Datasets:
Commit
•
05a6dc1
1
Parent(s):
1865834
Upload artelingo.py
Browse files- artelingo.py +204 -0
artelingo.py
ADDED
@@ -0,0 +1,204 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import datasets
|
4 |
+
import pandas as pd
|
5 |
+
from PIL import Image
|
6 |
+
|
7 |
+
|
8 |
+
class ArtelingoBuilderConfig(datasets.BuilderConfig):
|
9 |
+
|
10 |
+
def __init__(self, name, splits, **kwargs):
|
11 |
+
super().__init__(name, **kwargs)
|
12 |
+
self.splits = splits
|
13 |
+
|
14 |
+
|
15 |
+
# Add BibTeX citation
|
16 |
+
# Find for instance the citation on arxiv or on the dataset repo/website
|
17 |
+
_CITATION = """\
|
18 |
+
@inproceedings{mohamed2022artelingo,
|
19 |
+
title={ArtELingo: A Million Emotion Annotations of WikiArt with Emphasis on Diversity over Language and Culture},
|
20 |
+
author={Mohamed, Youssef and Abdelfattah, Mohamed and Alhuwaider, Shyma and Li, Feifan and Zhang, Xiangliang and Church, Kenneth and Elhoseiny, Mohamed},
|
21 |
+
booktitle={Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing},
|
22 |
+
pages={8770--8785},
|
23 |
+
year={2022}
|
24 |
+
}
|
25 |
+
"""
|
26 |
+
|
27 |
+
# Add description of the dataset here
|
28 |
+
# You can copy an official description
|
29 |
+
_DESCRIPTION = """\
|
30 |
+
ArtELingo is a benchmark and dataset having a collection of 80,000 artworks from WikiArt with 1.2 Million annotations in English, Arabic, and Chinese.
|
31 |
+
"""
|
32 |
+
|
33 |
+
# Add a link to an official homepage for the dataset here
|
34 |
+
_HOMEPAGE = "https://www.artelingo.org/"
|
35 |
+
|
36 |
+
# Add the licence for the dataset here if you can find it
|
37 |
+
_LICENSE = "Terms of Use: Before we are able to offer you access to the database, \
|
38 |
+
please agree to the following terms of use. After approval, you (the 'Researcher') \
|
39 |
+
receive permission to use the ArtELingo database (the 'Database') at King Abdullah \
|
40 |
+
University of Science and Technology (KAUST). In exchange for being able to join the \
|
41 |
+
ArtELingo community and receive such permission, Researcher hereby agrees to the \
|
42 |
+
following terms and conditions: [1.] The Researcher shall use the Database only for \
|
43 |
+
non-commercial research and educational purposes. [2.] The Universities make no \
|
44 |
+
representations or warranties regarding the Database, including but not limited to \
|
45 |
+
warranties of non-infringement or fitness for a particular purpose. [3.] Researcher \
|
46 |
+
accepts full responsibility for his or her use of the Database and shall defend and \
|
47 |
+
indemnify the Universities, including their employees, Trustees, officers and agents, \
|
48 |
+
against any and all claims arising from Researcher's use of the Database, and \
|
49 |
+
Researcher's use of any copies of copyrighted 2D artworks originally uploaded to \
|
50 |
+
http://www.wikiart.org that the Researcher may use in connection with the Database. \
|
51 |
+
[4.] Researcher may provide research associates and colleagues with access to the \
|
52 |
+
Database provided that they first agree to be bound by these terms and conditions. \
|
53 |
+
[5.] The Universities reserve the right to terminate Researcher's access to the Database \
|
54 |
+
at any time. [6.] If Researcher is employed by a for-profit, commercial entity, \
|
55 |
+
Researcher's employer shall also be bound by these terms and conditions, and Researcher \
|
56 |
+
hereby represents that he or she is fully authorized to enter into this agreement on \
|
57 |
+
behalf of such employer. [7.] The international copyright laws shall apply to all \
|
58 |
+
disputes under this agreement."
|
59 |
+
|
60 |
+
# Add link to the official dataset URLs here
|
61 |
+
# The HuggingFace dataset library don't host the datasets but only point to the original files
|
62 |
+
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
63 |
+
|
64 |
+
# This script can work with local (downloaded) files.
|
65 |
+
_URLs = {
|
66 |
+
'val': 'https://artelingo.s3.amazonaws.com/val.zip',
|
67 |
+
'test': 'https://artelingo.s3.amazonaws.com/test.zip',
|
68 |
+
'train': 'https://artelingo.s3.amazonaws.com/train.zip',
|
69 |
+
'wecia-emo_dev': 'https://artelingo.s3.amazonaws.com/wecia_emo_dev.zip',
|
70 |
+
'wecia-cap_dev': 'https://artelingo.s3.amazonaws.com/wecia_cap_dev.zip',
|
71 |
+
'wecia-emo_hidden': 'https://artelingo.s3.amazonaws.com/wecia_emo_hidden.zip',
|
72 |
+
'wecia-cap_hidden': 'https://artelingo.s3.amazonaws.com/wecia_cap_hidden.zip',
|
73 |
+
}
|
74 |
+
|
75 |
+
# _URL_ANN = "https://artelingo.s3.amazonaws.com/artelingo_release_lite.csv"
|
76 |
+
|
77 |
+
|
78 |
+
_EMOTIONS = ['contentment', 'awe', 'amusement', 'excitement', 'sadness', 'fear', 'anger', 'disgust', 'something else']
|
79 |
+
|
80 |
+
# Name of the dataset usually match the script name with CamelCase instead of snake_case
|
81 |
+
class Artelingo(datasets.GeneratorBasedBuilder):
|
82 |
+
"""An example dataset script to work with ArtELingo dataset"""
|
83 |
+
|
84 |
+
VERSION = datasets.Version("1.0.0")
|
85 |
+
|
86 |
+
BUILDER_CONFIGS = [
|
87 |
+
ArtelingoBuilderConfig(name='artelingo', splits=['train', 'val', 'test'],
|
88 |
+
version=VERSION, description="The full ArtELingo dataset"),
|
89 |
+
ArtelingoBuilderConfig(name='dev', splits=['val', 'test'],
|
90 |
+
version=VERSION, description="The Test and Val subsets of ArtELingo"),
|
91 |
+
ArtelingoBuilderConfig(name='wecia-emo', splits=['dev'],
|
92 |
+
version=VERSION, description="The Dev set of the WECIA Emotion Prediction challenge"),
|
93 |
+
ArtelingoBuilderConfig(name='wecia-cap', splits=['dev'],
|
94 |
+
version=VERSION, description="The Dev set of the WECIA Affective Caption Generation challenge"),
|
95 |
+
]
|
96 |
+
DEFAULT_CONFIG_NAME = "artelingo"
|
97 |
+
|
98 |
+
def _info(self):
|
99 |
+
# This method specifies the datasets. DatasetInfo object which contains informations and typings for the dataset
|
100 |
+
|
101 |
+
feature_dict = {
|
102 |
+
"uid": datasets.Value("int32"),
|
103 |
+
'image': datasets.Image(),
|
104 |
+
"art_style": datasets.Value("string"),
|
105 |
+
"painting": datasets.Value("string"),
|
106 |
+
# "emotion": datasets.ClassLabel(names=_EMOTIONS),
|
107 |
+
"emotion": datasets.Value("string"),
|
108 |
+
"language": datasets.Value("string"),
|
109 |
+
"text": datasets.Value("string"),
|
110 |
+
}
|
111 |
+
|
112 |
+
features = datasets.Features(feature_dict)
|
113 |
+
|
114 |
+
return datasets.DatasetInfo(
|
115 |
+
# This is the description that will appear on the datasets page.
|
116 |
+
description=_DESCRIPTION,
|
117 |
+
# This defines the different columns of the dataset and their types
|
118 |
+
features=features, # Here we define them above because they are different between the two configurations
|
119 |
+
# If there's a common (input, target) tuple from the features,
|
120 |
+
# specify them here. They'll be used if as_supervised=True in
|
121 |
+
# builder.as_dataset.
|
122 |
+
supervised_keys=None,
|
123 |
+
# Homepage of the dataset for documentation
|
124 |
+
homepage=_HOMEPAGE,
|
125 |
+
# License for the dataset if available
|
126 |
+
license=_LICENSE,
|
127 |
+
# Citation for the dataset
|
128 |
+
citation=_CITATION,
|
129 |
+
)
|
130 |
+
|
131 |
+
def _split_generators(self, dl_manager):
|
132 |
+
"""Returns SplitGenerators."""
|
133 |
+
# This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
|
134 |
+
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
|
135 |
+
data_dir = self.config.data_dir
|
136 |
+
if data_dir is None:
|
137 |
+
data_dir = {}
|
138 |
+
prefix = self.config.name + '_' if 'wecia' in self.config.name else ''
|
139 |
+
for split in self.config.splits:
|
140 |
+
data_dir[split] = dl_manager.download_and_extract(_URLs[prefix + split])
|
141 |
+
# data_dir = dl_manager.download_and_extract(_URLs)
|
142 |
+
|
143 |
+
splits = []
|
144 |
+
for split in self.config.splits:
|
145 |
+
dataset = datasets.SplitGenerator(
|
146 |
+
name=split,
|
147 |
+
# These kwargs will be passed to _generate_examples
|
148 |
+
gen_kwargs={
|
149 |
+
"metadata": os.path.join(data_dir[split], split, "metadata.csv"),
|
150 |
+
"image_dir": os.path.join(data_dir[split], split),
|
151 |
+
}
|
152 |
+
)
|
153 |
+
splits.append(dataset)
|
154 |
+
return splits
|
155 |
+
|
156 |
+
def _generate_examples(
|
157 |
+
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
158 |
+
self, metadata, image_dir
|
159 |
+
):
|
160 |
+
""" Yields examples as (key, example) tuples. """
|
161 |
+
# This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
|
162 |
+
# The `key` is here for legacy reason (tfds) and is not important in itself.
|
163 |
+
|
164 |
+
name = self.config.name
|
165 |
+
|
166 |
+
df = pd.read_csv(metadata)
|
167 |
+
uids = range(len(df))
|
168 |
+
|
169 |
+
if name == 'wecia-emo':
|
170 |
+
for uid, entry in zip(uids, df.itertuples()):
|
171 |
+
result = {
|
172 |
+
"uid": entry.uid,
|
173 |
+
"image": Image.open(os.path.join(image_dir, entry.file_name)),
|
174 |
+
"art_style": entry.art_style,
|
175 |
+
"painting": entry.painting,
|
176 |
+
"text": entry.text,
|
177 |
+
"emotion": None,
|
178 |
+
'language': None,
|
179 |
+
}
|
180 |
+
yield (uid, result)
|
181 |
+
elif name == 'wecia-cap':
|
182 |
+
for uid, entry in zip(uids, df.itertuples()):
|
183 |
+
result = {
|
184 |
+
"uid": entry.uid,
|
185 |
+
"image": Image.open(os.path.join(image_dir, entry.file_name)),
|
186 |
+
"art_style": entry.art_style,
|
187 |
+
"painting": entry.painting,
|
188 |
+
"emotion": entry.emotion,
|
189 |
+
"language": entry.language,
|
190 |
+
"text": None,
|
191 |
+
}
|
192 |
+
yield (uid, result)
|
193 |
+
else:
|
194 |
+
for uid, entry in zip(uids, df.itertuples()):
|
195 |
+
result = {
|
196 |
+
"uid": uid,
|
197 |
+
"image": Image.open(os.path.join(image_dir, entry.file_name)),
|
198 |
+
"art_style": entry.art_style,
|
199 |
+
"painting": entry.painting,
|
200 |
+
"emotion": entry.emotion,
|
201 |
+
"language": entry.language,
|
202 |
+
"text": entry.text,
|
203 |
+
}
|
204 |
+
yield (uid, result)
|