--- dataset_info: features: - name: smiles dtype: string - name: logP dtype: float64 - name: qed dtype: float64 - name: SAS dtype: float64 - name: canonical_smiles dtype: string - name: single_bond dtype: int64 - name: double_bond dtype: int64 - name: triple_bond dtype: int64 - name: aromatic_bond dtype: int64 - name: ring_count dtype: int64 - name: R3 dtype: int64 - name: R4 dtype: int64 - name: R5 dtype: int64 - name: R6 dtype: int64 - name: R7 dtype: int64 - name: R8 dtype: int64 - name: R9 dtype: int64 - name: R10 dtype: int64 - name: R12 dtype: int64 - name: R13 dtype: int64 - name: R14 dtype: int64 - name: R15 dtype: int64 - name: R18 dtype: int64 - name: R24 dtype: int64 splits: - name: train num_bytes: 61223067 num_examples: 224568 - name: validation num_bytes: 6784626 num_examples: 24887 download_size: 22056296 dataset_size: 68007693 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* --- # Dataset Card for "ZINC250k" ZINC250k from [Irwin et al., 2005](https://pubmed.ncbi.nlm.nih.gov/15667143/); taken from [Jo et al., 2022](https://arxiv.org/abs/2202.02514). Data downloaded from: https://github.com/harryjo97/GDSS. Additional annotations (bond and ring counts) added using [`rdkit`](https://www.rdkit.org/docs/index.html) library. ## Quick start usage: ```python from datasets import load_dataset ds = load_dataset("yairschiff/zinc250k") # Use `ds['train']['canonical_smiles']` from `rdkit` as inputs. ``` ## Full processing steps ```python import json import re import typing import datasets import pandas as pd import rdkit from rdkit import Chem as rdChem from tqdm.auto import tqdm # TODO: Update to 2024.03.6 release when available instead of suppressing warning! # See: https://github.com/rdkit/rdkit/issues/7625# rdkit.rdBase.DisableLog('rdApp.warning') def count_rings_and_bonds( mol: rdChem.Mol ) -> typing.Dict[str, int]: """Counts bond and ring (by type).""" # Counting rings ssr = rdChem.GetSymmSSSR(mol) ring_count = len(ssr) ring_sizes = {} for ring in ssr: ring_size = len(ring) if ring_size not in ring_sizes: ring_sizes[ring_size] = 0 ring_sizes[ring_size] += 1 # Counting bond types bond_counts = { 'single': 0, 'double': 0, 'triple': 0, 'aromatic': 0 } for bond in mol.GetBonds(): if bond.GetIsAromatic(): bond_counts['aromatic'] += 1 elif bond.GetBondType() == rdChem.BondType.SINGLE: bond_counts['single'] += 1 elif bond.GetBondType() == rdChem.BondType.DOUBLE: bond_counts['double'] += 1 elif bond.GetBondType() == rdChem.BondType.TRIPLE: bond_counts['triple'] += 1 result = { 'ring_count': ring_count, } for k, v in ring_sizes.items(): result[f"R{k}"] = v for k, v in bond_counts.items(): result[f"{k}_bond"] = v return result """ Download data and validation indices from: "Score-based Generative Modeling of Graphs via the System of Stochastic Differential Equations" https://github.com/harryjo97/GDSS > wget https://raw.githubusercontent.com/harryjo97/GDSS/master/data/zinc250k.csv > wget https://raw.githubusercontent.com/harryjo97/GDSS/master/data/valid_idx_zinc250k.json """ df = pd.read_csv('', index_col=0, encoding='utf_8') feats = [] for i, row in tqdm(df.iterrows(), total=len(df), desc='RDKit feats', leave=False): feat = {'smiles': row['smiles']} feat['canonical_smiles'] = rdChem.CanonSmiles(feat['smiles']) m = rdChem.MolFromSmiles(feat['canonical_smiles']) feat.update(count_rings_and_bonds(m)) feats.append(feat) df = pd.merge(df, pd.DataFrame.from_records(feats), on='smiles') df = df.fillna(0) for col in df.columns: # recast ring counts as int if re.search("^R[0-9]+$", col) is not None: df[col] = df[col].astype(int) # Re-order columns df = df[ ['smiles', 'logP', 'qed', 'SAS', 'canonical_smiles', 'single_bond', 'double_bond', 'triple_bond', 'aromatic_bond', 'ring_count','R3', 'R4', 'R5', 'R6', 'R7', 'R8', 'R9', 'R10', 'R12', 'R13', 'R14', 'R15', 'R18', 'R24']] # Read in validation indices with open('', 'r') as f: valid_idxs = json.load(f) df['validation'] = df.index.isin(valid_idxs).astype(int) # Create HF dataset dataset = datasets.DatasetDict({ 'train': datasets.Dataset.from_pandas(df[df['validation'] == 0].drop(columns=['validation'])), 'validation': datasets.Dataset.from_pandas(df[df['validation'] == 1].drop(columns=['validation'])), }) dataset = dataset.remove_columns('__index_level_0__') ```