|
import numpy as np |
|
import cv2 |
|
import os |
|
|
|
|
|
class CarlaDataset(object): |
|
def __init__(self, data_root='/data3/Carla_stereo'): |
|
pass |
|
self.data_root = data_root |
|
fov = 90 |
|
self.height = 1080 |
|
self.width = 1920 |
|
self.focal_length = self.width / (2.0 * np.tan(fov * np.pi / 360.0)) |
|
self.baseline_left_to_right = 2.0 |
|
self.baseline_left_to_middle = 1.0 |
|
self.baseline_right_to_middle = 1.0 |
|
self.loc_idx = ['Middle', 'Left', 'Right'] |
|
self.sensor_idx = ['NormalizedDepth', 'RawDepth', 'RGB'] |
|
self.data_dict = {} |
|
|
|
def read_data(self): |
|
for loc in self.loc_idx: |
|
for sensor in self.sensor_idx: |
|
sensor_name = f'{loc}_{sensor}' |
|
sensor_data = os.listdir(os.path.join(self.data_root, sensor_name)) |
|
self.data_dict['sensor_name'] = sensor_data |
|
|
|
def get_intrinsics(self, fov, h, w): |
|
pass |
|
|
|
def read_depth(self, raw_depth, norm_depth): |
|
''' |
|
raw_depth: [H, W, 3] in RGB format |
|
''' |
|
depth = cv2.imread(raw_depth) |
|
import pdb; pdb.set_trace() |
|
depth_value = (depth[..., 0] + depth[..., 1] * 256 + depth[..., 2] * (256**2)) / (256**3 - 1) |
|
norm_depth = cv2.imread(norm_depth) |
|
valid_mask = norm_depth[..., 0] != 255 |
|
cv2.imwrite('./valid_mask.png', (valid_mask*255).astype(np.uint8)) |
|
return depth_value, valid_mask |
|
|
|
if __name__ == '__main__': |
|
carla_dataset = CarlaDataset() |
|
raw_depth = 'Middle_RawDepth/000005.png' |
|
norm_depth = 'Middle_NormalizedDepth/000005.png' |
|
carla_dataset.read_depth(raw_depth, norm_depth) |