--- dataset_info: - config_name: default features: - name: image dtype: image - name: depth dtype: image - name: label dtype: image splits: - name: train num_bytes: 1829417279.14 num_examples: 5285 - name: test num_bytes: 1747976639.6 num_examples: 5050 download_size: 2452649738 dataset_size: 3577393918.74 - config_name: uint8 features: - name: image dtype: image: mode: RGB - name: depth dtype: image: mode: L - name: label dtype: image: mode: L splits: - name: train num_bytes: 673574397.52 num_examples: 5285 - name: test num_bytes: 598216510.95 num_examples: 5050 download_size: 916719066 dataset_size: 1271790908.47 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* - config_name: uint8 data_files: - split: train path: uint8/train-* - split: test path: uint8/test-* --- # SUN RGB-D Easier version for semantic segmentation. `default` config contains RGB and uint16 version of depth images. `uint8` config contains RGB and uint8 version of depth images, I convert uint16 by divide the pixel values by 255 and save it in new depth image. Comes from: SUN RGB-D: A RGB-D Scene Understanding Benchmark Suite (CVPR 2015) ([PDF](https://rgbd.cs.princeton.edu/paper.pdf)) ([Website](https://rgbd.cs.princeton.edu/))