File size: 1,028 Bytes
296e7a2
 
9ec3674
 
 
296e7a2
 
23c03f0
5fb3a99
 
 
23c03f0
5fb3a99
9ec3674
 
 
 
 
 
 
5fb3a99
9ec3674
 
 
 
 
 
 
 
5fb3a99
23c03f0
9ec3674
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
---
tags:
  - awq
  - llm
  - quantization
---

# yujiepan/awq-model-zoo

Here are some pre-computed awq information (scales & clips) used in [llm-awq](https://github.com/mit-han-lab/llm-awq).

## Scripts

- Install the forked `llm-awq` at [https://github.com/yujiepan-work/llm-awq/tree/a41a08e79d8eb3d6335485b3625410af22a74426](https://github.com/yujiepan-work/llm-awq/tree/a41a08e79d8eb3d6335485b3625410af22a74426). Note: works with transformers==4.35.2

- Generating awq-info.pt:

```bash
python do_awq.py --model_id mistralai/Mistral-7B-v0.1 --w_bit 8 --q_group_size 128 --dump_awq ./awq-info.pt
```

- Load a quantized model: You can use the offical repo to get a fake/real quantized model. Alternatively, you can load a fake-quantized model:

```python
from do_awq import FakeAWQModel
FakeAWQModel.from_pretrained('mistralai/Mistral-7B-v0.1', awq_meta_path='./awq-info.pt',  output_folder='./tmp/')
```

Note: the code is not in good shape.

## Related links

- <https://huggingface.co/datasets/mit-han-lab/awq-model-zoo>