wrong Language Variety
99
- 43: Wrong Preposition
100
- 44: Wrong Pronoun
101
- - name: token_annotations
102
- sequence:
103
- - name: segment_id
104
- sequence: int32
105
- - name: first_token
106
- sequence: int32
107
- - name: last_token
108
- sequence: int32
109
- - name: token_after_gap
110
- sequence: int32
111
- - name: severity
112
- dtype:
113
- class_label:
114
- names:
115
- 0: minor
116
- 1: major
117
- 2: critical
118
- - name: category
119
- dtype:
120
- class_label:
121
- names:
122
- 0: Addition
123
- 1: Agreement
124
- 2: Ambiguous Translation
125
- 3: Capitalization
126
- 4: Character Encoding
127
- 5: Company Terminology
128
- 6: Date/Time
129
- 7: Diacritics
130
- 8: Duplication
131
- 9: False Friend
132
- 10: Grammatical Register
133
- 11: Hyphenation
134
- 12: Inconsistency
135
- 13: Lexical Register
136
- 14: Lexical Selection
137
- 15: Named Entity
138
- 16: Number
139
- 17: Omitted Auxiliary Verb
140
- 18: Omitted Conjunction
141
- 19: Omitted Determiner
142
- 20: Omitted Preposition
143
- 21: Omitted Pronoun
144
- 22: Orthography
145
- 23: Other POS Omitted
146
- 24: Over-translation
147
- 25: Overly Literal
148
- 26: POS
149
- 27: Punctuation
150
- 28: Shouldn't Have Been Translated
151
- 29: Shouldn't have been translated
152
- 30: Spelling
153
- 31: Tense/Mood/Aspect
154
- 32: Under-translation
155
- 33: Unidiomatic
156
- 34: Unintelligible
157
- 35: Unit Conversion
158
- 36: Untranslated
159
- 37: Whitespace
160
- 38: Word Order
161
- 39: Wrong Auxiliary Verb
162
- 40: Wrong Conjunction
163
- 41: Wrong Determiner
164
- 42: Wrong Language Variety
165
- 43: Wrong Preposition
166
- 44: Wrong Pronoun
167
- - name: token_index
168
- sequence:
169
- sequence:
170
- sequence: int32
171
- - name: total_words
172
- dtype: int32
173
- config_name: plain_text
174
- splits:
175
- - name: train
176
- num_bytes: 10762355
177
- num_examples: 1448
178
- - name: test
179
- num_bytes: 745260
180
- num_examples: 180
181
- - name: validation
182
- num_bytes: 1646596
183
- num_examples: 200
184
- download_size: 3534634
185
- dataset_size: 13154211
186
- ---
187
-
188
- # Dataset Card for WMT20 - MultiLingual Quality Estimation (MLQE) Task3
189
-
190
- ## Table of Contents
191
- - [Dataset Description](#dataset-description)
192
- - [Dataset Summary](#dataset-summary)
193
- - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
194
- - [Languages](#languages)
195
- - [Dataset Structure](#dataset-structure)
196
- - [Data Instances](#data-instances)
197
- - [Data Fields](#data-fields)
198
- - [Data Splits](#data-splits)
199
- - [Dataset Creation](#dataset-creation)
200
- - [Curation Rationale](#curation-rationale)
201
- - [Source Data](#source-data)
202
- - [Annotations](#annotations)
203
- - [Personal and Sensitive Information](#personal-and-sensitive-information)
204
- - [Considerations for Using the Data](#considerations-for-using-the-data)
205
- - [Social Impact of Dataset](#social-impact-of-dataset)
206
- - [Discussion of Biases](#discussion-of-biases)
207
- - [Other Known Limitations](#other-known-limitations)
208
- - [Additional Information](#additional-information)
209
- - [Dataset Curators](#dataset-curators)
210
- - [Licensing Information](#licensing-information)
211
- - [Citation Information](#citation-information)
212
- - [Contributions](#contributions)
213
-
214
- ## Dataset Description
215
-
216
- - **Homepage:** [WMT20 Quality Estimation Shared Task](http://www.statmt.org/wmt20/quality-estimation-task.html)
217
- - **Repository**: [Github repository](https://github.com/deep-spin/deep-spin.github.io/tree/master/docs/data/wmt2020_qe)
218
- - **Paper:** *Not available*
219
-
220
- ### Dataset Summary
221
-
222
- From the homepage:
223
-
224
- *This shared task (part of WMT20) will build on its previous editions to further examine automatic methods for estimating the quality of neural machine translation output at run-time, without relying on reference translations. As in previous years, we cover estimation at various levels. Important elements introduced this year include: a new task where sentences are annotated with Direct Assessment (DA) scores instead of labels based on post-editing; a new multilingual sentence-level dataset mainly from Wikipedia articles, where the source articles can be retrieved for document-wide context; the availability of NMT models to explore system-internal information for the task.*
225
-
226
- *The goal of this task 3 is to predict document-level quality scores as well as fine-grained annotations.*
227
-
228
- *Each document has a product title and its description, and is annotated for translation errors according to the MQM framework. Each error annotation has:*
229
- - ***Word span(s).*** *Errors may consist of one or more words, not necessarily contiguous.*
230
- - ***Severity.*** *An error can be minor (if it doesn't lead to a loss of meaning and it doesn't confuse or mislead the user), major (if it changes the meaning) or critical (if it changes the meaning and carry any type of implication, or could be seen as offensive).*
231
- - ***Type.*** *A label specifying the error type, such as wrong word order, missing words, agreement, etc. They may provide additional information, but systems don't need to predict them.*
232
-
233
- ### Supported Tasks and Leaderboards
234
-
235
- From the homepage:
236
-
237
- *Submissions will be evaluated as in Task 1, in terms of Pearson's correlation between the true and predicted MQM document-level scores. Additionally, the predicted annotations will be evaluated in terms of their F1 scores with respect to the gold annotations. The [official evaluation scripts](https://github.com/sheffieldnlp/qe-eval-scripts) are available.*
238
-
239
- ### Languages
240
-
241
- There is a single language pair in the dataset: English (`en`) - French (`fr`).
242
-
243
- ## Dataset Structure
244
-
245
- ### Data Instances
246
-
247
- An example looks like this:
248
- ```
249
- {
250
- 'document_id': 'B0000568SY',
251
- 'source_segments': ['Razor Scooter Replacement Wheels Set with Bearings', 'Scooter Wheels w/Bearings-Blue'],
252
- 'source_tokenized': ['Razor Scooter Replacement Wheels Set with Bearings', 'Scooter Wheels w / Bearings-Blue'],
253
- 'mt_segments': ['Roues de rechange Razor Scooter sertie de roulements', 'Roues de scooter w/roulements-bleu'],
254
- 'mt_tokenized': ['Roues de rechange Razor Scooter sertie de roulements', 'Roues de scooter w / roulements-bleu'],
255
- 'annotations': {
256
- 'segment_id': [[0], [1], [1], [0, 0], [0], [1], [1]],
257
- 'annotation_start': [[42], [19], [9], [0, 32], [9], [17], [30]],
258
- 'annotation_length': [[10], [10], [7], [5, 6], [8], [1], [4]],
259
- 'severity': [0, 0, 0, 0, 0, 1, 0],
260
- 'severity_weight': [1.0, 1.0, 1.0, 1.0, 1.0, 5.0, 1.0]
261
- 'category': [3, 3, 3, 1, 3, 36, 3],
262
- },
263
- 'token_annotations': {
264
- 'category': [3, 3, 3, 1, 3, 36, 3],
265
- 'first_token': [[7], [5], [2], [0, 5], [2], [3], [5]],
266
- 'last_token': [[7], [5], [2], [0, 5], [2], [3], [5]],
267
- 'segment_id': [[0], [1], [1], [0, 0], [0], [1], [1]],
268
- 'severity': [0, 0, 0, 0, 0, 1, 0],
269
- 'token_after_gap': [[-1], [-1], [-1], [-1, -1], [-1], [-1], [-1]]
270
- },
271
- 'token_index': [[[0, 5], [6, 2], [9, 8], [18, 5], [24, 7], [32, 6], [39, 2], [42, 10]], [[0, 5], [6, 2], [9, 7], [17, 1], [18, 1], [19, 15]]],
272
- 'total_words': 16
273
- }
274
- ```
275
-
276
- ### Data Fields
277
-
278
- - `document_id`: the document id (name of the folder).
279
- - `source_segments`: the original source text, one sentence per line (i.e. per element of the list).
280
- - `source_tokenized`: a tokenized version of `source_segments`.
281
- - `mt_segments`: the original machine-translated text, one sentence per line (i.e. per element of the list).
282
- - `mt_tokenized`: a tokenized version of `mt_segments`. Default value is `[]` when this information is not available (it happens 3 times in the train set: `B0001BW0PQ`, `B0001GS19U` and `B000A6SMJ0`).
283
- - `annotations`: error annotations for the document. Each item of the list corresponds to an error annotation, which in turn may contain one or more error spans. Error fields are encoded in a dictionary. In the case of a multi-span error, multiple starting positions and lengths are encoded in the list. Note that these positions points to `mt.segments`, not `mt_tokenized`.
284
- - `segment_id`: List of list of integers. Id of each error.
285
- - `annotation_start`: List of list of integers. Start of each error.
286
- - `annotation_length`: List of list of intergers. Length of each error.
287
- - `severity`: List of one hot. Severity category of each error.
288
- - `severity_weight`: List of floats. Severity weight of each error.
289
- - `category`: List of one hot. Category of each error. See the 45 categories in `_ANNOTATION_CATEGORIES_MAPPING`.
290
- - `token_annotations`: tokenized version of `annotations`. Each error span that contains one or more tokens has a "first token" and "last token". Again, multi-span errors have their first and last tokens encoded in a list. When a span is over a gap between two tokens, the "first" and "last" positions are `-1` (encoded as `-` in the original data), and instead the `token_after_gap` column points to the token immediately after the gap. In case of a gap occurring at the end of the sentence, this value will be equal to the number of tokens.
291
- - `segment_id`: List of list of integers. Id of each error.
292
- - `first_token`: List of list of integers. Start of each error.
293
- - `last_token`: List of list of intergers. End of each error.
294
- - `token_after_gap`: List of list of integers. Token after gap of each error.
295
- - `severity`: List of one hot. Severity category of each error.
296
- - `category`: List of one hot. Category of each error. See the 45 categories in `_ANNOTATION_CATEGORIES_MAPPING`.
297
- - `token_index`: a mapping of tokens to their start and ending positions in `mt_segments`. For each token, a start and end value are encoded in a list of length 2, and all tokens represent one item in the list.
298
- - `total_words`: total number of words in the document
299
-
300
- ```
301
- _ANNOTATION_CATEGORIES_MAPPING = {
302
- 0: 'Addition',
303
- 1: 'Agreement',
304
- 2: 'Ambiguous Translation',
305
- 3: 'Capitalization',
306
- 4: 'Character Encoding',
307
- 5: 'Company Terminology',
308
- 6: 'Date/Time',
309
- 7: 'Diacritics',
310
- 8: 'Duplication',
311
- 9: 'False Friend',
312
- 10: 'Grammatical Register',
313
- 11: 'Hyphenation',
314
- 12: 'Inconsistency',
315
- 13: 'Lexical Register',
316
- 14: 'Lexical Selection',
317
- 15: 'Named Entity',
318
- 16: 'Number',
319
- 17: 'Omitted Auxiliary Verb',
320
- 18: 'Omitted Conjunction',
321
- 19: 'Omitted Determiner',
322
- 20: 'Omitted Preposition',
323
- 21: 'Omitted Pronoun',
324
- 22: 'Orthography',
325
- 23: 'Other POS Omitted',
326
- 24: 'Over-translation',
327
- 25: 'Overly Literal',
328
- 26: 'POS',
329
- 27: 'Punctuation',
330
- 28: "Shouldn't Have Been Translated",
331
- 29: "Shouldn't have been translated",
332
- 30: 'Spelling',
333
- 31: 'Tense/Mood/Aspect',
334
- 32: 'Under-translation',
335
- 33: 'Unidiomatic',
336
- 34: 'Unintelligible',
337
- 35: 'Unit Conversion',
338
- 36: 'Untranslated',
339
- 37: 'Whitespace',
340
- 38: 'Word Order',
341
- 39: 'Wrong Auxiliary Verb',
342
- 40: 'Wrong Conjunction',
343
- 41: 'Wrong Determiner',
344
- 42: 'Wrong Language Variety',
345
- 43: 'Wrong Preposition',
346
- 44: 'Wrong Pronoun'
347
- }
348
- ```
349
-
350
- ### Data Splits
351
-
352
- The dataset contains 1,448 documents for training, 200 documents for validation and 180 for (blind) test (all English-French).
353
-
354
- ## Dataset Creation
355
-
356
- ### Curation Rationale
357
-
358
- The data is dervied from the [Amazon Product Reviews dataset](http://jmcauley.ucsd.edu/data/amazon/).
359
-
360
- ### Source Data
361
-
362
- [More Information Needed]
363
-
364
- #### Initial Data Collection and Normalization
365
-
366
- [More Information Needed]
367
-
368
- #### Who are the source language producers?
369
-
370
- [More Information Needed]
371
-
372
- ### Annotations
373
-
374
- [More Information Needed]
375
-
376
- #### Annotation process
377
-
378
- [More Information Needed]
379
-
380
- #### Who are the annotators?
381
-
382
- [More Information Needed]
383
-
384
- ### Personal and Sensitive Information
385
-
386
- [More Information Needed]
387
-
388
- ## Considerations for Using the Data
389
-
390
- ### Social Impact of Dataset
391
-
392
- [More Information Needed]
393
-
394
- ### Discussion of Biases
395
-
396
- [More Information Needed]
397
-
398
- ### Other Known Limitations
399
-
400
- [More Information Needed]
401
-
402
- ## Additional Information
403
-
404
- ### Dataset Curators
405
-
406
- [More Information Needed]
407
-
408
- ### Licensing Information
409
-
410
- Unknown
411
-
412
- ### Citation Information
413
-
414
- ```
415
- Not available.
416
- ```
417
-
418
- ### Contributions
419
-
420
- Thanks to [@VictorSanh](https://github.com/VictorSanh) for adding this dataset.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dataset_infos.json DELETED
@@ -1 +0,0 @@
1
- {"plain_text": {"description": "This shared task (part of WMT20) will build on its previous editions\nto further examine automatic methods for estimating the quality\nof neural machine translation output at run-time, without relying\non reference translations. As in previous years, we cover estimation\nat various levels. Important elements introduced this year include: a new\ntask where sentences are annotated with Direct Assessment (DA)\nscores instead of labels based on post-editing; a new multilingual\nsentence-level dataset mainly from Wikipedia articles, where the\nsource articles can be retrieved for document-wide context; the\navailability of NMT models to explore system-internal information for the task.\n\nThe goal of this task 3 is to predict document-level quality scores as well as fine-grained annotations.\n", "citation": "\nNot available.\n", "homepage": "http://www.statmt.org/wmt20/quality-estimation-task.html", "license": "Unknown", "features": {"document_id": {"dtype": "string", "id": null, "_type": "Value"}, "source_segments": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "source_tokenized": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "mt_segments": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "mt_tokenized": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "annotations": {"feature": {"segment_id": {"feature": {"dtype": "int32", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "annotation_start": {"feature": {"dtype": "int32", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "annotation_length": {"feature": {"dtype": "int32", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "severity": {"num_classes": 3, "names": ["minor", "major", "critical"], "names_file": null, "id": null, "_type": "ClassLabel"}, "severity_weight": {"dtype": "float32", "id": null, "_type": "Value"}, "category": {"num_classes": 45, "names": ["Addition", "Agreement", "Ambiguous Translation", "Capitalization", "Character Encoding", "Company Terminology", "Date/Time", "Diacritics", "Duplication", "False Friend", "Grammatical Register", "Hyphenation", "Inconsistency", "Lexical Register", "Lexical Selection", "Named Entity", "Number", "Omitted Auxiliary Verb", "Omitted Conjunction", "Omitted Determiner", "Omitted Preposition", "Omitted Pronoun", "Orthography", "Other POS Omitted", "Over-translation", "Overly Literal", "POS", "Punctuation", "Shouldn't Have Been Translated", "Shouldn't have been translated", "Spelling", "Tense/Mood/Aspect", "Under-translation", "Unidiomatic", "Unintelligible", "Unit Conversion", "Untranslated", "Whitespace", "Word Order", "Wrong Auxiliary Verb", "Wrong Conjunction", "Wrong Determiner", "Wrong Language Variety", "Wrong Preposition", "Wrong Pronoun"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "length": -1, "id": null, "_type": "Sequence"}, "token_annotations": {"feature": {"segment_id": {"feature": {"dtype": "int32", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "first_token": {"feature": {"dtype": "int32", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "last_token": {"feature": {"dtype": "int32", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "token_after_gap": {"feature": {"dtype": "int32", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "severity": {"num_classes": 3, "names": ["minor", "major", "critical"], "names_file": null, "id": null, "_type": "ClassLabel"}, "category": {"num_classes": 45, "names": ["Addition", "Agreement", "Ambiguous Translation", "Capitalization", "Character Encoding", "Company Terminology", "Date/Time", "Diacritics", "Duplication", "False Friend", "Grammatical Register", "Hyphenation", "Inconsistency", "Lexical Register", "Lexical Selection", "Named Entity", "Number", "Omitted Auxiliary Verb", "Omitted Conjunction", "Omitted Determiner", "Omitted Preposition", "Omitted Pronoun", "Orthography", "Other POS Omitted", "Over-translation", "Overly Literal", "POS", "Punctuation", "Shouldn't Have Been Translated", "Shouldn't have been translated", "Spelling", "Tense/Mood/Aspect", "Under-translation", "Unidiomatic", "Unintelligible", "Unit Conversion", "Untranslated", "Whitespace", "Word Order", "Wrong Auxiliary Verb", "Wrong Conjunction", "Wrong Determiner", "Wrong Language Variety", "Wrong Preposition", "Wrong Pronoun"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "length": -1, "id": null, "_type": "Sequence"}, "token_index": {"feature": {"feature": {"feature": {"dtype": "int32", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}, "total_words": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "wmt20_mlqe_task3", "config_name": "plain_text", "version": {"version_str": "1.1.0", "description": null, "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 10762355, "num_examples": 1448, "dataset_name": "wmt20_mlqe_task3"}, "test": {"name": "test", "num_bytes": 745260, "num_examples": 180, "dataset_name": "wmt20_mlqe_task3"}, "validation": {"name": "validation", "num_bytes": 1646596, "num_examples": 200, "dataset_name": "wmt20_mlqe_task3"}}, "download_checksums": {"https://github.com/deep-spin/deep-spin.github.io/raw/master/docs/data/wmt2020_qe/qe-task3-enfr-traindev.tar.gz": {"num_bytes": 3301244, "checksum": "1511bfa2293ef307c0ef78f26b5161c85c8b842e4d21b8ed846c668ada515d26"}, "https://github.com/deep-spin/deep-spin.github.io/raw/master/docs/data/wmt2020_qe/qe-enfr-blindtest.tar.gz": {"num_bytes": 233390, "checksum": "9a95c04cd510437b4155ad621e39ff735bf63ebc526e904a563c7c267a88de72"}}, "download_size": 3534634, "post_processing_size": null, "dataset_size": 13154211, "size_in_bytes": 16688845}}
 
 
plain_text/wmt20_mlqe_task3-test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:80019e22ad741bef58fa5934209cc1a5448dc4ee44de107b146e07a2fdbd40d6
3
+ size 361170
plain_text/wmt20_mlqe_task3-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad65d337b99afe2710897636aed265c46627ad3bfcfed9aa7835a88dedf00a43
3
+ size 3728946
plain_text/wmt20_mlqe_task3-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5bf27838ce704937d08246261d2dbe4011cc9012a0ce6525847b6a1fc1672823
3
+ size 569316
wmt20_mlqe_task3.py DELETED
@@ -1,280 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- """WMT MLQE Shared task 3."""
16
-
17
-
18
- import csv
19
- import os
20
-
21
- import datasets
22
-
23
-
24
- _CITATION = """
25
- Not available.
26
- """
27
-
28
- _DESCRIPTION = """\
29
- This shared task (part of WMT20) will build on its previous editions
30
- to further examine automatic methods for estimating the quality
31
- of neural machine translation output at run-time, without relying
32
- on reference translations. As in previous years, we cover estimation
33
- at various levels. Important elements introduced this year include: a new
34
- task where sentences are annotated with Direct Assessment (DA)
35
- scores instead of labels based on post-editing; a new multilingual
36
- sentence-level dataset mainly from Wikipedia articles, where the
37
- source articles can be retrieved for document-wide context; the
38
- availability of NMT models to explore system-internal information for the task.
39
-
40
- The goal of this task 3 is to predict document-level quality scores as well as fine-grained annotations.
41
- """
42
-
43
- _HOMEPAGE = "http://www.statmt.org/wmt20/quality-estimation-task.html"
44
-
45
- _LICENSE = "Unknown"
46
-
47
- _URLs = {
48
- "train+dev": "https://github.com/deep-spin/deep-spin.github.io/raw/master/docs/data/wmt2020_qe/qe-task3-enfr-traindev.tar.gz",
49
- "test": "https://github.com/deep-spin/deep-spin.github.io/raw/master/docs/data/wmt2020_qe/qe-enfr-blindtest.tar.gz",
50
- }
51
-
52
-
53
- _ANNOTATION_CATEGORIES = [
54
- "Addition",
55
- "Agreement",
56
- "Ambiguous Translation",
57
- "Capitalization",
58
- "Character Encoding",
59
- "Company Terminology",
60
- "Date/Time",
61
- "Diacritics",
62
- "Duplication",
63
- "False Friend",
64
- "Grammatical Register",
65
- "Hyphenation",
66
- "Inconsistency",
67
- "Lexical Register",
68
- "Lexical Selection",
69
- "Named Entity",
70
- "Number",
71
- "Omitted Auxiliary Verb",
72
- "Omitted Conjunction",
73
- "Omitted Determiner",
74
- "Omitted Preposition",
75
- "Omitted Pronoun",
76
- "Orthography",
77
- "Other POS Omitted",
78
- "Over-translation",
79
- "Overly Literal",
80
- "POS",
81
- "Punctuation",
82
- "Shouldn't Have Been Translated",
83
- "Shouldn't have been translated",
84
- "Spelling",
85
- "Tense/Mood/Aspect",
86
- "Under-translation",
87
- "Unidiomatic",
88
- "Unintelligible",
89
- "Unit Conversion",
90
- "Untranslated",
91
- "Whitespace",
92
- "Word Order",
93
- "Wrong Auxiliary Verb",
94
- "Wrong Conjunction",
95
- "Wrong Determiner",
96
- "Wrong Language Variety",
97
- "Wrong Preposition",
98
- "Wrong Pronoun",
99
- ]
100
-
101
-
102
- class Wmt20MlqeTask3(datasets.GeneratorBasedBuilder):
103
- """WMT MLQE Shared task 3."""
104
-
105
- BUILDER_CONFIGS = [
106
- datasets.BuilderConfig(
107
- name="plain_text",
108
- version=datasets.Version("1.1.0"),
109
- description="Plain text",
110
- )
111
- ]
112
-
113
- def _info(self):
114
- features = datasets.Features(
115
- {
116
- "document_id": datasets.Value("string"),
117
- "source_segments": datasets.Sequence(datasets.Value("string")),
118
- "source_tokenized": datasets.Sequence(datasets.Value("string")),
119
- "mt_segments": datasets.Sequence(datasets.Value("string")),
120
- "mt_tokenized": datasets.Sequence(datasets.Value("string")),
121
- "annotations": datasets.Sequence(
122
- {
123
- "segment_id": datasets.Sequence(datasets.Value("int32")),
124
- "annotation_start": datasets.Sequence(datasets.Value("int32")),
125
- "annotation_length": datasets.Sequence(datasets.Value("int32")),
126
- "severity": datasets.ClassLabel(names=["minor", "major", "critical"]),
127
- "severity_weight": datasets.Value("float32"),
128
- "category": datasets.ClassLabel(names=_ANNOTATION_CATEGORIES),
129
- }
130
- ),
131
- "token_annotations": datasets.Sequence(
132
- {
133
- "segment_id": datasets.Sequence(datasets.Value("int32")),
134
- "first_token": datasets.Sequence(datasets.Value("int32")),
135
- "last_token": datasets.Sequence(datasets.Value("int32")),
136
- "token_after_gap": datasets.Sequence(datasets.Value("int32")),
137
- "severity": datasets.ClassLabel(names=["minor", "major", "critical"]),
138
- "category": datasets.ClassLabel(names=_ANNOTATION_CATEGORIES),
139
- }
140
- ),
141
- "token_index": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("int32")))),
142
- "total_words": datasets.Value("int32"),
143
- }
144
- )
145
-
146
- return datasets.DatasetInfo(
147
- description=_DESCRIPTION,
148
- features=features,
149
- supervised_keys=None,
150
- homepage=_HOMEPAGE,
151
- license=_LICENSE,
152
- citation=_CITATION,
153
- )
154
-
155
- def _split_generators(self, dl_manager):
156
- """Returns SplitGenerators."""
157
- downloaded_files = dl_manager.download(_URLs)
158
- return [
159
- datasets.SplitGenerator(
160
- name=datasets.Split.TRAIN,
161
- gen_kwargs={
162
- "main_dir": "task3/train",
163
- "split": "train",
164
- "files": dl_manager.iter_archive(downloaded_files["train+dev"]),
165
- },
166
- ),
167
- datasets.SplitGenerator(
168
- name=datasets.Split.TEST,
169
- gen_kwargs={
170
- "main_dir": "test-blind",
171
- "split": "test",
172
- "files": dl_manager.iter_archive(downloaded_files["test"]),
173
- },
174
- ),
175
- datasets.SplitGenerator(
176
- name=datasets.Split.VALIDATION,
177
- gen_kwargs={
178
- "main_dir": "task3/dev",
179
- "split": "dev",
180
- "files": dl_manager.iter_archive(downloaded_files["train+dev"]),
181
- },
182
- ),
183
- ]
184
-
185
- def _generate_examples(self, main_dir, split, files):
186
- """Yields examples."""
187
-
188
- prev_folder = None
189
- source_segments, source_tokenized, mt_segments, mt_tokenized = [None] * 4
190
- token_index, total_words, annotations, token_annotations = [], [], [], []
191
- for path, f in files:
192
- if path.startswith(main_dir):
193
- dir_name = path.split("/")[main_dir.count("/") + 1]
194
- folder = main_dir + "/" + dir_name
195
-
196
- if prev_folder is not None and prev_folder != folder:
197
- yield prev_folder, {
198
- "document_id": os.path.basename(prev_folder),
199
- "source_segments": source_segments,
200
- "source_tokenized": source_tokenized,
201
- "mt_segments": mt_segments,
202
- "mt_tokenized": mt_tokenized,
203
- "annotations": annotations,
204
- "token_annotations": token_annotations,
205
- "token_index": token_index,
206
- "total_words": total_words,
207
- }
208
- source_segments, source_tokenized, mt_segments, mt_tokenized = [None] * 4
209
- token_index, total_words, annotations, token_annotations = [], [], [], []
210
-
211
- prev_folder = folder
212
-
213
- source_segments_path = "/".join([folder, "source.segments"])
214
- source_tokenized_path = "/".join([folder, "source.tokenized"])
215
- mt_segments_path = "/".join([folder, "mt.segments"])
216
- mt_tokenized_path = "/".join([folder, "mt.tokenized"])
217
- total_words_path = "/".join([folder, "total_words"])
218
- token_index_path = "/".join([folder, "token_index"])
219
-
220
- if path == source_segments_path:
221
- source_segments = f.read().decode("utf-8").splitlines()
222
- elif path == source_tokenized_path:
223
- source_tokenized = f.read().decode("utf-8").splitlines()
224
- elif path == mt_segments_path:
225
- mt_segments = f.read().decode("utf-8").splitlines()
226
- elif path == mt_tokenized_path:
227
- mt_tokenized = f.read().decode("utf-8").splitlines()
228
- elif path == total_words_path:
229
- total_words = f.read().decode("utf-8").splitlines()[0]
230
- elif path == token_index_path:
231
- token_index = [
232
- [idx.split(" ") for idx in line.split("\t")]
233
- for line in f.read().decode("utf-8").splitlines()
234
- if line != ""
235
- ]
236
-
237
- if split in ["train", "dev"]:
238
- annotations_path = "/".join([folder, "annotations.tsv"])
239
- token_annotations_path = "/".join([folder, "token_annotations.tsv"])
240
-
241
- if path == annotations_path:
242
- lines = (line.decode("utf-8") for line in f)
243
- reader = csv.DictReader(lines, delimiter="\t")
244
- annotations = [
245
- {
246
- "segment_id": row["segment_id"].split(" "),
247
- "annotation_start": row["annotation_start"].split(" "),
248
- "annotation_length": row["annotation_length"].split(" "),
249
- "severity": row["severity"],
250
- "severity_weight": row["severity_weight"],
251
- "category": row["category"],
252
- }
253
- for row in reader
254
- ]
255
- elif path == token_annotations_path:
256
- lines = (line.decode("utf-8") for line in f)
257
- reader = csv.DictReader(lines, delimiter="\t")
258
- token_annotations = [
259
- {
260
- "segment_id": row["segment_id"].split(" "),
261
- "first_token": row["first_token"].replace("-", "-1").split(" "),
262
- "last_token": row["last_token"].replace("-", "-1").split(" "),
263
- "token_after_gap": row["token_after_gap"].replace("-", "-1").split(" "),
264
- "severity": row["severity"],
265
- "category": row["category"],
266
- }
267
- for row in reader
268
- ]
269
- if prev_folder is not None:
270
- yield prev_folder, {
271
- "document_id": os.path.basename(prev_folder),
272
- "source_segments": source_segments,
273
- "source_tokenized": source_tokenized,
274
- "mt_segments": mt_segments,
275
- "mt_tokenized": mt_tokenized,
276
- "annotations": annotations,
277
- "token_annotations": token_annotations,
278
- "token_index": token_index,
279
- "total_words": total_words,
280
- }