Datasets:
File size: 7,672 Bytes
0a5561a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""NLU Evaluation Data."""
from __future__ import absolute_import, division, print_function
import csv
import re
import datasets
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@InProceedings{XLiu.etal:IWSDS2019,
author = {Xingkun Liu, Arash Eshghi, Pawel Swietojanski and Verena Rieser},
title = {Benchmarking Natural Language Understanding Services for building Conversational Agents},
booktitle = {Proceedings of the Tenth International Workshop on Spoken Dialogue Systems Technology (IWSDS)},
month = {April},
year = {2019},
address = {Ortigia, Siracusa (SR), Italy},
publisher = {Springer},
pages = {xxx--xxx},
url = {http://www.xx.xx/xx/}
}
"""
# You can copy an official description
_DESCRIPTION = """\
Raw part of NLU Evaluation Data. It contains 25 715 non-empty examples (original dataset has 25716 examples) from 68 unique intents belonging to 18 scenarios.
"""
_HOMEPAGE = "https://github.com/xliuhw/NLU-Evaluation-Data"
_LICENSE = "Creative Commons Attribution 4.0 International License (CC BY 4.0)"
_URL = "https://raw.githubusercontent.com/xliuhw/NLU-Evaluation-Data/master/AnnotatedData/NLU-Data-Home-Domain-Annotated-All.csv"
ANNOTATION_PATTERN = re.compile(r"\[(.+?)\s+\:+\s(.+?)\]")
def remove_annotations(text):
"""Remove named entity annotations from text example.
Examples are defined based on `answer_annotation` column since it has the least number
of Nans. However, this column contains patterns of annotation of the form:
[named_entity : part_of_text]
e.g. [time : five am], [date : this week]
We identity them with regex rule and replace all occurrences with just part_of_text.
"""
return ANNOTATION_PATTERN.sub(r"\2", text)
def define_intent_name(scenario, intent):
"""Intent name is defined as concatenation of `scenario` and `intent`
values.
See Also:
https://github.com/xliuhw/NLU-Evaluation-Data/issues/5
"""
return f"{scenario}_{intent}"
class NLUEvaluationData(datasets.GeneratorBasedBuilder):
"""Raw part of NLU Evaluation Data."""
VERSION = datasets.Version("1.1.0")
def _info(self):
features = datasets.Features(
{
"text": datasets.Value("string"),
"scenario": datasets.Value("string"),
"label": datasets.features.ClassLabel(
names=[
"alarm_query",
"alarm_remove",
"alarm_set",
"audio_volume_down",
"audio_volume_mute",
"audio_volume_other",
"audio_volume_up",
"calendar_query",
"calendar_remove",
"calendar_set",
"cooking_query",
"cooking_recipe",
"datetime_convert",
"datetime_query",
"email_addcontact",
"email_query",
"email_querycontact",
"email_sendemail",
"general_affirm",
"general_commandstop",
"general_confirm",
"general_dontcare",
"general_explain",
"general_greet",
"general_joke",
"general_negate",
"general_praise",
"general_quirky",
"general_repeat",
"iot_cleaning",
"iot_coffee",
"iot_hue_lightchange",
"iot_hue_lightdim",
"iot_hue_lightoff",
"iot_hue_lighton",
"iot_hue_lightup",
"iot_wemo_off",
"iot_wemo_on",
"lists_createoradd",
"lists_query",
"lists_remove",
"music_dislikeness",
"music_likeness",
"music_query",
"music_settings",
"news_query",
"play_audiobook",
"play_game",
"play_music",
"play_podcasts",
"play_radio",
"qa_currency",
"qa_definition",
"qa_factoid",
"qa_maths",
"qa_stock",
"recommendation_events",
"recommendation_locations",
"recommendation_movies",
"social_post",
"social_query",
"takeaway_order",
"takeaway_query",
"transport_query",
"transport_taxi",
"transport_ticket",
"transport_traffic",
"weather_query",
]
),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
train_path = dl_manager.download_and_extract(_URL)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}),
]
def _generate_examples(self, filepath):
"""Yields examples as (key, example) tuples."""
with open(filepath, encoding="utf-8") as f:
csv_reader = csv.reader(f, quotechar='"', delimiter=";", quoting=csv.QUOTE_ALL, skipinitialspace=True)
# call next to skip header
next(csv_reader)
for id_, row in enumerate(csv_reader):
(
userid,
answerid,
scenario,
intent,
status,
answer_annotation,
notes,
suggested_entities,
answer_normalised,
answer,
question,
) = row
# examples with empty answer are removed as part of the dataset
if answer_annotation == "null":
continue
yield id_, {
"text": remove_annotations(answer_annotation),
"scenario": scenario,
"label": define_intent_name(scenario, intent),
}
|