Witold Wydmański commited on
Commit
d17ef4a
·
1 Parent(s): 2df789b
Files changed (4) hide show
  1. README.md +17 -0
  2. index.tsv +0 -0
  3. metagenomic_curated.py +102 -0
  4. sampleMetadata.rda +0 -0
README.md CHANGED
@@ -1,3 +1,20 @@
1
  ---
2
  license: artistic-2.0
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: artistic-2.0
3
  ---
4
+
5
+ # Metagenomic curated data
6
+ This is a python repack of the curated data from the [Metagenomic Data Repository](https://waldronlab.io/curatedMetagenomicData/).
7
+
8
+ Please refer to the [study list](https://experimenthub.bioconductor.org/package/curatedMetagenomicData) and [study metadata](https://waldronlab.io/curatedMetagenomicData/articles/available-studies.html) for the list of available datasets.
9
+
10
+ ## Sample usage
11
+ ```python
12
+ ds = datasets.load_dataset("wwydmanski/metagenomic_curated", "EH1914")
13
+ X = np.array(ds['train']['features'])
14
+ y = np.array([x['study_condition'] for x in ds['train']['metadata']])
15
+ ```
16
+
17
+ ## Finding a relevant dataset EHID
18
+ The easiest way to find an interesting study is via [study metadata](https://waldronlab.io/curatedMetagenomicData/articles/available-studies.html). After that, you can find corresponding EHIDs by referring on the https://experimenthub.bioconductor.org/title/{study_name} page.
19
+
20
+ Let's say that the ThomasAM_2018a study piqued your curiosity - it means that you will be able to find all relevant datasets on the [https://experimenthub.bioconductor.org/title/ThomasAM_2018a](https://experimenthub.bioconductor.org/title/ThomasAM_2018a) website.
index.tsv ADDED
The diff for this file is too large to render. See raw diff
 
metagenomic_curated.py ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #%%
2
+ import pyreadr
3
+ import pandas as pd
4
+ import numpy as np
5
+ import sqlite3
6
+ import requests
7
+ import datasets
8
+ import tempfile
9
+ import rdata
10
+ import json
11
+
12
+ #%%
13
+ sqlite_url = "https://experimenthub.bioconductor.org/metadata/experimenthub.sqlite3"
14
+ DATA_URL = "https://bioconductorhubs.blob.core.windows.net/experimenthub/curatedMetagenomicData/"
15
+
16
+ CITATION = """\
17
+ Pasolli E, Schiffer L, Manghi P, Renson A, Obenchain V, Truong D, Beghini F, Malik F, Ramos M, Dowd J, Huttenhower C, Morgan M, Segata N, Waldron L (2017). Accessible, curated metagenomic data through ExperimentHub. Nat. Methods, 14 (11), 1023-1024. ISSN 1548-7091, 1548-7105, doi: 10.1038/nmeth.4468.
18
+ """
19
+
20
+ # %%
21
+ # def get_metadata():
22
+ # with tempfile.NamedTemporaryFile(delete=False) as tmpfname:
23
+ # r = requests.get(sqlite_url, allow_redirects=True)
24
+ # open(tmpfname.name, 'wb').write(r.content)
25
+
26
+ # db = sqlite3.connect(tmpfname.name)
27
+ # cursor = db.cursor()
28
+ # cur = cursor.execute("""SELECT * FROM resources""")
29
+
30
+ # ehid = []
31
+ # descriptions = []
32
+ # for row in cur.fetchall():
33
+ # if "curatedMetagenomicData" in str(row[-1]):
34
+ # ehid.append(row[1])
35
+ # descriptions.append(row[7])
36
+ # return ehid, descriptions
37
+
38
+ def get_metadata():
39
+ ehids = []
40
+ descriptions = []
41
+ with open("index.tsv", "r") as f:
42
+ for line in f:
43
+ ehid, desc = line.split("\t")
44
+ ehids.append(ehid)
45
+ descriptions.append(desc)
46
+ return ehids, descriptions
47
+
48
+ # %%
49
+ class MetagenomicCurated(datasets.GeneratorBasedBuilder):
50
+ """Metagenomic Curated Data"""
51
+
52
+ ehids, descriptions = get_metadata()
53
+ BUILDER_CONFIGS = [
54
+ datasets.BuilderConfig(name=ehid,
55
+ version=datasets.Version("1.0.0"),
56
+ description=d.strip())
57
+ for ehid, d in zip(ehids, descriptions)
58
+ ]
59
+
60
+ def _info(self):
61
+ return datasets.DatasetInfo(
62
+ description=self.config.description,
63
+ citation=CITATION,
64
+ homepage="https://waldronlab.io/curatedMetagenomicData/index.html",
65
+ license="https://www.r-project.org/Licenses/Artistic-2.0",
66
+ )
67
+
68
+ def _split_generators(self, dl_manager):
69
+ json_url = f"https://experimenthub.bioconductor.org/ehid/{self.config.name}"
70
+ r = requests.get(json_url, allow_redirects=True)
71
+ metadata = json.loads(r.content)
72
+ url = metadata['location_prefix']+metadata['rdatapaths'][0]['rdatapath']
73
+
74
+ data_fname: str = dl_manager.download(url)
75
+
76
+ return [
77
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_fname}),
78
+ ]
79
+
80
+ def _generate_examples(self, filepath):
81
+ parsed = rdata.parser.parse_file(filepath)
82
+ converted = rdata.conversion.convert(parsed)
83
+ expressions = list(converted.values())[0].assayData['exprs']
84
+ data_df = expressions.to_pandas().T
85
+ study_name = list(converted.keys())[0].split(".")[0]
86
+
87
+ meta = pyreadr.read_r("sampleMetadata.rda")['sampleMetadata']
88
+ metadata = meta.loc[meta['study_name'] == study_name].set_index('sample_id')
89
+
90
+ for idx, (i, row) in enumerate(data_df.iterrows()):
91
+ yield idx, {
92
+ "features": row.values,
93
+ "metadata": {i: str(j) for i, j in metadata.loc[i].to_dict().items()}
94
+ }
95
+
96
+ # %%
97
+ if __name__=="__main__":
98
+ ds = datasets.load_dataset("./metagenomic_curated.py", "EH1914")
99
+ X = np.array(ds['train']['features'])
100
+ y = np.array([x['study_condition'] for x in ds['train']['metadata']])
101
+
102
+ # %%
sampleMetadata.rda ADDED
Binary file (610 kB). View file