Datasets:

Modalities:
Text
Formats:
text
Languages:
English
ArXiv:
DOI:
Libraries:
Datasets
License:
yoshitomo-matsubara commited on
Commit
aecfe17
·
1 Parent(s): 4c3d0e6

added formula table

Browse files
Files changed (1) hide show
  1. README.md +57 -4
README.md CHANGED
@@ -49,16 +49,69 @@ task_ids: []
49
  ## Dataset Description
50
 
51
  - **Homepage:**
52
- - **Repository:**
53
  - **Paper:** Rethinking Symbolic Regression Datasets and Benchmarks for Scientific Discovery
54
- - **Point of Contact:**
55
 
56
  ### Dataset Summary
57
 
58
  Our SRSD (Feynman) datasets are designed to discuss the performance of Symbolic Regression for Scientific Discovery.
59
  We carefully reviewed the properties of each formula and its variables in [the Feynman Symbolic Regression Database](https://space.mit.edu/home/tegmark/aifeynman.html) to design reasonably realistic sampling range of values so that our SRSD datasets can be used for evaluating the potential of SRSD such as whether or not a SR method con (re)discover physical laws from such datasets.
60
 
61
- This is the Hard set of our SRSD-Feynman datasets, which consists of 50 different physics formulas.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
63
 
64
  ### Supported Tasks and Leaderboards
@@ -83,7 +136,7 @@ For each dataset, we have
83
  1. train split (txt file, whitespace as a delimiter)
84
  2. val split (txt file, whitespace as a delimiter)
85
  3. test split (txt file, whitespace as a delimiter)
86
- 4. true equation (pickle file)
87
 
88
  ### Data Splits
89
 
 
49
  ## Dataset Description
50
 
51
  - **Homepage:**
52
+ - **Repository:** https://github.com/omron-sinicx/srsd-benchmark
53
  - **Paper:** Rethinking Symbolic Regression Datasets and Benchmarks for Scientific Discovery
54
+ - **Point of Contact:** [Yoshitomo Matsubara](mailto:yoshitom@uci.edu) [Yoshitaka Ushiku](mailto:yoshitaka.ushiku@sinicx.com)
55
 
56
  ### Dataset Summary
57
 
58
  Our SRSD (Feynman) datasets are designed to discuss the performance of Symbolic Regression for Scientific Discovery.
59
  We carefully reviewed the properties of each formula and its variables in [the Feynman Symbolic Regression Database](https://space.mit.edu/home/tegmark/aifeynman.html) to design reasonably realistic sampling range of values so that our SRSD datasets can be used for evaluating the potential of SRSD such as whether or not a SR method con (re)discover physical laws from such datasets.
60
 
61
+ This is the Hard set of our SRSD-Feynman datasets, which consists of the following 50 different physics formulas:
62
+
63
+ | ID | Formula |
64
+ |-----------|---------------------------------------------------------------------------------------------|
65
+ | I.6.20 | \\(f = \exp\left(-\frac{\theta^2}{2\sigma^2}\right)/\sqrt{2\pi\sigma^2}\\) |
66
+ | I.6.20a | \\(f = \exp\left(-\frac{\theta^2}{2}\right)/\sqrt{2\pi}\\) |
67
+ | I.6.20b | \\(f = \exp\left(-\frac{\left(\theta-\theta_1\right)^2}{2\sigma^2}\right)/\sqrt{2\pi\sigma}\\) |
68
+ | I.9.18 | \\(F = \frac{G m_1 m_2}{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}\\) |
69
+ | I.15.3t | \\(t_1 = \frac{t-u x/c^2}{\sqrt{1-u^2/c^2}}\\) |
70
+ | I.15.3x | \\(x_1 = \frac{x - u t}{\sqrt{1 - u^2/c^2}}\\) |
71
+ | I.29.16 | \\(x = \sqrt{x_1^2+x_2^2 + 2 x_1 x_2 \cos\left(\theta_1-\theta_2\right)}\\) |
72
+ | I.30.3 | \\(I = I_0 \frac{\sin^2\left(n \theta/2\right)}{\sin^2\left(\theta/2\right)}\\) |
73
+ | I.32.17 | \\(P = \left(\frac{1}{2} \epsilon c E^2\right) \left(\frac{8 \pi r^2}{3}\right) \left(\frac{\omega^4}{\left(\omega^2-\omega_0^2\right)^2}\right)\\) |
74
+ | I.34.14 | \\(\omega = \frac{1+v/c}{\sqrt{1-v^2/c^2}} \omega_0\\) |
75
+ | I.37.4 | \\(I_{12} = I_1+I_2+2 \sqrt{I_1 I_2} \cos\delta\\) |
76
+ | I.39.22 | \\(P = \frac{n k T}{V}\\) |
77
+ | I.40.1 | \\(n = n_0 \exp\left(-m g x/ k T\right)\\) |
78
+ | I.41.16 | \\(L_\text{rad} = \frac{h}{2 \pi} \frac{\omega^3}{\pi^2 c^2 (\exp(h \omega/2 \pi k T)-1)}\\) |
79
+ | I.44.4 | \\(Q = n k T \ln(\frac{V_2}{V_1})\\) |
80
+ | I.50.26 | \\(x = K \left(\cos\omega t + \epsilon \cos^2 \omega t\right)\\) |
81
+ | II.6.15a | \\(E = \frac{p}{4 \pi \epsilon} \frac{3 z}{r^5} \sqrt{x^2+y^2}\\) |
82
+ | II.6.15b | \\(E = \frac{p}{4 \pi \epsilon} \frac{3 \cos\theta \sin\theta}{r^3}\\) |
83
+ | II.11.17 | \\(n = n_0 \left(1 + \frac{p_0 E \cos\theta}{k T}\right)\\) |
84
+ | II.11.20 | \\(P = \frac{n_0 p_0^2 E}{3 k T}\\) |
85
+ | II.11.27 | \\(P = \frac{N \alpha}{1-(n \alpha/3)} \epsilon E\\) |
86
+ | II.11.28 | \\(\kappa = 1 + \frac{N \alpha}{1-(N \alpha/3)}\\) |
87
+ | II.13.23 | \\(\rho = \frac{\rho_0}{\sqrt{1-v^2/c^2}}\\) |
88
+ | II.13.34 | \\(j = \frac{\rho_0 v}{\sqrt{1-v^2/c^2}}\\) |
89
+ | II.24.17 | \\(k = \sqrt{\omega^2 / c^2 - \pi^2/a^2}\\) |
90
+ | II.35.18 | \\(a = \frac{N}{\exp(\mu B/k T)+\exp(-\mu B/k T)}\\) |
91
+ | II.35.21 | \\(M = N \mu \tanh\frac{\mu B}{k T}\\) |
92
+ | II.36.38 | \\(x = \frac{\mu H}{k T}+\frac{\mu \lambda}{\epsilon c^2 k T} M\\) |
93
+ | III.4.33 | \\(E = \frac{h \omega}{2 \pi \left(\exp\left(h \omega/2 \pi k T\right) - 1\right)}\\) |
94
+ | III.9.52 | \\(P_{\text{I} \rightarrow \text{II}} = \left(\frac{2 \pi \mu E t}{h}\right)^2 \frac{\sin^2\left(\left(\omega-\omega_0\right) t/2\right)}{\left(\omega-\omega_0\right) t / 2)^2}\\) |
95
+ | III.10.19 | \\(E = \mu \sqrt{B_x^2+B_y^2+B_z^2}\\) |
96
+ | III.21.20 | \\(J = -\rho \frac{q}{m} A\\) |
97
+ | B1 | \\(A = \left(\frac{Z_1 Z_2 \alpha h c}{4 E \sin^2\left(\theta/2\right)}\right)^2\\) |
98
+ | B2 | \\(k = \frac{m k_G}{L^2} \left(1+\sqrt{1+\frac{2 E L^2}{m k_G^2}} \cos\left(\theta_1-\theta_2\right)\right)\\) |
99
+ | B3 | \\(r = \frac{d (1-\alpha^2)}{1+\alpha \cos(\theta_1-\theta_2)}\\) |
100
+ | B4 | \\(v = \sqrt{\frac{2}{m} \left(E-U-\frac{L^2}{2 m r^2}\right)}\\) |
101
+ | B5 | \\(t = \frac{2 \pi d^{3/2}}{\sqrt{G(m_1+m_2)}}\\) |
102
+ | B6 | \\(\alpha = \sqrt{1+\frac{2 \epsilon^2 E L^2}{m (Z_1 Z_2 q^2)^2}}\\) |
103
+ | B7 | \\(H = \sqrt{\frac{8 \pi G \rho}{3}-\frac{k_\text{f} c^2}{a_\text{f}^2}}\\) |
104
+ | B9 | \\(P = -\frac{32}{5} \frac{G^4}{c^5} \frac{(m_1 m_2)^2 (m_1+m_2)}{r^5}\\) |
105
+ | B10 | \\(\cos\theta_1 = \frac{\cos\theta_2-v/c}{(1-v/c) \cos\theta_2}\\) |
106
+ | B11 | \\(I = I_0 \left(\frac{\sin(\alpha/2)}{\alpha/2} \frac{\sin(N \delta/2)}{\sin(\delta/2)}\right)^2\\) |
107
+ | B12 | \\(F = \frac{q}{4 \pi \epsilon y^2} \left(4 \pi \epsilon V_\text{e} d - \frac{q d y^3}{(y^2-d^2)^2}\right)\\) |
108
+ | B13 | \\(V_\text{e} = \frac{q}{4 \pi \epsilon \sqrt{r^2+d^2-2 d r \cos\alpha}}\\) |
109
+ | B14 | \\(V_\text{e} = E_\text{f} \cos\theta \left(\frac{\alpha-1}{\alpha+2} \frac{d^3}{r^2}-r\right)\\) |
110
+ | B15 | \\(\omega_0 = \frac{\sqrt{1-\frac{v^2}{c^2}}}{1+\frac{v}{c} \cos\theta} \omega\\) |
111
+ | B16 | \\(E = q V_\text{e} + \sqrt{(p-q A)^2 c^2+m^2 c^4}\\) |
112
+ | B17 | \\(E = \frac{1}{2 m} \left(p^2+m^2 \omega^2 x^2 \left(1+\alpha \frac{x}{y}\right)\right)\\) |
113
+ | B19 | \\(p_\text{f} = -\frac{1}{8 \pi G} \left(\frac{c^4 k_\text{f}}{a_\text{f}^2}+c^2 H^2 \left(1-2 \alpha\right)\right)\\) |
114
+ | B20 | \\(A = \frac{\alpha^2 h^2}{4 \pi m^2 c^2} \left(\frac{\omega_0}{\omega}\right)^2 \left(\frac{\omega_0}{\omega}+\frac{\omega}{\omega_0}-\sin^2\theta\right)\\) |
115
 
116
 
117
  ### Supported Tasks and Leaderboards
 
136
  1. train split (txt file, whitespace as a delimiter)
137
  2. val split (txt file, whitespace as a delimiter)
138
  3. test split (txt file, whitespace as a delimiter)
139
+ 4. true equation (pickle file for sympy object)
140
 
141
  ### Data Splits
142