from datatrove.executor import LocalPipelineExecutor from datatrove.pipeline.readers import ParquetReader from datatrove.utils.hashing import HashConfig from custom_minhash import ( CustomMinhashConfig, CustomMinhashDedupSignature, CustomMinhashDedupBuckets, CustomMinhashDedupCluster, CustomMinhashDedupFilter, ) from datatrove.pipeline.readers import JsonlReader from datatrove.pipeline.tokens import TokensCounter from datatrove.pipeline.writers.jsonl import JsonlWriter from datatrove.utils.hashing import HashConfig import argparse from glob import glob custom_minhash_config = CustomMinhashConfig( hash_config=HashConfig(precision=32, hash_fc='sha1'), ) if __name__ == '__main__': parser = argparse.ArgumentParser(description="Demo script with argparse") parser.add_argument("--sub-folder", type=str, required=True, help="Subfolder path") parser.add_argument("--offset", type=int, default=0, required=False, help="task offset") # parser.add_argument("--local-task", type=int, default=2, required=False, help="local task number") args = parser.parse_args() print(args) MINHASH_BASE_PATH = "minhash" LOGS_FOLDER = "minhash_logs" n_file = len(glob(f"/gpfs/public/research/liyizhi/huggingface/datasets/fineweb-edu-score-2/data/{args.sub_folder}/*.parquet")) TOTAL_TASKS = n_file print(f"Total files in {args.sub_folder}: {n_file}") INPUT_READER = ParquetReader( "/gpfs/public/research/liyizhi/huggingface/datasets/fineweb-edu-score-2", glob_pattern=f"data/{args.sub_folder}/*.parquet", batch_size=100_000) # INPUT_READER = ParquetReader("data/CC-MAIN-2013-20/", limit=3) # INPUT_READER = JsonlReader('jsonl') # stage 1 computes minhash signatures for each task (each task gets a set of files) stage1 = LocalPipelineExecutor( # job_name="mh1", pipeline=[ INPUT_READER, CustomMinhashDedupSignature( output_folder=f"{MINHASH_BASE_PATH}/signatures", config=custom_minhash_config, naming_prefix=args.sub_folder, ), ], tasks=TOTAL_TASKS, # local_tasks=LOCAL_TASKS, # local_rank_offset=TASK_OFFSET, logging_dir=f"{LOGS_FOLDER}/signatures", # slurm_logs_folder=f"{LOCAL_LOGS_FOLDER}/signatures/slurm_logs", ) # stage 2 finds matches between signatures in each bucket stage2 = LocalPipelineExecutor( # job_name="mh2", pipeline=[ CustomMinhashDedupBuckets( input_folder=f"{MINHASH_BASE_PATH}/signatures", output_folder=f"{MINHASH_BASE_PATH}/buckets", config=custom_minhash_config, ), ], tasks=custom_minhash_config.num_buckets, local_tasks=1, local_rank_offset=args.offset, # time="90:00:00", # partition="hopper-prod", logging_dir=f"{LOGS_FOLDER}/buckets", # depends=stage1, ) # stage 3 creates clusters of duplicates using the results from all buckets stage3 = LocalPipelineExecutor( # job_name="mh3", pipeline=[ CustomMinhashDedupCluster( input_folder=f"{MINHASH_BASE_PATH}/buckets", output_folder=f"{MINHASH_BASE_PATH}/remove_ids", config=custom_minhash_config, ), ], # tasks=1, # time="90:00:00", # partition="hopper-prod", logging_dir=f"{LOGS_FOLDER}/clusters", # mem_per_cpu_gb=70, # cpus_per_task=2, # depends=stage2, # slurm_logs_folder=f"{LOCAL_LOGS_FOLDER}/clusters/slurm_logs", ) # stage 4 reads the original input data and removes all but 1 sample per duplicate cluster # the data must match exactly stage 1, so number of tasks and the input source must be the same stage4 = LocalPipelineExecutor( # job_name="mh4", pipeline=[ INPUT_READER, TokensCounter(), # nice way to see how many tokens we had before and after deduplication CustomMinhashDedupFilter( remove_id_input_folder=f"{MINHASH_BASE_PATH}/remove_ids", sig_input_folder=f"{MINHASH_BASE_PATH}/signatures", exclusion_writer=JsonlWriter(f"{MINHASH_BASE_PATH}/removed"), config=custom_minhash_config, naming_prefix=args.sub_folder, ), ], tasks=TOTAL_TASKS, # time="50:00:00", # partition="hopper-cpu", logging_dir=f"{LOGS_FOLDER}/filter", depends=stage3, # slurm_logs_folder=f"{LOCAL_LOGS_FOLDER}/filter/slurm_logs", ) stage3.run()