max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
pysrc/classifier.py
CrackerCat/xed
1,261
2610
#!/usr/bin/env python # -*- python -*- #BEGIN_LEGAL # #Copyright (c) 2019 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # #END_LEGAL from __future__ import print_function import re import genutil import codegen def _emit_function(fe, isa_sets, name): fo = codegen.function_object_t('xed_classify_{}'.format(name)) fo.add_arg('const xed_decoded_inst_t* d') fo.add_code_eol(' const xed_isa_set_enum_t isa_set = xed_decoded_inst_get_isa_set(d)') # FIXME: 2017-07-14 optimization: could use a static array for faster checking, smaller code switch = codegen.c_switch_generator_t('isa_set', fo) isa_sets_sorted = sorted(isa_sets) for c in isa_sets_sorted: switch.add_case('XED_ISA_SET_{}'.format(c.upper()),[],do_break=False) if len(isa_sets) > 0: switch.add('return 1;') switch.add_default(['return 0;'], do_break=False) switch.finish() fo.emit_file_emitter(fe) def work(agi): sse_isa_sets = set([]) avx_isa_sets = set([]) avx512_isa_sets = set([]) avx512_kmask_op = set([]) for generator in agi.generator_list: for ii in generator.parser_output.instructions: if genutil.field_check(ii, 'iclass'): if re.search('AVX512',ii.isa_set): avx512_isa_sets.add(ii.isa_set) if re.search('KOP',ii.isa_set): avx512_kmask_op.add(ii.isa_set) elif re.search('AVX',ii.isa_set) or ii.isa_set in ['F16C', 'FMA']: avx_isa_sets.add(ii.isa_set) elif re.search('SSE',ii.isa_set) or ii.isa_set in ['AES','PCLMULQDQ']: # Exclude MMX instructions that come in with SSE2 & # SSSE3. The several purely MMX instr in SSE are # "SSE-opcodes" with memop operands. One can look for # those with SSE2MMX and SSSE3MMX xed isa_sets. # # Also exclude the SSE_PREFETCH operations; Those are # just memops. if (not re.search('MMX',ii.isa_set) and not re.search('PREFETCH',ii.isa_set) and not re.search('X87',ii.isa_set) and not re.search('MWAIT',ii.isa_set)): sse_isa_sets.add(ii.isa_set) fe = agi.open_file('xed-classifiers.c') # xed_file_emitter_t _emit_function(fe, avx512_isa_sets, 'avx512') _emit_function(fe, avx512_kmask_op, 'avx512_maskop') _emit_function(fe, avx_isa_sets, 'avx') _emit_function(fe, sse_isa_sets, 'sse') fe.close() return
InvenTree/InvenTree/management/commands/rebuild_thumbnails.py
rocheparadox/InvenTree
656
2616
""" Custom management command to rebuild thumbnail images - May be required after importing a new dataset, for example """ import os import logging from PIL import UnidentifiedImageError from django.core.management.base import BaseCommand from django.conf import settings from django.db.utils import OperationalError, ProgrammingError from company.models import Company from part.models import Part logger = logging.getLogger("inventree-thumbnails") class Command(BaseCommand): """ Rebuild all thumbnail images """ def rebuild_thumbnail(self, model): """ Rebuild the thumbnail specified by the "image" field of the provided model """ if not model.image: return img = model.image url = img.thumbnail.name loc = os.path.join(settings.MEDIA_ROOT, url) if not os.path.exists(loc): logger.info(f"Generating thumbnail image for '{img}'") try: model.image.render_variations(replace=False) except FileNotFoundError: logger.error(f"ERROR: Image file '{img}' is missing") except UnidentifiedImageError: logger.error(f"ERROR: Image file '{img}' is not a valid image") def handle(self, *args, **kwargs): logger.setLevel(logging.INFO) logger.info("Rebuilding Part thumbnails") for part in Part.objects.exclude(image=None): try: self.rebuild_thumbnail(part) except (OperationalError, ProgrammingError): logger.error("ERROR: Database read error.") break logger.info("Rebuilding Company thumbnails") for company in Company.objects.exclude(image=None): try: self.rebuild_thumbnail(company) except (OperationalError, ProgrammingError): logger.error("ERROR: abase read error.") break
glue/core/data_factories/tables.py
rosteen/glue
550
2620
from glue.core.data_factories.helpers import has_extension from glue.config import data_factory __all__ = ['tabular_data'] @data_factory(label="ASCII Table", identifier=has_extension('csv txt tsv tbl dat ' 'csv.gz txt.gz tbl.bz ' 'dat.gz'), priority=1) def tabular_data(path, **kwargs): from glue.core.data_factories.astropy_table import astropy_tabular_data from glue.core.data_factories.pandas import pandas_read_table for fac in [astropy_tabular_data, pandas_read_table]: try: return fac(path, **kwargs) except Exception: pass else: raise IOError("Could not parse file: %s" % path)
tests/test_tree.py
andreax79/airflow-code-editor
194
2642
<gh_stars>100-1000 #!/usr/bin/env python import os import os.path import airflow import airflow.plugins_manager from airflow import configuration from flask import Flask from unittest import TestCase, main from airflow_code_editor.commons import PLUGIN_NAME from airflow_code_editor.tree import ( get_tree, ) assert airflow.plugins_manager app = Flask(__name__) class TestTree(TestCase): def setUp(self): self.root_dir = os.path.dirname(os.path.realpath(__file__)) configuration.conf.set(PLUGIN_NAME, 'git_init_repo', 'False') configuration.conf.set(PLUGIN_NAME, 'root_directory', self.root_dir) def test_tree(self): with app.app_context(): t = get_tree() self.assertTrue(len(t) > 0) self.assertTrue('git' in (x['id'] for x in t)) def test_tags(self): with app.app_context(): t = get_tree("tags") self.assertIsNotNone(t) def test_local_branches(self): with app.app_context(): t = get_tree("local-branches") self.assertIsNotNone(t) def test_remote_branches(self): with app.app_context(): t = get_tree("remote-branches") self.assertIsNotNone(t) def test_files(self): with app.app_context(): t = get_tree("files") self.assertTrue( len([x.get('id') for x in t if x.get('id') == 'test_utils.py']) == 1 ) t = get_tree("files/folder") self.assertTrue(len([x.get('id') for x in t if x.get('id') == '1']) == 1) def test_git(self): with app.app_context(): t = get_tree("git/HEAD") self.assertTrue(t is not None) class TestTreeGitDisabled(TestCase): def setUp(self): self.root_dir = os.path.dirname(os.path.realpath(__file__)) configuration.conf.set(PLUGIN_NAME, 'git_init_repo', 'False') configuration.conf.set(PLUGIN_NAME, 'root_directory', self.root_dir) configuration.conf.set(PLUGIN_NAME, 'git_enabled', 'False') def test_tree(self): with app.app_context(): t = get_tree() self.assertTrue(len(t) > 0) self.assertTrue('git' not in (x['id'] for x in t)) t = get_tree("tags") self.assertEqual(t, []) t = get_tree("local-branches") self.assertEqual(t, []) t = get_tree("remote-branches") self.assertEqual(t, []) t = get_tree("files") self.assertTrue( len([x.get('id') for x in t if x.get('id') == 'test_utils.py']) == 1 ) t = get_tree("files/folder") self.assertTrue(len([x.get('id') for x in t if x.get('id') == '1']) == 1) if __name__ == '__main__': main()
src/moduels/gui/Tab_Help.py
HaujetZhao/Caps_Writer
234
2653
<reponame>HaujetZhao/Caps_Writer<filename>src/moduels/gui/Tab_Help.py # -*- coding: UTF-8 -*- from PySide2.QtWidgets import QWidget, QPushButton, QVBoxLayout from PySide2.QtCore import Signal from moduels.component.NormalValue import 常量 from moduels.component.SponsorDialog import SponsorDialog import os, webbrowser class Tab_Help(QWidget): 状态栏消息 = Signal(str, int) def __init__(self): super().__init__() self.initElement() # 先初始化各个控件 self.initSlots() # 再将各个控件连接到信号槽 self.initLayout() # 然后布局 self.initValue() # 再定义各个控件的值 def initElement(self): self.打开帮助按钮 = QPushButton(self.tr('打开帮助文档')) self.ffmpegMannualNoteButton = QPushButton(self.tr('查看作者的 FFmpeg 笔记')) self.openVideoHelpButtone = QPushButton(self.tr('查看视频教程')) self.openGiteePage = QPushButton(self.tr(f'当前版本是 v{常量.软件版本},到 Gitee 检查新版本')) self.openGithubPage = QPushButton(self.tr(f'当前版本是 v{常量.软件版本},到 Github 检查新版本')) self.linkToDiscussPage = QPushButton(self.tr('加入 QQ 群')) self.tipButton = QPushButton(self.tr('打赏作者')) self.masterLayout = QVBoxLayout() def initSlots(self): self.打开帮助按钮.clicked.connect(self.openHelpDocument) self.ffmpegMannualNoteButton.clicked.connect(lambda: webbrowser.open(self.tr(r'https://hacpai.com/article/1595480295489'))) self.openVideoHelpButtone.clicked.connect(lambda: webbrowser.open(self.tr(r'https://www.bilibili.com/video/BV12A411p73r/'))) self.openGiteePage.clicked.connect(lambda: webbrowser.open(self.tr(r'https://gitee.com/haujet/CapsWriter/releases'))) self.openGithubPage.clicked.connect(lambda: webbrowser.open(self.tr(r'https://github.com/HaujetZhao/CapsWriter/releases'))) self.linkToDiscussPage.clicked.connect(lambda: webbrowser.open( self.tr(r'https://qm.qq.com/cgi-bin/qm/qr?k=DgiFh5cclAElnELH4mOxqWUBxReyEVpm&jump_from=webapi'))) self.tipButton.clicked.connect(lambda: SponsorDialog(self)) def initLayout(self): self.setLayout(self.masterLayout) # self.masterLayout.addWidget(self.打开帮助按钮) # self.masterLayout.addWidget(self.ffmpegMannualNoteButton) self.masterLayout.addWidget(self.openVideoHelpButtone) self.masterLayout.addWidget(self.openGiteePage) self.masterLayout.addWidget(self.openGithubPage) self.masterLayout.addWidget(self.linkToDiscussPage) self.masterLayout.addWidget(self.tipButton) def initValue(self): self.打开帮助按钮.setMaximumHeight(100) self.ffmpegMannualNoteButton.setMaximumHeight(100) self.openVideoHelpButtone.setMaximumHeight(100) self.openGiteePage.setMaximumHeight(100) self.openGithubPage.setMaximumHeight(100) self.linkToDiscussPage.setMaximumHeight(100) self.tipButton.setMaximumHeight(100) def openHelpDocument(self): try: if 常量.系统平台 == 'Darwin': import shlex os.system("open " + shlex.quote(self.tr("./misc/Docs/README_zh.html"))) elif 常量.系统平台 == 'Windows': os.startfile(os.path.realpath(self.tr('./misc/Docs/README_zh.html'))) except: print('未能打开帮助文档')
tests/unittests/command_parse/test_stream.py
itamarhaber/iredis
1,857
2659
def test_xrange(judge_command): judge_command( "XRANGE somestream - +", {"command": "XRANGE", "key": "somestream", "stream_id": ["-", "+"]}, ) judge_command( "XRANGE somestream 1526985054069 1526985055069", { "command": "XRANGE", "key": "somestream", "stream_id": ["1526985054069", "1526985055069"], }, ) judge_command( "XRANGE somestream 1526985054069 1526985055069-10", { "command": "XRANGE", "key": "somestream", "stream_id": ["1526985054069", "1526985055069-10"], }, ) judge_command( "XRANGE somestream 1526985054069 1526985055069-10 count 10", { "command": "XRANGE", "key": "somestream", "stream_id": ["1526985054069", "1526985055069-10"], "count_const": "count", "count": "10", }, ) def test_xgroup_create(judge_command): judge_command( "XGROUP CREATE mykey mygroup 123", { "command": "XGROUP", "stream_create": "CREATE", "key": "mykey", "group": "mygroup", "stream_id": "123", }, ) judge_command( "XGROUP CREATE mykey mygroup $", { "command": "XGROUP", "stream_create": "CREATE", "key": "mykey", "group": "mygroup", "stream_id": "$", }, ) # short of a parameter judge_command("XGROUP CREATE mykey mygroup", None) judge_command("XGROUP CREATE mykey", None) def test_xgroup_setid(judge_command): judge_command( "XGROUP SETID mykey mygroup 123", { "command": "XGROUP", "stream_setid": "SETID", "key": "mykey", "group": "mygroup", "stream_id": "123", }, ) judge_command( "XGROUP SETID mykey mygroup $", { "command": "XGROUP", "stream_setid": "SETID", "key": "mykey", "group": "mygroup", "stream_id": "$", }, ) # two subcommand together shouldn't match judge_command("XGROUP CREATE mykey mygroup 123 SETID mykey mygroup $", None) def test_xgroup_destroy(judge_command): judge_command( "XGROUP destroy mykey mygroup", { "command": "XGROUP", "stream_destroy": "destroy", "key": "mykey", "group": "mygroup", }, ) judge_command("XGROUP destroy mykey", None) judge_command("XGROUP DESTROY mykey mygroup $", None) def test_xgroup_delconsumer(judge_command): judge_command( "XGROUP delconsumer mykey mygroup myconsumer", { "command": "XGROUP", "stream_delconsumer": "delconsumer", "key": "mykey", "group": "mygroup", "consumer": "myconsumer", }, ) judge_command( "XGROUP delconsumer mykey mygroup $", { "command": "XGROUP", "stream_delconsumer": "delconsumer", "key": "mykey", "group": "mygroup", "consumer": "$", }, ) judge_command("XGROUP delconsumer mykey mygroup", None) def test_xgroup_stream(judge_command): judge_command( "XACK mystream group1 123123", { "command": "XACK", "key": "mystream", "group": "group1", "stream_id": "123123", }, ) judge_command( "XACK mystream group1 123123 111", {"command": "XACK", "key": "mystream", "group": "group1", "stream_id": "111"}, ) def test_xinfo(judge_command): judge_command( "XINFO consumers mystream mygroup", { "command": "XINFO", "stream_consumers": "consumers", "key": "mystream", "group": "mygroup", }, ) judge_command( "XINFO GROUPS mystream", {"command": "XINFO", "stream_groups": "GROUPS", "key": "mystream"}, ) judge_command( "XINFO STREAM mystream", {"command": "XINFO", "stream": "STREAM", "key": "mystream"}, ) judge_command("XINFO HELP", {"command": "XINFO", "help": "HELP"}) judge_command("XINFO consumers mystream mygroup GROUPS mystream", None) judge_command("XINFO groups mystream mygroup", None) def test_xinfo_with_full(judge_command): judge_command( "XINFO STREAM mystream FULL", { "command": "XINFO", "stream": "STREAM", "key": "mystream", "full_const": "FULL", }, ) judge_command( "XINFO STREAM mystream FULL count 10", { "command": "XINFO", "stream": "STREAM", "key": "mystream", "full_const": "FULL", "count_const": "count", "count": "10", }, ) def test_xpending(judge_command): judge_command( "XPENDING mystream group55", {"command": "XPENDING", "key": "mystream", "group": "group55"}, ) judge_command( "XPENDING mystream group55 myconsumer", { "command": "XPENDING", "key": "mystream", "group": "group55", "consumer": "myconsumer", }, ) judge_command( "XPENDING mystream group55 - + 10", { "command": "XPENDING", "key": "mystream", "group": "group55", "stream_id": ["-", "+"], "count": "10", }, ) judge_command( "XPENDING mystream group55 - + 10 myconsumer", { "command": "XPENDING", "key": "mystream", "group": "group55", "stream_id": ["-", "+"], "count": "10", "consumer": "myconsumer", }, ) judge_command("XPENDING mystream group55 - + ", None) def test_xadd(judge_command): judge_command( "xadd mystream MAXLEN ~ 1000 * key value", { "command": "xadd", "key": "mystream", "maxlen": "MAXLEN", "approximately": "~", "count": "1000", "sfield": "key", "svalue": "value", "stream_id": "*", }, ) # test for MAXLEN option judge_command( "xadd mystream MAXLEN 1000 * key value", { "command": "xadd", "key": "mystream", "maxlen": "MAXLEN", "count": "1000", "sfield": "key", "svalue": "value", "stream_id": "*", }, ) judge_command( "xadd mystream * key value", { "command": "xadd", "key": "mystream", "sfield": "key", "svalue": "value", "stream_id": "*", }, ) # spcify stream id judge_command( "xadd mystream 123-123 key value", { "command": "xadd", "key": "mystream", "sfield": "key", "svalue": "value", "stream_id": "123-123", }, ) judge_command( "xadd mystream 123-123 key value foo bar hello world", { "command": "xadd", "key": "mystream", "sfield": "hello", "svalue": "world", "stream_id": "123-123", }, ) def test_xtrim(judge_command): judge_command( " XTRIM mystream MAXLEN 2", {"command": "XTRIM", "key": "mystream", "maxlen": "MAXLEN", "count": "2"}, ) judge_command( " XTRIM mystream MAXLEN ~ 2", { "command": "XTRIM", "key": "mystream", "maxlen": "MAXLEN", "count": "2", "approximately": "~", }, ) judge_command(" XTRIM mystream", None) def test_xdel(judge_command): judge_command( "XDEL mystream 1581165000000 1549611229000 1581060831000", {"command": "XDEL", "key": "mystream", "stream_id": "1581060831000"}, ) judge_command( "XDEL mystream 1581165000000", {"command": "XDEL", "key": "mystream", "stream_id": "1581165000000"}, ) def test_xclaim(judge_command): judge_command( "XCLAIM mystream mygroup Alice 3600000 1526569498055-0", { "command": "XCLAIM", "key": "mystream", "group": "mygroup", "consumer": "Alice", "millisecond": "3600000", "stream_id": "1526569498055-0", }, ) judge_command( "XCLAIM mystream mygroup Alice 3600000 1526569498055-0 123 456 789", { "command": "XCLAIM", "key": "mystream", "group": "mygroup", "consumer": "Alice", "millisecond": "3600000", "stream_id": "789", }, ) judge_command( "XCLAIM mystream mygroup Alice 3600000 1526569498055-0 IDEL 300", { "command": "XCLAIM", "key": "mystream", "group": "mygroup", "consumer": "Alice", "millisecond": ["3600000", "300"], "stream_id": "1526569498055-0", "idel": "IDEL", }, ) judge_command( "XCLAIM mystream mygroup Alice 3600000 1526569498055-0 retrycount 7", { "command": "XCLAIM", "key": "mystream", "group": "mygroup", "consumer": "Alice", "millisecond": "3600000", "stream_id": "1526569498055-0", "retrycount": "retrycount", "count": "7", }, ) judge_command( "XCLAIM mystream mygroup Alice 3600000 1526569498055-0 TIME 123456789", { "command": "XCLAIM", "key": "mystream", "group": "mygroup", "consumer": "Alice", "millisecond": "3600000", "stream_id": "1526569498055-0", "time": "TIME", "timestamp": "123456789", }, ) judge_command( "XCLAIM mystream mygroup Alice 3600000 1526569498055-0 FORCE", { "command": "XCLAIM", "key": "mystream", "group": "mygroup", "consumer": "Alice", "millisecond": "3600000", "stream_id": "1526569498055-0", "force": "FORCE", }, ) judge_command( "XCLAIM mystream mygroup Alice 3600000 1526569498055-0 JUSTID", { "command": "XCLAIM", "key": "mystream", "group": "mygroup", "consumer": "Alice", "millisecond": "3600000", "stream_id": "1526569498055-0", "justid": "JUSTID", }, ) def test_xread(judge_command): judge_command( "XREAD COUNT 2 STREAMS mystream writers 0-0 0-0", { "command": "XREAD", "count_const": "COUNT", "count": "2", "streams": "STREAMS", # FIXME current grammar can't support multiple tokens # so the ids will be recongized to keys. "keys": "mystream writers 0-0", "stream_id": "0-0", }, ) judge_command( "XREAD COUNT 2 BLOCK 1000 STREAMS mystream writers 0-0 0-0", { "command": "XREAD", "count_const": "COUNT", "count": "2", "streams": "STREAMS", "keys": "mystream writers 0-0", "block": "BLOCK", "millisecond": "1000", "stream_id": "0-0", }, ) def test_xreadgroup(judge_command): judge_command( "XREADGROUP GROUP mygroup1 Bob COUNT 1 BLOCK 100 NOACK STREAMS key1 1 key2 2", { "command": "XREADGROUP", "stream_group": "GROUP", "group": "mygroup1", "consumer": "Bob", "count_const": "COUNT", "count": "1", "block": "BLOCK", "millisecond": "100", "noack": "NOACK", "streams": "STREAMS", "keys": "key1 1 key2", "stream_id": "2", }, ) judge_command( "XREADGROUP GROUP mygroup1 Bob STREAMS key1 1 key2 2", { "command": "XREADGROUP", "stream_group": "GROUP", "group": "mygroup1", "consumer": "Bob", "streams": "STREAMS", "keys": "key1 1 key2", "stream_id": "2", }, ) judge_command("XREADGROUP GROUP group consumer", None)
Giveme5W1H/extractor/tools/key_value_cache.py
bkrrr/Giveme5W
410
2671
import logging import os import pickle import sys import threading import time from typing import List from Giveme5W1H.extractor.root import path from Giveme5W1H.extractor.tools.util import bytes_2_human_readable class KeyValueCache(object): def __init__(self, cache_path): """ :param cache_path: path to cache, must be relative to the root.py file """ self.log = logging.getLogger('GiveMe5W') # resolve path relative to the path file self._cache_path = path(cache_path) # ad a meaningful extension self._cache_path = self._cache_path + '.prickle' self._cache = {} if cache_path and os.path.isfile(self._cache_path) and os.path.getsize(self._cache_path) > 0: # reload cache object form disc, if any with open(self._cache_path, 'rb') as ff: self._cache = pickle.load(ff) self.log.debug('KeyValueCache: ' + self._cache_path + ' restored') self.log_stats() else: self._cache = {} self._lock = threading.Lock() def log_stats(self): # size is not considering child's self.log.info(self._cache_path + ' entries: ' + str(len(self._cache)) + ' size: ' + bytes_2_human_readable( sys.getsizeof(self._cache))) def persist(self): with open(self._cache_path, 'wb') as f: pickle.dump(self._cache, f, pickle.HIGHEST_PROTOCOL) def cache(self, key: str, value: object): """ None values are considered as invalid results (ToughRequest) is producing none for exceptions set -1 if you want to store "No distance" :param key: :param value: :return: """ self._lock.acquire() if value is not None: self._cache[key] = self._pack(value); self.log.debug(self._cache_path + ' CACHED: ' + str(key) + ': ' + str(value)) self.persist() self._lock.release() def get(self, key): """ Read cache entries :param key: :return: """ self._lock.acquire() result = None value = self._cache.get(key) if value is not None: self.log.debug(self._cache_path + ' LOADED: ' + str(key) + ': ' + str(value)) result = self._unpack(value) self._lock.release() return result def get_complex(self, list_of_keys: List[str]): """ Read complex cache entries """ return self.get(self._get_id(list_of_keys)) def cache_complex(self, list_of_keys: List[str], value): """ helper to cache multi (string)key values. They are sorted before concatenation, therefore an order is determined. """ self.cache(self._get_id(list_of_keys), value) def _get_id(self, list_of_keys: List[str]): """ sorts list_of_keys, concatenates with # for readability :param list_of_keys: :return: """ sorted(list_of_keys) return "#".join(list_of_keys) def _pack(self, value): """ cache tracks the age of an entry, may be helpful in the future :param value: :return: """ return [value, str(time.time())] def _unpack(self, value): """ removes the timestamp around the cached value, if any :param value: :return: """ # there are some old entries without timestamp if isinstance(value, str) or isinstance(value, int): return value return value[0]
train_dv3.py
drat/Neural-Voice-Cloning-With-Few-Samples
361
2690
<reponame>drat/Neural-Voice-Cloning-With-Few-Samples """Trainining script for seq2seq text-to-speech synthesis model. usage: train.py [options] options: --data-root=<dir> Directory contains preprocessed features. --checkpoint-dir=<dir> Directory where to save model checkpoints [default: checkpoints]. --hparams=<parmas> Hyper parameters [default: ]. --checkpoint=<path> Restore model from checkpoint path if given. --checkpoint-seq2seq=<path> Restore seq2seq model from checkpoint path. --checkpoint-postnet=<path> Restore postnet model from checkpoint path. --train-seq2seq-only Train only seq2seq model. --train-postnet-only Train only postnet model. --restore-parts=<path> Restore part of the model. --log-event-path=<name> Log event path. --reset-optimizer Reset optimizer. --load-embedding=<path> Load embedding from checkpoint. --speaker-id=<N> Use specific speaker of data in case for multi-speaker datasets. -h, --help Show this help message and exit """ from docopt import docopt import sys from os.path import dirname, join from tqdm import tqdm, trange from datetime import datetime # The deepvoice3 model from dv3.deepvoice3_pytorch import frontend, builder import dv3.audio import dv3.lrschedule import torch from torch.utils import data as data_utils from torch.autograd import Variable from torch import nn from torch import optim import torch.backends.cudnn as cudnn from torch.utils import data as data_utils from torch.utils.data.sampler import Sampler import numpy as np from numba import jit from nnmnkwii.datasets import FileSourceDataset, FileDataSource from os.path import join, expanduser import random import librosa.display from matplotlib import pyplot as plt import sys import os from tensorboardX import SummaryWriter from matplotlib import cm from warnings import warn from dv3.hparams import hparams, hparams_debug_string fs = hparams.sample_rate global_step = 0 global_epoch = 0 use_cuda = torch.cuda.is_available() if use_cuda: cudnn.benchmark = False _frontend = None # to be set later def _pad(seq, max_len, constant_values=0): return np.pad(seq, (0, max_len - len(seq)), mode='constant', constant_values=constant_values) def _pad_2d(x, max_len, b_pad=0): x = np.pad(x, [(b_pad, max_len - len(x) - b_pad), (0, 0)], mode="constant", constant_values=0) return x def plot_alignment(alignment, path, info=None): fig, ax = plt.subplots() im = ax.imshow( alignment, aspect='auto', origin='lower', interpolation='none') fig.colorbar(im, ax=ax) xlabel = 'Decoder timestep' if info is not None: xlabel += '\n\n' + info plt.xlabel(xlabel) plt.ylabel('Encoder timestep') plt.tight_layout() plt.savefig(path, format='png') plt.close() class TextDataSource(FileDataSource): def __init__(self, data_root, speaker_id=None): self.data_root = data_root self.speaker_ids = None self.multi_speaker = False # If not None, filter by speaker_id self.speaker_id = speaker_id def collect_files(self): meta = join(self.data_root, "train.txt") with open(meta, "rb") as f: lines = f.readlines() l = lines[0].decode("utf-8").split("|") assert len(l) == 4 or len(l) == 5 self.multi_speaker = len(l) == 5 texts = list(map(lambda l: l.decode("utf-8").split("|")[3], lines)) if self.multi_speaker: speaker_ids = list(map(lambda l: int(l.decode("utf-8").split("|")[-1]), lines)) # Filter by speaker_id # using multi-speaker dataset as a single speaker dataset if self.speaker_id is not None: indices = np.array(speaker_ids) == self.speaker_id texts = list(np.array(texts)[indices]) self.multi_speaker = False return texts return texts, speaker_ids else: return texts def collect_features(self, *args): if self.multi_speaker: text, speaker_id = args else: text = args[0] seq = _frontend.text_to_sequence(text, p=hparams.replace_pronunciation_prob) if self.multi_speaker: return np.asarray(seq, dtype=np.int32), int(speaker_id) else: return np.asarray(seq, dtype=np.int32) class _NPYDataSource(FileDataSource): def __init__(self, data_root, col, speaker_id=None): self.data_root = data_root self.col = col self.frame_lengths = [] self.speaker_id = speaker_id def collect_files(self): meta = join(self.data_root, "train.txt") with open(meta, "rb") as f: lines = f.readlines() l = lines[0].decode("utf-8").split("|") assert len(l) == 4 or len(l) == 5 multi_speaker = len(l) == 5 self.frame_lengths = list( map(lambda l: int(l.decode("utf-8").split("|")[2]), lines)) paths = list(map(lambda l: l.decode("utf-8").split("|")[self.col], lines)) paths = list(map(lambda f: join(self.data_root, f), paths)) if multi_speaker and self.speaker_id is not None: speaker_ids = list(map(lambda l: int(l.decode("utf-8").split("|")[-1]), lines)) # Filter by speaker_id # using multi-speaker dataset as a single speaker dataset indices = np.array(speaker_ids) == self.speaker_id paths = list(np.array(paths)[indices]) self.frame_lengths = list(np.array(self.frame_lengths)[indices]) # aha, need to cast numpy.int64 to int self.frame_lengths = list(map(int, self.frame_lengths)) return paths def collect_features(self, path): return np.load(path) class MelSpecDataSource(_NPYDataSource): def __init__(self, data_root, speaker_id=None): super(MelSpecDataSource, self).__init__(data_root, 1, speaker_id) class LinearSpecDataSource(_NPYDataSource): def __init__(self, data_root, speaker_id=None): super(LinearSpecDataSource, self).__init__(data_root, 0, speaker_id) class PartialyRandomizedSimilarTimeLengthSampler(Sampler): """Partially randmoized sampler 1. Sort by lengths 2. Pick a small patch and randomize it 3. Permutate mini-batchs """ def __init__(self, lengths, batch_size=16, batch_group_size=None, permutate=True): self.lengths, self.sorted_indices = torch.sort(torch.LongTensor(lengths)) self.batch_size = batch_size if batch_group_size is None: batch_group_size = min(batch_size * 32, len(self.lengths)) if batch_group_size % batch_size != 0: batch_group_size -= batch_group_size % batch_size self.batch_group_size = batch_group_size assert batch_group_size % batch_size == 0 self.permutate = permutate def __iter__(self): indices = self.sorted_indices.clone() batch_group_size = self.batch_group_size s, e = 0, 0 for i in range(len(indices) // batch_group_size): s = i * batch_group_size e = s + batch_group_size random.shuffle(indices[s:e]) # Permutate batches if self.permutate: perm = np.arange(len(indices[:e]) // self.batch_size) random.shuffle(perm) indices[:e] = indices[:e].view(-1, self.batch_size)[perm, :].view(-1) # Handle last elements s += batch_group_size if s < len(indices): random.shuffle(indices[s:]) return iter(indices) def __len__(self): return len(self.sorted_indices) class PyTorchDataset(object): def __init__(self, X, Mel, Y): self.X = X self.Mel = Mel self.Y = Y # alias self.multi_speaker = X.file_data_source.multi_speaker def __getitem__(self, idx): if self.multi_speaker: text, speaker_id = self.X[idx] return text, self.Mel[idx], self.Y[idx], speaker_id else: return self.X[idx], self.Mel[idx], self.Y[idx] def __len__(self): return len(self.X) def sequence_mask(sequence_length, max_len=None): if max_len is None: max_len = sequence_length.data.max() batch_size = sequence_length.size(0) seq_range = torch.arange(0, max_len).long() seq_range_expand = seq_range.unsqueeze(0).expand(batch_size, max_len) seq_range_expand = Variable(seq_range_expand) if sequence_length.is_cuda: seq_range_expand = seq_range_expand.cuda() seq_length_expand = sequence_length.unsqueeze(1) \ .expand_as(seq_range_expand) return (seq_range_expand < seq_length_expand).float() class MaskedL1Loss(nn.Module): def __init__(self): super(MaskedL1Loss, self).__init__() self.criterion = nn.L1Loss(size_average=False) def forward(self, input, target, lengths=None, mask=None, max_len=None): if lengths is None and mask is None: raise RuntimeError("Should provide either lengths or mask") # (B, T, 1) if mask is None: mask = sequence_mask(lengths, max_len).unsqueeze(-1) # (B, T, D) mask_ = mask.expand_as(input) loss = self.criterion(input * mask_, target * mask_) return loss / mask_.sum() def collate_fn(batch): """Create batch""" r = hparams.outputs_per_step downsample_step = hparams.downsample_step multi_speaker = len(batch[0]) == 4 # Lengths input_lengths = [len(x[0]) for x in batch] max_input_len = max(input_lengths) target_lengths = [len(x[1]) for x in batch] max_target_len = max(target_lengths) if max_target_len % r != 0: max_target_len += r - max_target_len % r assert max_target_len % r == 0 if max_target_len % downsample_step != 0: max_target_len += downsample_step - max_target_len % downsample_step assert max_target_len % downsample_step == 0 # Set 0 for zero beginning padding # imitates initial decoder states b_pad = r max_target_len += b_pad * downsample_step a = np.array([_pad(x[0], max_input_len) for x in batch], dtype=np.int) x_batch = torch.LongTensor(a) input_lengths = torch.LongTensor(input_lengths) target_lengths = torch.LongTensor(target_lengths) b = np.array([_pad_2d(x[1], max_target_len, b_pad=b_pad) for x in batch], dtype=np.float32) mel_batch = torch.FloatTensor(b) c = np.array([_pad_2d(x[2], max_target_len, b_pad=b_pad) for x in batch], dtype=np.float32) y_batch = torch.FloatTensor(c) # text positions text_positions = np.array([_pad(np.arange(1, len(x[0]) + 1), max_input_len) for x in batch], dtype=np.int) text_positions = torch.LongTensor(text_positions) max_decoder_target_len = max_target_len // r // downsample_step # frame positions s, e = 1, max_decoder_target_len + 1 # if b_pad > 0: # s, e = s - 1, e - 1 frame_positions = torch.arange(s, e).long().unsqueeze(0).expand( len(batch), max_decoder_target_len) # done flags done = np.array([_pad(np.zeros(len(x[1]) // r // downsample_step - 1), max_decoder_target_len, constant_values=1) for x in batch]) done = torch.FloatTensor(done).unsqueeze(-1) if multi_speaker: speaker_ids = torch.LongTensor([x[3] for x in batch]) else: speaker_ids = None return x_batch, input_lengths, mel_batch, y_batch, \ (text_positions, frame_positions), done, target_lengths, speaker_ids def time_string(): return datetime.now().strftime('%Y-%m-%d %H:%M') def save_alignment(path, attn): plot_alignment(attn.T, path, info="{}, {}, step={}".format( hparams.builder, time_string(), global_step)) def prepare_spec_image(spectrogram): # [0, 1] spectrogram = (spectrogram - np.min(spectrogram)) / (np.max(spectrogram) - np.min(spectrogram)) spectrogram = np.flip(spectrogram, axis=1) # flip against freq axis return np.uint8(cm.magma(spectrogram.T) * 255) def eval_model(global_step, writer, model, checkpoint_dir, ismultispeaker): # harded coded texts = [ "Scientists at the CERN laboratory say they have discovered a new particle.", "There's a way to measure the acute emotional intelligence that has never gone out of style.", "President Trump met with other leaders at the Group of 20 conference.", "Generative adversarial network or variational auto-encoder.", "Please call Stella.", "Some have accepted this as a miracle without any physical explanation.", ] import dv3.synthesis synthesis._frontend = _frontend eval_output_dir = join(checkpoint_dir, "eval") os.makedirs(eval_output_dir, exist_ok=True) # hard coded speaker_ids = [0, 1, 10] if ismultispeaker else [None] for speaker_id in speaker_ids: speaker_str = "multispeaker{}".format(speaker_id) if speaker_id is not None else "single" for idx, text in enumerate(texts): signal, alignment, _, mel = synthesis.tts( model, text, p=0, speaker_id=speaker_id, fast=False) signal /= np.max(np.abs(signal)) # Alignment path = join(eval_output_dir, "step{:09d}_text{}_{}_alignment.png".format( global_step, idx, speaker_str)) save_alignment(path, alignment) tag = "eval_averaged_alignment_{}_{}".format(idx, speaker_str) writer.add_image(tag, np.uint8(cm.viridis(np.flip(alignment, 1).T) * 255), global_step) # Mel writer.add_image("(Eval) Predicted mel spectrogram text{}_{}".format(idx, speaker_str), prepare_spec_image(mel), global_step) # Audio path = join(eval_output_dir, "step{:09d}_text{}_{}_predicted.wav".format( global_step, idx, speaker_str)) dv3.audio.save_wav(signal, path) try: writer.add_audio("(Eval) Predicted audio signal {}_{}".format(idx, speaker_str), signal, global_step, sample_rate=fs) except Exception as e: warn(str(e)) pass def save_states(global_step, writer, mel_outputs, linear_outputs, attn, mel, y, input_lengths, checkpoint_dir=None): print("Save intermediate states at step {}".format(global_step)) # idx = np.random.randint(0, len(input_lengths)) idx = min(1, len(input_lengths) - 1) input_length = input_lengths[idx] # Alignment # Multi-hop attention if attn is not None and attn.dim() == 4: for i, alignment in enumerate(attn): alignment = alignment[idx].cpu().data.numpy() tag = "alignment_layer{}".format(i + 1) writer.add_image(tag, np.uint8(cm.viridis(np.flip(alignment, 1).T) * 255), global_step) # save files as well for now alignment_dir = join(checkpoint_dir, "alignment_layer{}".format(i + 1)) os.makedirs(alignment_dir, exist_ok=True) path = join(alignment_dir, "step{:09d}_layer_{}_alignment.png".format( global_step, i + 1)) save_alignment(path, alignment) # Save averaged alignment alignment_dir = join(checkpoint_dir, "alignment_ave") os.makedirs(alignment_dir, exist_ok=True) path = join(alignment_dir, "step{:09d}_alignment.png".format(global_step)) alignment = attn.mean(0)[idx].cpu().data.numpy() save_alignment(path, alignment) tag = "averaged_alignment" writer.add_image(tag, np.uint8(cm.viridis(np.flip(alignment, 1).T) * 255), global_step) # Predicted mel spectrogram if mel_outputs is not None: mel_output = mel_outputs[idx].cpu().data.numpy() mel_output = prepare_spec_image(dv3.audio._denormalize(mel_output)) writer.add_image("Predicted mel spectrogram", mel_output, global_step) # Predicted spectrogram if linear_outputs is not None: linear_output = linear_outputs[idx].cpu().data.numpy() spectrogram = prepare_spec_image(dv3.audio._denormalize(linear_output)) writer.add_image("Predicted linear spectrogram", spectrogram, global_step) # Predicted audio signal signal = dv3.audio.inv_spectrogram(linear_output.T) signal /= np.max(np.abs(signal)) path = join(checkpoint_dir, "step{:09d}_predicted.wav".format( global_step)) try: writer.add_audio("Predicted audio signal", signal, global_step, sample_rate=fs) except Exception as e: warn(str(e)) pass dv3.audio.save_wav(signal, path) # Target mel spectrogram if mel_outputs is not None: mel_output = mel[idx].cpu().data.numpy() mel_output = prepare_spec_image(dv3.audio._denormalize(mel_output)) writer.add_image("Target mel spectrogram", mel_output, global_step) # Target spectrogram if linear_outputs is not None: linear_output = y[idx].cpu().data.numpy() spectrogram = prepare_spec_image(dv3.audio._denormalize(linear_output)) writer.add_image("Target linear spectrogram", spectrogram, global_step) def logit(x, eps=1e-8): return torch.log(x + eps) - torch.log(1 - x + eps) def masked_mean(y, mask): # (B, T, D) mask_ = mask.expand_as(y) return (y * mask_).sum() / mask_.sum() def spec_loss(y_hat, y, mask, priority_bin=None, priority_w=0): masked_l1 = MaskedL1Loss() l1 = nn.L1Loss() w = hparams.masked_loss_weight # L1 loss if w > 0: assert mask is not None l1_loss = w * masked_l1(y_hat, y, mask=mask) + (1 - w) * l1(y_hat, y) else: assert mask is None l1_loss = l1(y_hat, y) # Priority L1 loss if priority_bin is not None and priority_w > 0: if w > 0: priority_loss = w * masked_l1( y_hat[:, :, :priority_bin], y[:, :, :priority_bin], mask=mask) \ + (1 - w) * l1(y_hat[:, :, :priority_bin], y[:, :, :priority_bin]) else: priority_loss = l1(y_hat[:, :, :priority_bin], y[:, :, :priority_bin]) l1_loss = (1 - priority_w) * l1_loss + priority_w * priority_loss # Binary divergence loss if hparams.binary_divergence_weight <= 0: binary_div = Variable(y.data.new(1).zero_()) else: y_hat_logits = logit(y_hat) z = -y * y_hat_logits + torch.log(1 + torch.exp(y_hat_logits)) if w > 0: binary_div = w * masked_mean(z, mask) + (1 - w) * z.mean() else: binary_div = z.mean() return l1_loss, binary_div @jit(nopython=True) def guided_attention(N, max_N, T, max_T, g): W = np.zeros((max_N, max_T), dtype=np.float32) for n in range(N): for t in range(T): W[n, t] = 1 - np.exp(-(n / N - t / T)**2 / (2 * g * g)) return W def guided_attentions(input_lengths, target_lengths, max_target_len, g=0.2): B = len(input_lengths) max_input_len = input_lengths.max() W = np.zeros((B, max_target_len, max_input_len), dtype=np.float32) for b in range(B): W[b] = guided_attention(input_lengths[b], max_input_len, target_lengths[b], max_target_len, g).T return W def train(model, data_loader, optimizer, writer, init_lr=0.002, checkpoint_dir=None, checkpoint_interval=None, nepochs=None, clip_thresh=1.0, train_seq2seq=True, train_postnet=True): if use_cuda: model = model.cuda() linear_dim = model.linear_dim r = hparams.outputs_per_step downsample_step = hparams.downsample_step current_lr = init_lr binary_criterion = nn.BCELoss() assert train_seq2seq or train_postnet global global_step, global_epoch while global_epoch < nepochs: running_loss = 0. for step, (x, input_lengths, mel, y, positions, done, target_lengths, speaker_ids) \ in tqdm(enumerate(data_loader)): model.train() ismultispeaker = speaker_ids is not None # Learning rate schedule if hparams.lr_schedule is not None: lr_schedule_f = getattr(dv3.lrschedule, hparams.lr_schedule) current_lr = lr_schedule_f( init_lr, global_step, **hparams.lr_schedule_kwargs) for param_group in optimizer.param_groups: param_group['lr'] = current_lr optimizer.zero_grad() # Used for Position encoding text_positions, frame_positions = positions # Downsample mel spectrogram if downsample_step > 1: mel = mel[:, 0::downsample_step, :].contiguous() # Lengths input_lengths = input_lengths.long().numpy() decoder_lengths = target_lengths.long().numpy() // r // downsample_step # Feed data x, mel, y = Variable(x), Variable(mel), Variable(y) text_positions = Variable(text_positions) frame_positions = Variable(frame_positions) done = Variable(done) target_lengths = Variable(target_lengths) speaker_ids = Variable(speaker_ids) if ismultispeaker else None if use_cuda: if train_seq2seq: x = x.cuda() text_positions = text_positions.cuda() frame_positions = frame_positions.cuda() if train_postnet: y = y.cuda() mel = mel.cuda() done, target_lengths = done.cuda(), target_lengths.cuda() speaker_ids = speaker_ids.cuda() if ismultispeaker else None # Create mask if we use masked loss if hparams.masked_loss_weight > 0: # decoder output domain mask decoder_target_mask = sequence_mask( target_lengths / (r * downsample_step), max_len=mel.size(1)).unsqueeze(-1) if downsample_step > 1: # spectrogram-domain mask target_mask = sequence_mask( target_lengths, max_len=y.size(1)).unsqueeze(-1) else: target_mask = decoder_target_mask # shift mask decoder_target_mask = decoder_target_mask[:, r:, :] target_mask = target_mask[:, r:, :] else: decoder_target_mask, target_mask = None, None # Apply model if train_seq2seq and train_postnet: mel_outputs, linear_outputs, attn, done_hat = model( x, mel, speaker_ids=speaker_ids, text_positions=text_positions, frame_positions=frame_positions, input_lengths=input_lengths) elif train_seq2seq: assert speaker_ids is None mel_outputs, attn, done_hat, _ = model.seq2seq( x, mel, text_positions=text_positions, frame_positions=frame_positions, input_lengths=input_lengths) # reshape mel_outputs = mel_outputs.view(len(mel), -1, mel.size(-1)) linear_outputs = None elif train_postnet: assert speaker_ids is None linear_outputs = model.postnet(mel) mel_outputs, attn, done_hat = None, None, None # Losses w = hparams.binary_divergence_weight # mel: if train_seq2seq: mel_l1_loss, mel_binary_div = spec_loss( mel_outputs[:, :-r, :], mel[:, r:, :], decoder_target_mask) mel_loss = (1 - w) * mel_l1_loss + w * mel_binary_div # done: if train_seq2seq: done_loss = binary_criterion(done_hat, done) # linear: if train_postnet: n_priority_freq = int(hparams.priority_freq / (fs * 0.5) * linear_dim) linear_l1_loss, linear_binary_div = spec_loss( linear_outputs[:, :-r, :], y[:, r:, :], target_mask, priority_bin=n_priority_freq, priority_w=hparams.priority_freq_weight) linear_loss = (1 - w) * linear_l1_loss + w * linear_binary_div # Combine losses if train_seq2seq and train_postnet: loss = mel_loss + linear_loss + done_loss elif train_seq2seq: loss = mel_loss + done_loss elif train_postnet: loss = linear_loss # attention if train_seq2seq and hparams.use_guided_attention: soft_mask = guided_attentions(input_lengths, decoder_lengths, attn.size(-2), g=hparams.guided_attention_sigma) soft_mask = Variable(torch.from_numpy(soft_mask)) soft_mask = soft_mask.cuda() if use_cuda else soft_mask attn_loss = (attn * soft_mask).mean() loss += attn_loss if global_step > 0 and global_step % checkpoint_interval == 0: save_states( global_step, writer, mel_outputs, linear_outputs, attn, mel, y, input_lengths, checkpoint_dir) save_checkpoint( model, optimizer, global_step, checkpoint_dir, global_epoch, train_seq2seq, train_postnet) if global_step > 0 and global_step % hparams.eval_interval == 0: eval_model(global_step, writer, model, checkpoint_dir, ismultispeaker) # Update loss.backward() if clip_thresh > 0: grad_norm = torch.nn.utils.clip_grad_norm( model.get_trainable_parameters(), clip_thresh) optimizer.step() # Logs writer.add_scalar("loss", float(loss.data[0]), global_step) if train_seq2seq: writer.add_scalar("done_loss", float(done_loss.data[0]), global_step) writer.add_scalar("mel loss", float(mel_loss.data[0]), global_step) writer.add_scalar("mel_l1_loss", float(mel_l1_loss.data[0]), global_step) writer.add_scalar("mel_binary_div_loss", float(mel_binary_div.data[0]), global_step) if train_postnet: writer.add_scalar("linear_loss", float(linear_loss.data[0]), global_step) writer.add_scalar("linear_l1_loss", float(linear_l1_loss.data[0]), global_step) writer.add_scalar("linear_binary_div_loss", float( linear_binary_div.data[0]), global_step) if train_seq2seq and hparams.use_guided_attention: writer.add_scalar("attn_loss", float(attn_loss.data[0]), global_step) if clip_thresh > 0: writer.add_scalar("gradient norm", grad_norm, global_step) writer.add_scalar("learning rate", current_lr, global_step) global_step += 1 running_loss += loss.data[0] averaged_loss = running_loss / (len(data_loader)) writer.add_scalar("loss (per epoch)", averaged_loss, global_epoch) print("Loss: {}".format(running_loss / (len(data_loader)))) global_epoch += 1 def save_checkpoint(model, optimizer, step, checkpoint_dir, epoch, train_seq2seq, train_postnet): if train_seq2seq and train_postnet: suffix = "" m = model elif train_seq2seq: suffix = "_seq2seq" m = model.seq2seq elif train_postnet: suffix = "_postnet" m = model.postnet checkpoint_path = join( checkpoint_dir, "checkpoint_step{:09d}{}.pth".format(global_step, suffix)) optimizer_state = optimizer.state_dict() if hparams.save_optimizer_state else None torch.save({ "state_dict": m.state_dict(), "optimizer": optimizer_state, "global_step": step, "global_epoch": epoch, }, checkpoint_path) print("Saved checkpoint:", checkpoint_path) def build_model(): model = getattr(builder, hparams.builder)( n_speakers=hparams.n_speakers, speaker_embed_dim=hparams.speaker_embed_dim, n_vocab=_frontend.n_vocab, embed_dim=hparams.text_embed_dim, mel_dim=hparams.num_mels, linear_dim=hparams.fft_size // 2 + 1, r=hparams.outputs_per_step, downsample_step=hparams.downsample_step, padding_idx=hparams.padding_idx, dropout=hparams.dropout, kernel_size=hparams.kernel_size, encoder_channels=hparams.encoder_channels, decoder_channels=hparams.decoder_channels, converter_channels=hparams.converter_channels, use_memory_mask=hparams.use_memory_mask, trainable_positional_encodings=hparams.trainable_positional_encodings, force_monotonic_attention=hparams.force_monotonic_attention, use_decoder_state_for_postnet_input=hparams.use_decoder_state_for_postnet_input, max_positions=hparams.max_positions, speaker_embedding_weight_std=hparams.speaker_embedding_weight_std, freeze_embedding=hparams.freeze_embedding, window_ahead=hparams.window_ahead, window_backward=hparams.window_backward, key_projection=hparams.key_projection, value_projection=hparams.value_projection, ) return model def load_checkpoint(path, model, optimizer, reset_optimizer): global global_step global global_epoch print("Load checkpoint from: {}".format(path)) checkpoint = torch.load(path) model.load_state_dict(checkpoint["state_dict"]) if not reset_optimizer: optimizer_state = checkpoint["optimizer"] if optimizer_state is not None: print("Load optimizer state from {}".format(path)) optimizer.load_state_dict(checkpoint["optimizer"]) global_step = checkpoint["global_step"] global_epoch = checkpoint["global_epoch"] return model def _load_embedding(path, model): state = torch.load(path)["state_dict"] key = "seq2seq.encoder.embed_tokens.weight" model.seq2seq.encoder.embed_tokens.weight.data = state[key] # https://discuss.pytorch.org/t/how-to-load-part-of-pre-trained-model/1113/3 def restore_parts(path, model): print("Restore part of the model from: {}".format(path)) state = torch.load(path)["state_dict"] model_dict = model.state_dict() valid_state_dict = {k: v for k, v in state.items() if k in model_dict} model_dict.update(valid_state_dict) model.load_state_dict(model_dict) if __name__ == "__main__": args = docopt(__doc__) print("Command line args:\n", args) checkpoint_dir = args["--checkpoint-dir"] checkpoint_path = args["--checkpoint"] checkpoint_seq2seq_path = args["--checkpoint-seq2seq"] checkpoint_postnet_path = args["--checkpoint-postnet"] load_embedding = args["--load-embedding"] checkpoint_restore_parts = args["--restore-parts"] speaker_id = args["--speaker-id"] speaker_id = int(speaker_id) if speaker_id is not None else None data_root = args["--data-root"] if data_root is None: data_root = join(dirname(__file__), "data", "ljspeech") log_event_path = args["--log-event-path"] reset_optimizer = args["--reset-optimizer"] # Which model to be trained train_seq2seq = args["--train-seq2seq-only"] train_postnet = args["--train-postnet-only"] # train both if not specified if not train_seq2seq and not train_postnet: print("Training whole model") train_seq2seq, train_postnet = True, True if train_seq2seq: print("Training seq2seq model") elif train_postnet: print("Training postnet model") else: assert False, "must be specified wrong args" # Override hyper parameters hparams.parse(args["--hparams"]) print(hparams_debug_string()) assert hparams.name == "deepvoice3" # Presets if hparams.preset is not None and hparams.preset != "": preset = hparams.presets[hparams.preset] import json hparams.parse_json(json.dumps(preset)) print("Override hyper parameters with preset \"{}\": {}".format( hparams.preset, json.dumps(preset, indent=4))) _frontend = getattr(frontend, hparams.frontend) os.makedirs(checkpoint_dir, exist_ok=True) # Input dataset definitions X = FileSourceDataset(TextDataSource(data_root, speaker_id)) Mel = FileSourceDataset(MelSpecDataSource(data_root, speaker_id)) Y = FileSourceDataset(LinearSpecDataSource(data_root, speaker_id)) # Prepare sampler frame_lengths = Mel.file_data_source.frame_lengths sampler = PartialyRandomizedSimilarTimeLengthSampler( frame_lengths, batch_size=hparams.batch_size) # Dataset and Dataloader setup dataset = PyTorchDataset(X, Mel, Y) data_loader = data_utils.DataLoader( dataset, batch_size=hparams.batch_size, num_workers=hparams.num_workers, sampler=sampler, collate_fn=collate_fn, pin_memory=hparams.pin_memory) print("dataloader_prepared") # Model model = build_model() if use_cuda: model = model.cuda() optimizer = optim.Adam(model.get_trainable_parameters(), lr=hparams.initial_learning_rate, betas=( hparams.adam_beta1, hparams.adam_beta2), eps=hparams.adam_eps, weight_decay=hparams.weight_decay) if checkpoint_restore_parts is not None: restore_parts(checkpoint_restore_parts, model) # Load checkpoints if checkpoint_postnet_path is not None: load_checkpoint(checkpoint_postnet_path, model.postnet, optimizer, reset_optimizer) if checkpoint_seq2seq_path is not None: load_checkpoint(checkpoint_seq2seq_path, model.seq2seq, optimizer, reset_optimizer) if checkpoint_path is not None: load_checkpoint(checkpoint_path, model, optimizer, reset_optimizer) # Load embedding if load_embedding is not None: print("Loading embedding from {}".format(load_embedding)) _load_embedding(load_embedding, model) # Setup summary writer for tensorboard if log_event_path is None: log_event_path = "log/run-test" + str(datetime.now()).replace(" ", "_") print("Los event path: {}".format(log_event_path)) writer = SummaryWriter(log_dir=log_event_path) # Train! try: train(model, data_loader, optimizer, writer, init_lr=hparams.initial_learning_rate, checkpoint_dir=checkpoint_dir, checkpoint_interval=hparams.checkpoint_interval, nepochs=hparams.nepochs, clip_thresh=hparams.clip_thresh, train_seq2seq=train_seq2seq, train_postnet=train_postnet) except KeyboardInterrupt: save_checkpoint( model, optimizer, global_step, checkpoint_dir, global_epoch, train_seq2seq, train_postnet) print("Finished") sys.exit(0)
Fusion/deltat.py
coylen/pySG
264
2716
# deltat.py time difference calculation for sensor fusion # Released under the MIT License (MIT) # Copyright (c) 2018 <NAME> # Provides TimeDiff function and DeltaT class. # The following notes cover special cases. Where the device performing fusion # is linked to the IMU and is running MicroPython no special treatment is # needed. # The special cases are: # 1. Device connected to the IMU is linked to a separate platform doing fusion. # 2. Either or both are not running MicroPython. # If the device providing the vectors is not running on MicroPython the user # must supply timestamps and a function capable of differencing these. The # function is passed to the Fusion constructor and the timestamp is provided # along with the vector, being the time when the vector was acquired. # If the device providing the vectors is running MicroPython but fusion is # being performed on a device which is not, the user must provide their own # implementation of ticks_diff which accounts for MicroPython rollover and # must supply the returned ticks_us() values as a timestamp. # Under MicroPython TimeDiff(start, end) uses time.ticks_diff. # A DeltaT instance, called with function call syntax, returns a time # difference from the previous call as a float value. Units seconds. # If running under MicroPython and no time differencing function is supplied # to the Fusion constructor it uses time.ticks_us as its time source and a # default timediff function using time.ticks_diff() with a division by 1e6. # If time differencing function is supplied a timestamp must be passsed as an # arg to instance calls of Fusion.update() or Fusion.update_nomag(). In the # async version the user supplied read_coro() must return a timestamp with the # vector. # On 1st pass dt evidently can't be computed. A notional value of 100μs is # returned. The Madgwick algorithm takes seconds to stabilise. try: import utime as time except ImportError: import time is_micropython = hasattr(time, 'ticks_diff') class DeltaT(): def __init__(self, timediff): if timediff is None: self.expect_ts = False if is_micropython: self.timediff = lambda start, end : time.ticks_diff(start, end)/1000000 else: raise ValueError('You must define a timediff function') else: self.expect_ts = True self.timediff = timediff self.start_time = None def __call__(self, ts): if self.expect_ts: if ts is None: raise ValueError('Timestamp expected but not supplied.') else: if is_micropython: ts = time.ticks_us() else: raise RuntimeError('Not MicroPython: provide timestamps and a timediff function') # ts is now valid if self.start_time is None: # 1st call: self.start_time is invalid self.start_time = ts return 0.0001 # 100μs notional delay. 1st reading is invalid in any case dt = self.timediff(ts, self.start_time) self.start_time = ts return dt
fuzzers/ECP5/050-pio_routing/fuzzer.py
umarcor/prjtrellis
256
2761
<reponame>umarcor/prjtrellis from fuzzconfig import FuzzConfig import interconnect import nets import pytrellis import re jobs = [ { "pos": [(47, 0), (48, 0), (49, 0)], "cfg": FuzzConfig(job="PIOROUTEL", family="ECP5", device="LFE5U-45F", ncl="pioroute.ncl", tiles=["MIB_R47C0:PICL0", "MIB_R48C0:PICL1", "MIB_R49C0:PICL2"]) }, { "pos": [(47, 90), (48, 90), (49, 90)], "cfg": FuzzConfig(job="PIOROUTER", family="ECP5", device="LFE5U-45F", ncl="pioroute.ncl", tiles=["MIB_R47C90:PICR0", "MIB_R48C90:PICR1", "MIB_R49C90:PICR2"]) }, { "pos": [(0, 22), (1, 23), (0, 22), (1, 23)], "cfg": FuzzConfig(job="PIOROUTET", family="ECP5", device="LFE5U-45F", ncl="pioroute.ncl", tiles=["MIB_R0C22:PIOT0", "MIB_R0C23:PIOT1", "MIB_R1C22:PICT0", "MIB_R1C23:PICT1"]) }, { "pos": [(71, 11), (71, 12), (70, 11), (70, 12)], "cfg": FuzzConfig(job="PIOROUTET", family="ECP5", device="LFE5U-45F", ncl="pioroute.ncl", tiles=["MIB_R71C11:PICB0", "MIB_R71C12:PICB1"]) }, { "pos": [(71, 18), (70, 18)], "cfg": FuzzConfig(job="PIOROUTESB", family="ECP5", device="LFE5U-45F", ncl="pioroute_spicb.ncl", tiles=["MIB_R71C18:SPICB0"]) }, ] def main(): pytrellis.load_database("../../../database") for job in jobs: cfg = job["cfg"] cfg.setup() def nn_filter(net, netnames): return not nets.is_cib(net) orig_tiles = cfg.tiles for pos in job["pos"]: # Put fixed connections in the most appropriate tile target_tile = None for tile in orig_tiles: if "R{}C{}".format(pos[0], pos[1]) in tile: target_tile = tile break if target_tile is not None: cfg.tiles = [target_tile] + [_ for _ in orig_tiles if _ != orig_tiles] else: cfg.tiles = orig_tiles interconnect.fuzz_interconnect(config=cfg, location=pos, netname_predicate=nn_filter, netname_filter_union=False, func_cib=True) if __name__ == "__main__": main()
templates/integration/__init__.py
p7g/dd-trace-py
308
2768
""" The foo integration instruments the bar and baz features of the foo library. Enabling ~~~~~~~~ The foo integration is enabled automatically when using :ref:`ddtrace-run <ddtracerun>` or :ref:`patch_all() <patch_all>`. Or use :ref:`patch() <patch>` to manually enable the integration:: from ddtrace import patch patch(foo=True) Global Configuration ~~~~~~~~~~~~~~~~~~~~ .. py:data:: ddtrace.config.foo["service"] The service name reported by default for foo instances. This option can also be set with the ``DD_FOO_SERVICE`` environment variable. Default: ``"foo"`` Instance Configuration ~~~~~~~~~~~~~~~~~~~~~~ To configure the foo integration on an per-instance basis use the ``Pin`` API:: import foo from ddtrace import Pin myfoo = foo.Foo() Pin.override(myfoo, service="myfoo") """ from ...internal.utils.importlib import require_modules required_modules = ["foo"] with require_modules(required_modules) as missing_modules: if not missing_modules: from .patch import patch from .patch import unpatch __all__ = ["patch", "unpatch"]
system/lib/update_musl.py
RyanCargan/emscripten
6,541
2772
#!/usr/bin/env python3 # Copyright 2021 The Emscripten Authors. All rights reserved. # Emscripten is available under two separate licenses, the MIT license and the # University of Illinois/NCSA Open Source License. Both these licenses can be # found in the LICENSE file. """Simple script for updating musl from external git repo. The upstream sources, along with our local changes, live at: https://github.com/emscripten-core/musl To update musl first make sure all changes from the emscripten repo are present in the `emscripten` branch of the above repo. Then run `git merge v<musl_version>` to pull in the latest musl changes from a given musl version. Once any merge conflict are resolved those change can then be copied back into emscripten using this script. """ import os import sys import shutil import subprocess script_dir = os.path.abspath(os.path.dirname(__file__)) local_src = os.path.join(script_dir, 'libc', 'musl') exclude_dirs = ( # Top level directories we don't include 'tools', 'obj', 'lib', 'crt', 'musl', 'compat', # Parts of src we don't build 'malloc', # Arch-specific code we don't use 'arm', 'x32', 'sh', 'i386', 'x86_64', 'aarch64', 'riscv64', 's390x', 'mips', 'mips64', 'mipsn32', 'powerpc', 'powerpc64', 'm68k', 'microblaze', 'or1k', 'generic') musl_dir = os.path.abspath(sys.argv[1]) def should_ignore(name): return name in exclude_dirs or name[0] == '.' def ignore(dirname, contents): return [c for c in contents if should_ignore(c)] def main(): assert os.path.exists(musl_dir) # Remove old version shutil.rmtree(local_src) # Copy new version into place shutil.copytree(musl_dir, local_src, ignore=ignore) if __name__ == '__main__': main()
lldb/test/API/lang/swift/optimized_code/bound_generic_enum/TestSwiftOptimizedBoundGenericEnum.py
LaudateCorpus1/llvm-project
605
2781
<gh_stars>100-1000 import lldb from lldbsuite.test.decorators import * import lldbsuite.test.lldbtest as lldbtest import lldbsuite.test.lldbutil as lldbutil import os import unittest2 class TestSwiftOptimizedBoundGenericEnum(lldbtest.TestBase): mydir = lldbtest.TestBase.compute_mydir(__file__) @swiftTest def test(self): """Test the bound generic enum types in "optimized" code.""" self.build() target, process, thread, bkpt = lldbutil.run_to_source_breakpoint(self, 'break one', lldb.SBFileSpec('main.swift')) bkpt_two = target.BreakpointCreateBySourceRegex( 'break two', lldb.SBFileSpec('main.swift')) self.assertGreater(bkpt_two.GetNumLocations(), 0) var_self = self.frame().FindVariable("self") # FIXME, this fails with a data extractor error. lldbutil.check_variable(self, var_self, False, value=None) lldbutil.continue_to_breakpoint(process, bkpt_two) var_self = self.frame().FindVariable("self") lldbutil.check_variable(self, var_self, True, value="success")
hi-ml-histopathology/src/histopathology/preprocessing/tiling.py
kumar-pratik/hi-ml
402
2798
# ------------------------------------------------------------------------------------------ # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License (MIT). See LICENSE in the repo root for license information. # ------------------------------------------------------------------------------------------ # These tiling implementations are adapted from PANDA Kaggle solutions, for example: # https://github.com/kentaroy47/Kaggle-PANDA-1st-place-solution/blob/master/src/data_process/a00_save_tiles.py from typing import Any, Optional, Tuple import numpy as np def get_1d_padding(length: int, tile_size: int) -> Tuple[int, int]: """Computes symmetric padding for `length` to be divisible by `tile_size`.""" pad = (tile_size - length % tile_size) % tile_size return (pad // 2, pad - pad // 2) def pad_for_tiling_2d(array: np.ndarray, tile_size: int, channels_first: Optional[bool] = True, **pad_kwargs: Any) -> Tuple[np.ndarray, np.ndarray]: """Symmetrically pads a 2D `array` such that both dimensions are divisible by `tile_size`. :param array: 2D image array. :param tile_size: Width/height of each tile in pixels. :param channels_first: Whether `array` is in CHW (`True`, default) or HWC (`False`) layout. :param pad_kwargs: Keyword arguments to be passed to `np.pad()` (e.g. `constant_values=0`). :return: A tuple containing: - `padded_array`: Resulting array, in the same CHW/HWC layout as the input. - `offset`: XY offset introduced by the padding. Add this to coordinates relative to the original array to obtain indices for the padded array. """ height, width = array.shape[1:] if channels_first else array.shape[:-1] padding_h = get_1d_padding(height, tile_size) padding_w = get_1d_padding(width, tile_size) padding = [padding_h, padding_w] channels_axis = 0 if channels_first else 2 padding.insert(channels_axis, (0, 0)) # zero padding on channels axis padded_array = np.pad(array, padding, **pad_kwargs) offset = (padding_w[0], padding_h[0]) return padded_array, np.array(offset) def tile_array_2d(array: np.ndarray, tile_size: int, channels_first: Optional[bool] = True, **pad_kwargs: Any) -> Tuple[np.ndarray, np.ndarray]: """Split an image array into square non-overlapping tiles. The array will be padded symmetrically if its dimensions are not exact multiples of `tile_size`. :param array: Image array. :param tile_size: Width/height of each tile in pixels. :param pad_kwargs: Keyword arguments to be passed to `np.pad()` (e.g. `constant_values=0`). :param channels_first: Whether `array` is in CHW (`True`, default) or HWC (`False`) layout. :return: A tuple containing: - `tiles`: A batch of tiles in NCHW layout. - `coords`: XY coordinates of each tile, in the same order. """ padded_array, (offset_w, offset_h) = pad_for_tiling_2d(array, tile_size, channels_first, **pad_kwargs) if channels_first: channels, height, width = padded_array.shape else: height, width, channels = padded_array.shape n_tiles_h = height // tile_size n_tiles_w = width // tile_size if channels_first: intermediate_shape = (channels, n_tiles_h, tile_size, n_tiles_w, tile_size) axis_order = (1, 3, 0, 2, 4) # (n_tiles_h, n_tiles_w, channels, tile_size, tile_size) output_shape = (n_tiles_h * n_tiles_w, channels, tile_size, tile_size) else: intermediate_shape = (n_tiles_h, tile_size, n_tiles_w, tile_size, channels) axis_order = (0, 2, 1, 3, 4) # (n_tiles_h, n_tiles_w, tile_size, tile_size, channels) output_shape = (n_tiles_h * n_tiles_w, tile_size, tile_size, channels) tiles = padded_array.reshape(intermediate_shape) # Split width and height axes tiles = tiles.transpose(axis_order) tiles = tiles.reshape(output_shape) # Flatten tile batch dimension # Compute top-left coordinates of every tile, relative to the original array's origin coords_h = tile_size * np.arange(n_tiles_h) - offset_h coords_w = tile_size * np.arange(n_tiles_w) - offset_w # Shape: (n_tiles_h * n_tiles_w, 2) coords = np.stack(np.meshgrid(coords_w, coords_h), axis=-1).reshape(-1, 2) return tiles, coords def assemble_tiles_2d(tiles: np.ndarray, coords: np.ndarray, fill_value: Optional[float] = np.nan, channels_first: Optional[bool] = True) -> Tuple[np.ndarray, np.ndarray]: """Assembles a 2D array from sequences of tiles and coordinates. :param tiles: Stack of tiles with batch dimension first. :param coords: XY tile coordinates, assumed to be spaced by multiples of `tile_size` (shape: [N, 2]). :param tile_size: Size of each tile; must be >0. :param fill_value: Value to assign to empty elements (default: `NaN`). :param channels_first: Whether each tile is in CHW (`True`, default) or HWC (`False`) layout. :return: A tuple containing: - `array`: The reassembled 2D array with the smallest dimensions to contain all given tiles. - `offset`: The lowest XY coordinates. - `offset`: XY offset introduced by the assembly. Add this to tile coordinates to obtain indices for the assembled array. """ if coords.shape[0] != tiles.shape[0]: raise ValueError(f"Tile coordinates and values must have the same length, " f"got {coords.shape[0]} and {tiles.shape[0]}") if channels_first: n_tiles, channels, tile_size, _ = tiles.shape else: n_tiles, tile_size, _, channels = tiles.shape tile_xs, tile_ys = coords.T x_min, x_max = min(tile_xs), max(tile_xs + tile_size) y_min, y_max = min(tile_ys), max(tile_ys + tile_size) width = x_max - x_min height = y_max - y_min output_shape = (channels, height, width) if channels_first else (height, width, channels) array = np.full(output_shape, fill_value) offset = np.array([-x_min, -y_min]) for idx in range(n_tiles): row = coords[idx, 1] + offset[1] col = coords[idx, 0] + offset[0] if channels_first: array[:, row:row + tile_size, col:col + tile_size] = tiles[idx] else: array[row:row + tile_size, col:col + tile_size, :] = tiles[idx] return array, offset
6.爬取豆瓣排行榜电影数据(含GUI界面版)/main.py
shengqiangzhang/examples-of-web-crawlers
12,023
2800
<reponame>shengqiangzhang/examples-of-web-crawlers # -*- coding:utf-8 -*- from uiObject import uiObject # main入口 if __name__ == '__main__': ui = uiObject() ui.ui_process()
doc/examples.py
Enerccio/mahjong
254
2804
<gh_stars>100-1000 from mahjong.hand_calculating.hand import HandCalculator from mahjong.meld import Meld from mahjong.hand_calculating.hand_config import HandConfig, OptionalRules from mahjong.shanten import Shanten from mahjong.tile import TilesConverter calculator = HandCalculator() # useful helper def print_hand_result(hand_result): print(hand_result.han, hand_result.fu) print(hand_result.cost['main']) print(hand_result.yaku) for fu_item in hand_result.fu_details: print(fu_item) print('') #################################################################### # Tanyao hand by ron # #################################################################### # we had to use all 14 tiles in that array tiles = TilesConverter.string_to_136_array(man='22444', pin='333567', sou='444') win_tile = TilesConverter.string_to_136_array(sou='4')[0] result = calculator.estimate_hand_value(tiles, win_tile) print_hand_result(result) #################################################################### # Tanyao hand by tsumo # #################################################################### result = calculator.estimate_hand_value(tiles, win_tile, config=HandConfig(is_tsumo=True)) print_hand_result(result) #################################################################### # Add open set to hand # #################################################################### melds = [Meld(meld_type=Meld.PON, tiles=TilesConverter.string_to_136_array(man='444'))] result = calculator.estimate_hand_value(tiles, win_tile, melds=melds, config=HandConfig(options=OptionalRules(has_open_tanyao=True))) print_hand_result(result) #################################################################### # Shanten calculation # #################################################################### shanten = Shanten() tiles = TilesConverter.string_to_34_array(man='13569', pin='123459', sou='443') result = shanten.calculate_shanten(tiles) print(result) #################################################################### # Kazoe as a sanbaiman # #################################################################### tiles = TilesConverter.string_to_136_array(man='22244466677788') win_tile = TilesConverter.string_to_136_array(man='7')[0] melds = [ Meld(Meld.KAN, TilesConverter.string_to_136_array(man='2222'), False) ] dora_indicators = [ TilesConverter.string_to_136_array(man='1')[0], TilesConverter.string_to_136_array(man='1')[0], TilesConverter.string_to_136_array(man='1')[0], TilesConverter.string_to_136_array(man='1')[0], ] config = HandConfig(is_riichi=True, options=OptionalRules(kazoe=HandConfig.KAZOE_SANBAIMAN)) result = calculator.estimate_hand_value(tiles, win_tile, melds, dora_indicators, config) print_hand_result(result) #################################################################### # Change the cost of yaku # #################################################################### config = HandConfig(is_renhou=True) # renhou as an yakuman - old style config.yaku.renhou.han_closed = 13 tiles = TilesConverter.string_to_136_array(man='22444', pin='333567', sou='444') win_tile = TilesConverter.string_to_136_array(sou='4')[0] result = calculator.estimate_hand_value(tiles, win_tile, config=config) print_hand_result(result)
tcapygen/layoutgen.py
Ahrvo-Trading-Systems/tcapy
189
2820
from __future__ import division, print_function __author__ = 'saeedamen' # <NAME> / <EMAIL> # # Copyright 2017 Cuemacro Ltd. - http//www.cuemacro.com / @cuemacro # # See the License for the specific language governing permissions and limitations under the License. # ## Web server components import dash_core_components as dcc import dash_html_components as html import base64 import os ## Date/time components import pandas as pd import datetime from datetime import timedelta from collections import OrderedDict from pandas.tseries.offsets import * from tcapy.vis.layoutdash import LayoutDash ######################################################################################################################## class LayoutDashImplGen(LayoutDash): """This implements the LayoutDash abstract class, to create the web based GUI for the tcapy application. It creates two web pages - detailed_page - for doing detailed tcapy analysis for a specific currency pair - aggregated_page - for more aggregated style analysis across multiple currency pairs and over multiple time periods """ def __init__(self, app=None, constants=None, url_prefix=''): super(LayoutDashImplGen, self).__init__(app=app, constants=constants, url_prefix=url_prefix) available_dates = pd.date_range( datetime.datetime.today().date() - timedelta(days=self._constants.gui_lookback_window), datetime.datetime.today().date(), freq=BDay()) times = pd.date_range("0:00", "23:59", freq="15min") ### create the possible values for drop down boxes on both pages # Reverse date list (for both detailed and aggregated pages) self.available_dates = [x.date() for x in available_dates[::-1]] # For detailed page only self.available_times = [t.strftime("%H:%M") for t in times] self.available_tickers = self._constants.available_tickers_dictionary['All'] self.available_venues = self._constants.available_venues_dictionary['All'] self.available_brokers = self._constants.available_brokers_dictionary['All'] self.available_algos = self._constants.available_algos_dictionary['All'] self.available_market_data = self._constants.available_market_data self.available_order_plot_lines = ['candlestick', 'mid', 'bid', 'ask', 'arrival', 'twap', 'vwap', 'buy trade', 'sell trade'] self.available_execution_plot_lines = ['candlestick', 'mid', 'bid', 'ask', 'buy trade', 'sell trade'] self.available_slippage_bounds = ['0.25', '0.5', '1.0', '1.25', '1.5', '2.0', 'bid/ask'] # For aggregated page only self.available_grouped_tickers = self._flatten_dictionary(self._constants.available_tickers_dictionary) self.available_grouped_venues = self._flatten_dictionary(self._constants.available_venues_dictionary) self.available_grouped_brokers = self._flatten_dictionary(self._constants.available_brokers_dictionary) self.available_grouped_algos = self._flatten_dictionary(self._constants.available_algos_dictionary) self.available_event_types = self._constants.available_event_types self.available_metrics = self._constants.available_metrics self.available_reload = ['no', 'yes'] self.available_visualization = ['yes', 'no'] self.construct_layout() def _flatten_dictionary(self, dictionary): available = dictionary['All'] available_groups = self._util_func.dict_key_list(dictionary.keys()) return self.flatten_list_of_strings([available_groups, available]) def construct_layout(self): self.page_content = html.Div([ dcc.Location(id='url', refresh=False), html.Div(id='page-content') ]) link_bar_dict = {'Detailed' : 'detailed', 'Aggregated' : 'aggregated', 'Compliance' : 'compliance'} trade_outliers_cols = ['Date', 'ticker', 'side', 'notional cur', 'benchmark', 'exec not', 'exec not in rep cur', 'slippage'] broker_cols = ['Date', 'by broker notional (rep cur)'] # Main page for detailed analysing of (eg. over the course of a few days) self.pages['detailed'] = html.Div([ self._sc.header_bar('FX: Detailed - Trader Analysis', img='logo.png'), self._sc.link_bar(link_bar_dict), self._sc.width_row_cell(html.B("Status: ok", id='detailed-status'), margin_left=5), self._sc.horizontal_bar(), # Dropdown selection boxes html.Div([ self._sc.drop_down(caption='Start Date', id={'start-date-val' : self.available_dates, 'start-time-val' : self.available_times}, prefix_id='detailed'), self._sc.drop_down(caption='Finish Date', id=OrderedDict([('finish-date-val', self.available_dates), ('finish-time-val', self.available_times)]), prefix_id='detailed'), self._sc.drop_down(caption='Ticker', id='ticker-val', prefix_id='detailed', drop_down_values=self.available_tickers), self._sc.drop_down(caption='Broker', id='broker-val', prefix_id='detailed', drop_down_values=self.available_grouped_brokers), self._sc.drop_down(caption='Algo', id='algo-val', prefix_id='detailed', drop_down_values=self.available_grouped_algos), self._sc.drop_down(caption='Venue', id='venue-val', prefix_id='detailed', drop_down_values=self.available_grouped_venues), self._sc.drop_down(caption='Market Data', id='market-data-val', prefix_id='detailed', drop_down_values=self.available_market_data), self._sc.drop_down(caption='Metric', id='metric-val', prefix_id='detailed', drop_down_values=self.available_metrics) ]), self._sc.horizontal_bar(), self._sc.button(caption='Calculate', id='calculation-button', prefix_id='detailed'), # self.button(caption = 'Print PDF', id = 'detailed-print-pdf-button', className = 'no-print'), # Orders self._sc.horizontal_bar(), self._sc.plot(caption='Orders: Timeline', id='order-candle-timeline-plot', prefix_id='detailed', element_add=self._sc.timeline_dropdown('detailed-order-candle-timeline-plot', self.available_order_plot_lines), downloadplot_caption='Download CSV', downloadplot_tag='order-candle-timeline-download-link', download_file='download_order_candle_timeline', height=500), self._sc.plot(caption='Orders: Markout', id='order-markout-plot', prefix_id='detailed', height=500), self._sc.plot(caption='Orders: Histogram vs PDF fit', id='order-dist-plot', prefix_id='detailed', height=500), # Execution trades self._sc.horizontal_bar(), self._sc.plot(caption='Executions: Timeline', id='execution-candle-timeline-plot', prefix_id='detailed', element_add=self._sc.timeline_dropdown('detailed-execution-candle-timeline-plot', self.available_execution_plot_lines), downloadplot_caption='Download CSV', downloadplot_tag='execution-candle-timeline-download-link', download_file='download_execution_candle_timeline.csv', height=500), self._sc.plot(caption='Executions: Markout', id='execution-markout-plot', prefix_id='detailed', height=500), self._sc.plot(caption='Executions: Histogram vs PDF fit', id='execution-dist-plot', prefix_id='detailed', height=500), # Detailed tcapy markout table for executions html.Div([ html.H3('Executions: Markout Table'), html.Div(id='detailed-execution-table') ], style={'width': '1000px', 'display': 'inline-block', 'marginBottom': 5, 'marginTop': 5, 'marginLeft': 5, 'marginRight': 5}), ], style={'width': '1000px', 'marginRight': 'auto', 'marginLeft': 'auto'}) ################################################################################################################ # Secondary page for analysing aggregated statistics over long periods of time, eg. who is the best broker? self.pages['aggregated'] = html.Div([ self._sc.header_bar('FX: Aggregated - Trader Analysis', img='logo.png'), self._sc.link_bar(link_bar_dict), self._sc.width_row_cell(html.B("Status: ok", id='aggregated-status'), margin_left=5), self._sc.horizontal_bar(), # dropdown selection boxes html.Div([ self._sc.drop_down(caption='Start Date', id='start-date-val', prefix_id='aggregated', drop_down_values=self.available_dates), self._sc.drop_down(caption='Finish Date', id='finish-date-val', prefix_id='aggregated', drop_down_values=self.available_dates), self._sc.drop_down(caption='Ticker', id='ticker-val', prefix_id='aggregated', drop_down_values=self.available_grouped_tickers, multiselect=True), self._sc.drop_down(caption='Broker', id='broker-val', prefix_id='aggregated', drop_down_values=self.available_grouped_brokers, multiselect=True), self._sc.drop_down(caption='Algo', id='algo-val', prefix_id='aggregated', drop_down_values=self.available_grouped_algos, multiselect=True), self._sc.drop_down(caption='Venue', id='venue-val', prefix_id='aggregated', drop_down_values=self.available_grouped_venues, multiselect=True), self._sc.drop_down(caption='Reload', id='reload-val', prefix_id='aggregated', drop_down_values=self.available_reload), self._sc.drop_down(caption='Market Data', id='market-data-val', prefix_id='aggregated', drop_down_values=self.available_market_data), self._sc.drop_down(caption='Event Type', id='event-type-val', prefix_id='aggregated', drop_down_values=self.available_event_types), self._sc.drop_down(caption='Metric', id='metric-val', prefix_id='aggregated', drop_down_values=self.available_metrics), ]), self._sc.horizontal_bar(), self._sc.button(caption='Calculate', id='calculation-button', prefix_id='aggregated'), # , msg_id='aggregated-status'), self._sc.horizontal_bar(), # self.date_picker_range(caption='Start/Finish Dates', id='aggregated-date-val', offset=[-7,-1]), self._sc.plot(caption='Aggregated Trader: Summary', id=['execution-by-ticker-bar-plot', 'execution-by-venue-bar-plot'], prefix_id='aggregated', height=500), self._sc.horizontal_bar(), self._sc.plot(caption='Aggregated Trader: Timeline', id='execution-by-ticker-timeline-plot', prefix_id='aggregated', height=500), self._sc.horizontal_bar(), self._sc.plot(caption='Aggregated Trader: PDF fit (' + self._constants.reporting_currency + ' notional)', id=['execution-by-ticker-dist-plot', 'execution-by-venue-dist-plot'], prefix_id='aggregated', height=500), self._sc.horizontal_bar() ], style={'width': '1000px', 'marginRight': 'auto', 'marginLeft': 'auto'}) ################################################################################################################ self.pages['compliance'] = html.Div([ self._sc.header_bar('FX: Compliance Analysis', img='logo.png'), self._sc.link_bar(link_bar_dict), self._sc.width_row_cell(html.B("Status: ok", id='compliance-status'), margin_left=5), self._sc.horizontal_bar(), # Dropdown selection boxes html.Div([ self._sc.drop_down(caption='Start Date', id='start-date-val', prefix_id='compliance', drop_down_values=self.available_dates), self._sc.drop_down(caption='Finish Date', id='finish-date-val', prefix_id='compliance', drop_down_values=self.available_dates), self._sc.drop_down(caption='Ticker', id='ticker-val', prefix_id='compliance', drop_down_values=self.available_grouped_tickers, multiselect=True), self._sc.drop_down(caption='Broker', id='broker-val', prefix_id='compliance', drop_down_values=self.available_grouped_brokers, multiselect=True), self._sc.drop_down(caption='Algo', id='algo-val', prefix_id='compliance', drop_down_values=self.available_grouped_algos, multiselect=True), self._sc.drop_down(caption='Venue', id='venue-val', prefix_id='compliance', drop_down_values=self.available_grouped_venues, multiselect=True), self._sc.drop_down(caption='Reload', id='reload-val', prefix_id='compliance', drop_down_values=self.available_reload), self._sc.drop_down(caption='Market Data', id='market-data-val', prefix_id='compliance', drop_down_values=self.available_market_data), self._sc.drop_down(caption='Filter by Time', id='filter-time-of-day-val', prefix_id='compliance', drop_down_values=self.available_reload), self._sc.drop_down(caption='Start Time of Day', id='start-time-of-day-val', prefix_id='compliance', drop_down_values=self.available_times), self._sc.drop_down(caption='Finish Time of Day', id='finish-time-of-day-val', prefix_id='compliance', drop_down_values=self.available_times), self._sc.drop_down(caption='Slippage to Mid (bp)', id='slippage-bounds-val', prefix_id='compliance', drop_down_values=self.available_slippage_bounds), self._sc.drop_down(caption='Visualization', id='visualization-val', prefix_id='compliance', drop_down_values=self.available_visualization) ]), self._sc.horizontal_bar(), html.Div([ self._sc.button(caption='Calculate', id='calculation-button', prefix_id='compliance'), # self.date_picker(caption='Start Date', id='start-date-dtpicker', prefix_id='compliance'), # self.date_picker(caption='Finish Date', id='finish-date-dtpicker', prefix_id='compliance'), ]), self._sc.horizontal_bar(), self._sc.table(caption='Compliance: Trade Outliers', id='execution-by-anomalous-table', prefix_id='compliance', columns=trade_outliers_cols, downloadplot_caption='Trade outliers CSV', downloadplot_tag='execution-by-anomalous-download-link', download_file='download_execution_by_anomalous.csv'), self._sc.table(caption='Compliance: Totals by Broker', id='summary-by-broker-table', prefix_id='compliance', columns=broker_cols, downloadplot_caption='Download broker CSV', downloadplot_tag='summary-by-broker-download-link', download_file='download_broker.csv' ), self._sc.horizontal_bar() ], style={'width': '1000px', 'marginRight': 'auto', 'marginLeft': 'auto'}) # ID flags self.id_flags = { # Detailed trader page # 'timeline_trade_orders' : {'client-orders': 'order', 'executions': 'trade'}, # 'markout_trade_orders' : {'client-orders': 'order_df', 'executions': 'trade_df'}, 'detailed_candle_timeline_trade_order': {'execution': 'sparse_market_trade_df', 'order': 'sparse_market_order_df'}, 'detailed_markout_trade_order': {'execution': 'trade_df', 'order': 'order_df'}, 'detailed_table_trade_order': {'execution': 'table_trade_df_markout_by_all'}, 'detailed_dist_trade_order': {'execution': 'dist_trade_df_by/pdf/side', 'order': 'dist_order_df_by/pdf/side'}, 'detailed_download_link_trade_order': {'execution-candle-timeline': 'sparse_market_trade_df', 'order-candle-timeline': 'sparse_market_order_df'}, # Aggregated trader page 'aggregated_bar_trade_order': {'execution-by-ticker': 'bar_trade_df_by/mean/ticker', 'execution-by-venue': 'bar_trade_df_by/mean/venue'}, 'aggregated_timeline_trade_order': {'execution-by-ticker': 'timeline_trade_df_by/mean_date/ticker', 'execution-by-venue': 'timeline_trade_df_by/mean_date/venue'}, 'aggregated_dist_trade_order': {'execution-by-ticker': 'dist_trade_df_by/pdf/ticker', 'execution-by-venue': 'dist_trade_df_by/pdf/venue'}, # Compliance page 'compliance_metric_table_trade_order': {'execution-by-anomalous': 'table_trade_df_slippage_by_worst_all', 'summary-by-broker': 'bar_trade_df_executed_notional_in_reporting_currency_by_broker_id'}, 'compliance_download_link_trade_order': {'execution-by-anomalous': 'table_trade_df_slippage_by_worst_all', 'summary-by-broker': 'bar_trade_df_executed_notional_in_reporting_currency_by_broker_id'}, }
devil/devil/utils/cmd_helper.py
Martijnve23/catapult
1,894
2826
<gh_stars>1000+ # Copyright (c) 2012 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """A wrapper for subprocess to make calling shell commands easier.""" import codecs import logging import os import pipes import select import signal import string import subprocess import sys import time CATAPULT_ROOT_PATH = os.path.abspath( os.path.join(os.path.dirname(__file__), '..', '..', '..')) SIX_PATH = os.path.join(CATAPULT_ROOT_PATH, 'third_party', 'six') if SIX_PATH not in sys.path: sys.path.append(SIX_PATH) import six from devil import base_error logger = logging.getLogger(__name__) _SafeShellChars = frozenset(string.ascii_letters + string.digits + '@%_-+=:,./') # Cache the string-escape codec to ensure subprocess can find it # later. Return value doesn't matter. if six.PY2: codecs.lookup('string-escape') def SingleQuote(s): """Return an shell-escaped version of the string using single quotes. Reliably quote a string which may contain unsafe characters (e.g. space, quote, or other special characters such as '$'). The returned value can be used in a shell command line as one token that gets to be interpreted literally. Args: s: The string to quote. Return: The string quoted using single quotes. """ return pipes.quote(s) def DoubleQuote(s): """Return an shell-escaped version of the string using double quotes. Reliably quote a string which may contain unsafe characters (e.g. space or quote characters), while retaining some shell features such as variable interpolation. The returned value can be used in a shell command line as one token that gets to be further interpreted by the shell. The set of characters that retain their special meaning may depend on the shell implementation. This set usually includes: '$', '`', '\', '!', '*', and '@'. Args: s: The string to quote. Return: The string quoted using double quotes. """ if not s: return '""' elif all(c in _SafeShellChars for c in s): return s else: return '"' + s.replace('"', '\\"') + '"' def ShrinkToSnippet(cmd_parts, var_name, var_value): """Constructs a shell snippet for a command using a variable to shrink it. Takes into account all quoting that needs to happen. Args: cmd_parts: A list of command arguments. var_name: The variable that holds var_value. var_value: The string to replace in cmd_parts with $var_name Returns: A shell snippet that does not include setting the variable. """ def shrink(value): parts = (x and SingleQuote(x) for x in value.split(var_value)) with_substitutions = ('"$%s"' % var_name).join(parts) return with_substitutions or "''" return ' '.join(shrink(part) for part in cmd_parts) def Popen(args, stdin=None, stdout=None, stderr=None, shell=None, cwd=None, env=None): # preexec_fn isn't supported on windows. # pylint: disable=unexpected-keyword-arg if sys.platform == 'win32': close_fds = (stdin is None and stdout is None and stderr is None) preexec_fn = None else: close_fds = True preexec_fn = lambda: signal.signal(signal.SIGPIPE, signal.SIG_DFL) if six.PY2: return subprocess.Popen( args=args, cwd=cwd, stdin=stdin, stdout=stdout, stderr=stderr, shell=shell, close_fds=close_fds, env=env, preexec_fn=preexec_fn ) else: # opens stdout in text mode, so that caller side always get 'str', # and there will be no type mismatch error. # Ignore any decoding error, so that caller will not crash due to # uncaught exception. Decoding errors are unavoidable, as we # do not know the encoding of the output, and in some output there # will be multiple encodings (e.g. adb logcat) return subprocess.Popen( args=args, cwd=cwd, stdin=stdin, stdout=stdout, stderr=stderr, shell=shell, close_fds=close_fds, env=env, preexec_fn=preexec_fn, universal_newlines=True, encoding='utf-8', errors='ignore' ) def Call(args, stdout=None, stderr=None, shell=None, cwd=None, env=None): pipe = Popen( args, stdout=stdout, stderr=stderr, shell=shell, cwd=cwd, env=env) pipe.communicate() return pipe.wait() def RunCmd(args, cwd=None): """Opens a subprocess to execute a program and returns its return value. Args: args: A string or a sequence of program arguments. The program to execute is the string or the first item in the args sequence. cwd: If not None, the subprocess's current directory will be changed to |cwd| before it's executed. Returns: Return code from the command execution. """ logger.debug(str(args) + ' ' + (cwd or '')) return Call(args, cwd=cwd) def GetCmdOutput(args, cwd=None, shell=False, env=None): """Open a subprocess to execute a program and returns its output. Args: args: A string or a sequence of program arguments. The program to execute is the string or the first item in the args sequence. cwd: If not None, the subprocess's current directory will be changed to |cwd| before it's executed. shell: Whether to execute args as a shell command. env: If not None, a mapping that defines environment variables for the subprocess. Returns: Captures and returns the command's stdout. Prints the command's stderr to logger (which defaults to stdout). """ (_, output) = GetCmdStatusAndOutput(args, cwd, shell, env) return output def _ValidateAndLogCommand(args, cwd, shell): if isinstance(args, six.string_types): if not shell: raise Exception('string args must be run with shell=True') else: if shell: raise Exception('array args must be run with shell=False') args = ' '.join(SingleQuote(str(c)) for c in args) if cwd is None: cwd = '' else: cwd = ':' + cwd logger.debug('[host]%s> %s', cwd, args) return args def GetCmdStatusAndOutput(args, cwd=None, shell=False, env=None, merge_stderr=False): """Executes a subprocess and returns its exit code and output. Args: args: A string or a sequence of program arguments. The program to execute is the string or the first item in the args sequence. cwd: If not None, the subprocess's current directory will be changed to |cwd| before it's executed. shell: Whether to execute args as a shell command. Must be True if args is a string and False if args is a sequence. env: If not None, a mapping that defines environment variables for the subprocess. merge_stderr: If True, captures stderr as part of stdout. Returns: The 2-tuple (exit code, stdout). """ status, stdout, stderr = GetCmdStatusOutputAndError( args, cwd=cwd, shell=shell, env=env, merge_stderr=merge_stderr) if stderr: logger.critical('STDERR: %s', stderr) logger.debug('STDOUT: %s%s', stdout[:4096].rstrip(), '<truncated>' if len(stdout) > 4096 else '') return (status, stdout) def StartCmd(args, cwd=None, shell=False, env=None): """Starts a subprocess and returns a handle to the process. Args: args: A string or a sequence of program arguments. The program to execute is the string or the first item in the args sequence. cwd: If not None, the subprocess's current directory will be changed to |cwd| before it's executed. shell: Whether to execute args as a shell command. Must be True if args is a string and False if args is a sequence. env: If not None, a mapping that defines environment variables for the subprocess. Returns: A process handle from subprocess.Popen. """ _ValidateAndLogCommand(args, cwd, shell) return Popen( args, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=shell, cwd=cwd, env=env) def GetCmdStatusOutputAndError(args, cwd=None, shell=False, env=None, merge_stderr=False): """Executes a subprocess and returns its exit code, output, and errors. Args: args: A string or a sequence of program arguments. The program to execute is the string or the first item in the args sequence. cwd: If not None, the subprocess's current directory will be changed to |cwd| before it's executed. shell: Whether to execute args as a shell command. Must be True if args is a string and False if args is a sequence. env: If not None, a mapping that defines environment variables for the subprocess. merge_stderr: If True, captures stderr as part of stdout. Returns: The 3-tuple (exit code, stdout, stderr). """ _ValidateAndLogCommand(args, cwd, shell) stderr = subprocess.STDOUT if merge_stderr else subprocess.PIPE pipe = Popen( args, stdout=subprocess.PIPE, stderr=stderr, shell=shell, cwd=cwd, env=env) stdout, stderr = pipe.communicate() return (pipe.returncode, stdout, stderr) class TimeoutError(base_error.BaseError): """Module-specific timeout exception.""" def __init__(self, output=None): super(TimeoutError, self).__init__('Timeout') self._output = output @property def output(self): return self._output def _read_and_decode(fd, buffer_size): data = os.read(fd, buffer_size) if data and six.PY3: data = data.decode('utf-8', errors='ignore') return data def _IterProcessStdoutFcntl(process, iter_timeout=None, timeout=None, buffer_size=4096, poll_interval=1): """An fcntl-based implementation of _IterProcessStdout.""" # pylint: disable=too-many-nested-blocks import fcntl try: # Enable non-blocking reads from the child's stdout. child_fd = process.stdout.fileno() fl = fcntl.fcntl(child_fd, fcntl.F_GETFL) fcntl.fcntl(child_fd, fcntl.F_SETFL, fl | os.O_NONBLOCK) end_time = (time.time() + timeout) if timeout else None iter_end_time = (time.time() + iter_timeout) if iter_timeout else None while True: if end_time and time.time() > end_time: raise TimeoutError() if iter_end_time and time.time() > iter_end_time: yield None iter_end_time = time.time() + iter_timeout if iter_end_time: iter_aware_poll_interval = min(poll_interval, max(0, iter_end_time - time.time())) else: iter_aware_poll_interval = poll_interval read_fds, _, _ = select.select([child_fd], [], [], iter_aware_poll_interval) if child_fd in read_fds: data = _read_and_decode(child_fd, buffer_size) if not data: break yield data if process.poll() is not None: # If process is closed, keep checking for output data (because of timing # issues). while True: read_fds, _, _ = select.select([child_fd], [], [], iter_aware_poll_interval) if child_fd in read_fds: data = _read_and_decode(child_fd, buffer_size) if data: yield data continue break break finally: try: if process.returncode is None: # Make sure the process doesn't stick around if we fail with an # exception. process.kill() except OSError: pass process.wait() def _IterProcessStdoutQueue(process, iter_timeout=None, timeout=None, buffer_size=4096, poll_interval=1): """A Queue.Queue-based implementation of _IterProcessStdout. TODO(jbudorick): Evaluate whether this is a suitable replacement for _IterProcessStdoutFcntl on all platforms. """ # pylint: disable=unused-argument if six.PY3: import queue else: import Queue as queue import threading stdout_queue = queue.Queue() def read_process_stdout(): # TODO(jbudorick): Pick an appropriate read size here. while True: try: output_chunk = _read_and_decode(process.stdout.fileno(), buffer_size) except IOError: break stdout_queue.put(output_chunk, True) if not output_chunk and process.poll() is not None: break reader_thread = threading.Thread(target=read_process_stdout) reader_thread.start() end_time = (time.time() + timeout) if timeout else None try: while True: if end_time and time.time() > end_time: raise TimeoutError() try: s = stdout_queue.get(True, iter_timeout) if not s: break yield s except queue.Empty: yield None finally: try: if process.returncode is None: # Make sure the process doesn't stick around if we fail with an # exception. process.kill() except OSError: pass process.wait() reader_thread.join() _IterProcessStdout = (_IterProcessStdoutQueue if sys.platform == 'win32' else _IterProcessStdoutFcntl) """Iterate over a process's stdout. This is intentionally not public. Args: process: The process in question. iter_timeout: An optional length of time, in seconds, to wait in between each iteration. If no output is received in the given time, this generator will yield None. timeout: An optional length of time, in seconds, during which the process must finish. If it fails to do so, a TimeoutError will be raised. buffer_size: The maximum number of bytes to read (and thus yield) at once. poll_interval: The length of time to wait in calls to `select.select`. If iter_timeout is set, the remaining length of time in the iteration may take precedence. Raises: TimeoutError: if timeout is set and the process does not complete. Yields: basestrings of data or None. """ def GetCmdStatusAndOutputWithTimeout(args, timeout, cwd=None, shell=False, logfile=None, env=None): """Executes a subprocess with a timeout. Args: args: List of arguments to the program, the program to execute is the first element. timeout: the timeout in seconds or None to wait forever. cwd: If not None, the subprocess's current directory will be changed to |cwd| before it's executed. shell: Whether to execute args as a shell command. Must be True if args is a string and False if args is a sequence. logfile: Optional file-like object that will receive output from the command as it is running. env: If not None, a mapping that defines environment variables for the subprocess. Returns: The 2-tuple (exit code, output). Raises: TimeoutError on timeout. """ _ValidateAndLogCommand(args, cwd, shell) output = six.StringIO() process = Popen( args, cwd=cwd, shell=shell, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, env=env) try: for data in _IterProcessStdout(process, timeout=timeout): if logfile: logfile.write(data) output.write(data) except TimeoutError: raise TimeoutError(output.getvalue()) str_output = output.getvalue() logger.debug('STDOUT+STDERR: %s%s', str_output[:4096].rstrip(), '<truncated>' if len(str_output) > 4096 else '') return process.returncode, str_output def IterCmdOutputLines(args, iter_timeout=None, timeout=None, cwd=None, shell=False, env=None, check_status=True): """Executes a subprocess and continuously yields lines from its output. Args: args: List of arguments to the program, the program to execute is the first element. iter_timeout: Timeout for each iteration, in seconds. timeout: Timeout for the entire command, in seconds. cwd: If not None, the subprocess's current directory will be changed to |cwd| before it's executed. shell: Whether to execute args as a shell command. Must be True if args is a string and False if args is a sequence. env: If not None, a mapping that defines environment variables for the subprocess. check_status: A boolean indicating whether to check the exit status of the process after all output has been read. Yields: The output of the subprocess, line by line. Raises: CalledProcessError if check_status is True and the process exited with a non-zero exit status. """ cmd = _ValidateAndLogCommand(args, cwd, shell) process = Popen( args, cwd=cwd, shell=shell, env=env, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) return _IterCmdOutputLines( process, cmd, iter_timeout=iter_timeout, timeout=timeout, check_status=check_status) def _IterCmdOutputLines(process, cmd, iter_timeout=None, timeout=None, check_status=True): buffer_output = '' iter_end = None cur_iter_timeout = None if iter_timeout: iter_end = time.time() + iter_timeout cur_iter_timeout = iter_timeout for data in _IterProcessStdout( process, iter_timeout=cur_iter_timeout, timeout=timeout): if iter_timeout: # Check whether the current iteration has timed out. cur_iter_timeout = iter_end - time.time() if data is None or cur_iter_timeout < 0: yield None iter_end = time.time() + iter_timeout continue else: assert data is not None, ( 'Iteration received no data despite no iter_timeout being set. ' 'cmd: %s' % cmd) # Construct lines to yield from raw data. buffer_output += data has_incomplete_line = buffer_output[-1] not in '\r\n' lines = buffer_output.splitlines() buffer_output = lines.pop() if has_incomplete_line else '' for line in lines: yield line if iter_timeout: iter_end = time.time() + iter_timeout if buffer_output: yield buffer_output if check_status and process.returncode: raise subprocess.CalledProcessError(process.returncode, cmd)
code/tools/run_viz_single_task.py
santomon/taskonomy
789
2857
<gh_stars>100-1000 from __future__ import absolute_import, division, print_function import argparse import importlib import itertools import time from multiprocessing import Pool import numpy as np import os import pdb import pickle import subprocess import sys import tensorflow as tf import tensorflow.contrib.slim as slim import threading import init_paths from models.sample_models import * target_tasks = "autoencoder colorization curvature denoise edge2d edge3d ego_motion fix_pose impainting_whole jigsaw keypoint2d keypoint3d non_fixated_pose point_match reshade rgb2depth rgb2mist rgb2sfnorm room_layout segment25d segment2d vanishing_point_well_defined segmentsemantic_rb class_selected class_1000" list_of_tasks = target_tasks.split(" ") ON_TEST_SET = True IN_TRAIN_MODE = False parser = argparse.ArgumentParser(description='Viz Single Task') parser.add_argument('--idx', dest='idx', help='Task to run', type=int) parser.add_argument('--hs', dest='hs', help='Hidden size to use', type=int) parser.add_argument('--n-parallel', dest='n_parallel', help='Number of models to run in parallel', type=int) parser.set_defaults(n_parallel=1) tf.logging.set_verbosity(tf.logging.ERROR) ipython_std_out = sys.stdout # Disabe def blockPrint(): sys.stdout = open(os.devnull, 'w') # Restore def enablePrint(): sys.stdout = ipython_std_out # Force Print def forcePrint(str): enablePrint() print(str) sys.stdout.flush() blockPrint() def remove_dups(seq): seen = set() seen_add = seen.add return [x for x in seq if not (x in seen or seen_add(x))] pairs = list(itertools.product(list_of_tasks, list_of_tasks)) args = parser.parse_args() idx_to_run = args.idx if idx_to_run == -1: pairs_to_run = pairs else: pairs_to_run = pairs[idx_to_run:idx_to_run+1] def run_to_task(task_to): import general_utils from general_utils import RuntimeDeterminedEnviromentVars import models.architectures as architectures from data.load_ops import resize_rescale_image import utils from data.task_data_loading import load_and_specify_preprocessors_for_representation_extraction import lib.data.load_ops as load_ops tf.logging.set_verbosity(tf.logging.ERROR) all_outputs = {} pickle_dir = 'viz_output_single_task.pkl' import os if os.path.isfile(pickle_dir): with open( pickle_dir, 'rb') as fp: all_outputs = pickle.load(fp) for task in list_of_tasks: if task in all_outputs: print("{} already exists....\n\n\n".format(task)) continue print("Doing {task}".format(task=task)) general_utils = importlib.reload(general_utils) tf.reset_default_graph() training_runners = { 'sess': tf.InteractiveSession(), 'coord': tf.train.Coordinator() } # task = '{f}__{t}__{hs}'.format(f=task_from, t=task_to, hs=args.hs) CONFIG_DIR = '/home/ubuntu/task-taxonomy-331b/experiments/final/{TASK}'.format(TASK=task) ############## Load Configs ############## cfg = utils.load_config( CONFIG_DIR, nopause=True ) RuntimeDeterminedEnviromentVars.register_dict( cfg ) split_file = cfg['test_filenames'] if ON_TEST_SET else cfg['val_filenames'] cfg['train_filenames'] = split_file cfg['val_filenames'] = split_file cfg['test_filenames'] = split_file cfg['num_epochs'] = 1 cfg['randomize'] = False root_dir = cfg['root_dir'] cfg['num_read_threads'] = 1 print(cfg['log_root']) if task == 'jigsaw': continue cfg['model_path'] = os.path.join( cfg['log_root'], task, 'model.permanent-ckpt' ) print( cfg['model_path']) if cfg['model_path'] is None: continue ############## Set Up Inputs ############## # tf.logging.set_verbosity( tf.logging.INFO ) inputs = utils.setup_input( cfg, is_training=ON_TEST_SET, use_filename_queue=False ) # is_training determines whether to use train/validaiton RuntimeDeterminedEnviromentVars.load_dynamic_variables( inputs, cfg ) RuntimeDeterminedEnviromentVars.populate_registered_variables() start_time = time.time() # utils.print_start_info( cfg, inputs[ 'max_steps' ], is_training=False ) ############## Set Up Model ############## model = utils.setup_model( inputs, cfg, is_training=IN_TRAIN_MODE ) m = model[ 'model' ] model[ 'saver_op' ].restore( training_runners[ 'sess' ], cfg[ 'model_path' ] ) ############## Start dataloading workers ############## data_prefetch_init_fn = utils.get_data_prefetch_threads_init_fn( inputs, cfg, is_training=ON_TEST_SET, use_filename_queue=False ) prefetch_threads = threading.Thread( target=data_prefetch_init_fn, args=( training_runners[ 'sess' ], training_runners[ 'coord' ] )) prefetch_threads.start() ############## Run First Batch ############## if not hasattr(m, 'masks'): ( input_batch, target_batch, data_idx, predicted, loss, ) = training_runners['sess'].run( [ m.input_images, m.targets, model[ 'data_idxs' ], m.decoder_output, m.total_loss] ) mask_batch = 1. else: ( input_batch, target_batch, mask_batch, data_idx, predicted, loss, ) = training_runners['sess'].run( [ m.input_images, m.targets, m.masks, model[ 'data_idxs' ], m.decoder_output, m.total_loss] ) if task == 'segment2d' or task == 'segment25d': from sklearn.decomposition import PCA x = np.zeros((32,256,256,3), dtype='float') for i in range(predicted.shape[0]): embedding_flattened = np.squeeze(predicted[i]).reshape((-1,64)) pca = PCA(n_components=3) pca.fit(embedding_flattened) lower_dim = pca.transform(embedding_flattened).reshape((256,256,-1)) lower_dim = (lower_dim - lower_dim.min()) / (lower_dim.max() - lower_dim.min()) x[i] = lower_dim predicted = x ############## Clean Up ############## training_runners[ 'coord' ].request_stop() training_runners[ 'coord' ].join() # if os.path.isfile(pickle_dir): # with open(pickle_dir, 'rb') as fp: # all_outputs = pickle.load(fp) ############## Store to dict ############## to_store = { 'input': input_batch, 'target': target_batch, 'mask': mask_batch, 'data_idx':data_idx, 'output':predicted} all_outputs[task] = to_store print("Done: {}".format(task)) # os.system("sudo cp {d} /home/ubuntu/s3/model_log".format(d=pickle_dir)) ############## Reset graph and paths ############## tf.reset_default_graph() training_runners['sess'].close() try: del sys.modules[ 'config' ] except: pass sys.path = remove_dups(sys.path) print("FINISHED: {}\n\n\n\n\n\n".format(task)) pickle_dir = 'viz_output_single_task.pkl' with open( pickle_dir, 'wb') as fp: pickle.dump(all_outputs, fp) try: subprocess.call("aws s3 cp {} s3://task-preprocessing-512-oregon/visualizations/".format(pickle_dir), shell=True) except: subprocess.call("sudo cp {} /home/ubuntu/s3/visualizations/".format(pickle_dir), shell=True) return if __name__ == '__main__': run_to_task(None) # with Pool(args.n_parallel) as p: # p.map(run_to_task, list_of_tasks)
stratum/portage/build_defs.bzl
cholve/stratum
267
2858
<reponame>cholve/stratum<filename>stratum/portage/build_defs.bzl # Copyright 2018 Google LLC # Copyright 2018-present Open Networking Foundation # SPDX-License-Identifier: Apache-2.0 """A portable build system for Stratum P4 switch stack. To use this, load() this file in a BUILD file, specifying the symbols needed. The public symbols are the macros: decorate(path) sc_cc_lib Declare a portable Library. sc_proto_lib Declare a portable .proto Library. sc_cc_bin Declare a portable Binary. sc_package Declare a portable tarball package. and the variables/lists: ALL_ARCHES All known arches. EMBEDDED_ARCHES All embedded arches. EMBEDDED_PPC Name of PowerPC arch - "ppc". EMBEDDED_X86 Name of "x86" arch. HOST_ARCH Name of default "host" arch. HOST_ARCHES All host arches. STRATUM_INTERNAL For declaring Stratum internal visibility. The macros are like cc_library(), proto_library(), and cc_binary(), but with different options and some restrictions. The key difference: you can supply lists of architectures for which they should be compiled - defaults to all if left unstated. Internally, libraries and binaries are generated for every listed architecture. The names are decorated to keep them different and allow all to be generated and addressed independently. This aspect of the system is suboptimal - something along the lines of augmenting context with a user defined configuration fragment would be a much cleaner solution. Currently supported architectures: ppc x86 """ load("//tools/build_defs/label:def.bzl", "parse_label") load( "//devtools/build_cleaner/skylark:build_defs.bzl", "register_extension_info", ) load("@rules_proto//proto:defs.bzl", "proto_library") load("@rules_cc//cc:defs.bzl", "cc_binary", "cc_library", "cc_test") # Generic path & label helpers. ============================================ def _normpath(path): """Normalize a path. Normalizes a path by removing unnecessary path-up segments and its corresponding directories. Providing own implementation because import os is not allowed in build defs. For example ../../dir/to/deeply/nested/path/../../../other/path will become ../../dir/to/other/path Args: path: A valid absolute or relative path to normalize. Returns: A path equivalent to the input path with minimal use of path-up segments. Invalid input paths will stay invalid. """ sep = "/" level = 0 result = [] for d in path.split(sep): if d in ("", "."): if result: continue elif d == "..": if level > 0: result.pop() level += -1 continue else: level += 1 result.append(d) return sep.join(result) # Adds a suffix to a label, expanding implicit targets if needed. def decorate(label, suffix): if label.endswith(":"): # .../bar: -> .../bar label = label[:-1] if ":" in label: # .../bar:bat -> .../bar:bat_suffix return "%s_%s" % (label, suffix) elif label.startswith("//"): # //foo/bar -> //foo/bar:bar_suffix return "%s:%s_%s" % (label, label.split("/")[-1], suffix) else: # bar -> bar_suffix return "%s_%s" % (label, suffix) # Creates a relative filename from a label, replacing "//" and ":". def _make_filename(label): if label.startswith("//"): # //foo/bar:bat/baz -> google3_foo/bar/bat/baz return label.replace("//", "google3/").replace(":", "/") elif label.startswith(":"): # :bat/baz -> bat/baz return label[1:] else: # bat/baz -> bat/baz return label # Adds dquotes around a string. def dquote(s): return '"' + s + '"' # Adds squotes around a string. def squote(s): return "'" + s + "'" # Emulate Python 2.5+ str(startswith([prefix ...]) def starts_with(s, prefix_list): for prefix in prefix_list: if s.startswith(prefix): return prefix return None def sc_platform_select(host = None, ppc = None, x86 = None, default = None): """Public macro to alter blaze rules based on the platform architecture. Generates a blaze select(...) statement that can be used in most contexts to alter a blaze rule based on the target platform architecture. If no selection is provided for a given platform, {default} is used instead. A specific value or default must be provided for every target platform. Args: host: The value to use for host builds. ppc: The value to use for ppc builds. x86: The value to use for x86 builds. default: The value to use for any of {host,ppc,x86} that isn't specified. Returns: The requested selector. """ if default == None and (host == None or ppc == None or x86 == None): fail("Missing a select value for at least one platform in " + "sc_platform_select. Please add.") config_label_prefix = "//stratum:stratum_" return select({ "//conditions:default": (host or default), config_label_prefix + "ppc": (ppc or default), config_label_prefix + "x86": (x86 or default), }) # Generates an sc_platform_select based on a textual list of arches. def sc_platform_filter(value, default, arches): return sc_platform_select( host = value if "host" in arches else default, ppc = value if "ppc" in arches else default, x86 = value if "x86" in arches else default, ) def sc_platform_alias( name, host = None, ppc = None, x86 = None, default = None, visibility = None): """Public macro to create an alias that changes based on target arch. Generates a blaze alias that will select the appropriate target. If no selection is provided for a given platform and no default is set, a dummy default target is used instead. Args: name: The name of the alias target. host: The result of the alias for host builds. ppc: The result of the alias for ppc builds. x86: The result of the alias for x86 builds. default: The result of the alias for any of {host,ppc,x86} that isn't specified. visibility: The visibility of the alias target. """ native.alias( name = name, actual = sc_platform_select( default = default or "//stratum/portage:dummy", host = host, ppc = ppc, x86 = x86, ), visibility = visibility, ) # Embedded build definitions. ============================================== EMBEDDED_PPC = "ppc" EMBEDDED_X86 = "x86" EMBEDDED_ARCHES = [ EMBEDDED_PPC, EMBEDDED_X86, ] HOST_ARCH = "host" HOST_ARCHES = [HOST_ARCH] ALL_ARCHES = EMBEDDED_ARCHES + HOST_ARCHES # Identify Stratum platform arch for .pb.h shims and other portability hacks. _ARCH_DEFINES = sc_platform_select( default = ["STRATUM_ARCH_HOST"], ppc = ["STRATUM_ARCH_PPC"], x86 = ["STRATUM_ARCH_X86"], ) STRATUM_INTERNAL = [ "//stratum:__subpackages__", ] # # Build options for all embedded architectures # # Set _TRACE_SRCS to show sources in embedded sc_cc_lib compile steps. # This is more general than it may seem: genrule doesn't have hdrs or deps # attributes, so all embedded dependencies appear as a `src'. # TODO(unknown): if useful again then inject from cmdline else kill feature. _TRACE_SRCS = False # Used for all gcc invocations. _EMBEDDED_FLAGS = [ "-O0", # Don't use this for program-sizing build #-- "-Os", # Use this for program-sizing build "-g", # Don't use this for program-sizing build "-Wall", "-Werror", # Warn lots, and force fixing warnings. "-no-canonical-prefixes", # Don't mangle paths and confuse blaze. "-fno-builtin-malloc", # We'll use tcmalloc "-fno-builtin-calloc", "-fno-builtin-realloc", "-fno-builtin-free", "-D__STDC_FORMAT_MACROS=1", # TODO(unknown): Figure out how we can use $(CC_FLAGS) instead of this. "-D__GOOGLE_STL_LEGACY_COMPATIBILITY", ] # Used for C and C++ compiler invocations. _EMBEDDED_CFLAGS = [ "-I$(GENDIR)", ] # Used for C++ compiler invocations. _EMBEDDED_CXXFLAGS = [ "-std=gnu++11", # Allow C++11 features _and_ GNU extensions. ] # Used for linking binaries. _EMBEDDED_LDFLAGS = [ # "-static", # Use this for program-sizing build # "-Wl,--gc-sections,--no-wchar-size-warning", # Use this for program-sizing build ] # PPC ====================================================================== _PPC_GRTE = "//unsupported_toolchains/crosstoolng_powerpc32_8540/sysroot" # X86 ====================================================================== _X86_GRTE = "//grte/v4_x86/release/usr/grte/v4" # Portability definitions =================================================== def sc_cc_test( name, size = None, srcs = None, deps = None, data = None, defines = None, copts = None, linkopts = None, visibility = None): """Creates a cc_test rule that interacts safely with Stratum builds. Generates a cc_test rule that doesn't break the build when an embedded arch is selected. During embedded builds this target will generate a dummy binary and will not attempt to build any dependencies. Args: name: Analogous to cc_test name argument. size: Analogous to cc_test size argument. srcs: Analogous to cc_test srcs argument. deps: Analogous to cc_test deps argument. data: Analogous to cc_test data argument. defines: Analogous to cc_test defines argument. copts: Analogous to cc_test copts argument. linkopts: Analogous to cc_test linkopts argument. visibility: Analogous to cc_test visibility argument. """ cc_test( name = name, size = size or "small", srcs = sc_platform_select(host = srcs or [], default = []), deps = sc_platform_select( host = deps or [], default = ["//stratum/portage:dummy_with_main"], ), data = data or [], defines = defines, copts = copts, linkopts = linkopts, visibility = visibility, ) register_extension_info( extension_name = "sc_cc_test", label_regex_for_dep = "{extension_name}", ) def sc_cc_lib( name, deps = None, srcs = None, hdrs = None, arches = None, copts = None, defines = None, includes = None, include_prefix = None, strip_include_prefix = None, data = None, testonly = None, textual_hdrs = None, visibility = None, xdeps = None): """Creates rules for the given portable library and arches. Args: name: Analogous to cc_library name argument. deps: Analogous to cc_library deps argument. srcs: Analogous to cc_library srcs argument. hdrs: Analogous to cc_library hdrs argument. arches: List of architectures to generate this way. copts: Analogous to cc_library copts argument. defines: Symbols added as "-D" compilation options. includes: Paths to add as "-I" compilation options. include_prefix: Analogous to cc_library include_prefix argument. strip_include_prefix: Analogous to cc_library strip_include_prefix argument. data: Files to provide as data at runtime (host builds only). testonly: Standard blaze testonly parameter. textual_hdrs: Analogous to cc_library. visibility: Standard blaze visibility parameter. xdeps: External (file) dependencies of this library - no decorations assumed, used and exported as header, not for flags, libs, etc. """ alwayslink = 0 deps = depset(deps or []) srcs = depset(srcs or []) hdrs = depset(hdrs or []) xdeps = depset(xdeps or []) copts = depset(copts or []) includes = depset(includes or []) data = depset(data or []) textual_hdrs = depset(textual_hdrs or []) if srcs: if [s for s in srcs.to_list() if not s.endswith(".h")]: alwayslink = 1 if not arches: arches = ALL_ARCHES defs_plus = (defines or []) + _ARCH_DEFINES textual_plus = textual_hdrs | depset(deps.to_list()) cc_library( name = name, deps = sc_platform_filter(deps, [], arches), srcs = sc_platform_filter(srcs, [], arches), hdrs = sc_platform_filter(hdrs, [], arches), alwayslink = alwayslink, copts = sc_platform_filter(copts, [], arches), defines = defs_plus, includes = sc_platform_filter(includes, [], arches), include_prefix = include_prefix, strip_include_prefix = strip_include_prefix, testonly = testonly, textual_hdrs = sc_platform_filter( textual_plus | xdeps, [], arches, ), data = sc_platform_filter(data, [], arches), visibility = visibility, ) register_extension_info( extension_name = "sc_cc_lib", label_regex_for_dep = "{extension_name}", ) def sc_cc_bin( name, deps = None, srcs = None, arches = None, copts = None, defines = None, includes = None, testonly = None, visibility = None): """Creates rules for the given portable binary and arches. Args: name: Analogous to cc_binary name argument. deps: Analogous to cc_binary deps argument. srcs: Analogous to cc_binary srcs argument. arches: List of architectures to generate this way. copts: Analogous to cc_binary copts argument. defines: Symbols added as "-D" compilation options. includes: Paths to add as "-I" compilation options. testonly: Standard blaze testonly parameter. visibility: Standard blaze visibility parameter. """ deps = depset(deps or []) srcs = depset(srcs or []) if not arches: arches = ALL_ARCHES defs_plus = (defines or []) + _ARCH_DEFINES cc_binary( name = name, deps = sc_platform_filter( deps, ["//stratum/portage:dummy_with_main"], arches, ), srcs = sc_platform_filter(srcs, [], arches), copts = copts, defines = defs_plus, includes = includes, linkopts = ["-ldl", "-lutil"], testonly = testonly, visibility = visibility, ) register_extension_info( extension_name = "sc_cc_bin", label_regex_for_dep = "{extension_name}", ) # Protobuf ================================================================= _SC_GRPC_DEPS = [ "//sandblaze/prebuilt/grpc", "//sandblaze/prebuilt/grpc:grpc++_codegen_base", "//sandblaze/prebuilt/grpc:grpc++_codegen_proto_lib", ] _PROTOC = "@com_google_protobuf//:protobuf:protoc" _PROTOBUF = "@com_google_protobuf//:protobuf" _SC_GRPC_PLUGIN = "//sandblaze/prebuilt/protobuf:grpc_cpp_plugin" _GRPC_PLUGIN = "//grpc:grpc_cpp_plugin" def _loc(target): """Return target location for constructing commands. Args: target: Blaze target name available to this build. Returns: $(location target) """ return "$(location %s)" % target def _gen_proto_lib( name, srcs, hdrs, deps, arch, visibility, testonly, proto_include, grpc_shim_rule): """Creates rules and filegroups for embedded protobuf library. For every given ${src}.proto, generate: :${src}_${arch}.pb rule to run protoc ${src}.proto => ${src}.${arch}.pb.{h,cc} :${src}_${arch}.grpc.pb rule to run protoc w/ erpc plugin: ${src}.proto => ${src}.${arch}.grpc.pb.{h,cc} :${src}_${arch}_proto_rollup collects include options for protoc: ${src}_${arch}_proto_rollup.flags Feed each set into sc_cc_lib to wrap them them up into a usable library; note that ${src}_${arch}_erpc_proto depends on ${src}_${arch}_proto. Args: name: Base name for this library. srcs: List of proto files hdrs: More files to build into this library, but also exported for dependent rules to utilize. deps: List of deps for this library arch: Which architecture to build this library for. visibility: Standard blaze visibility parameter, passed through to subsequent rules. testonly: Standard blaze testonly parameter. proto_include: Include path for generated sc_cc_libs. grpc_shim_rule: If needed, the name of the grpc shim for this proto lib. """ bash_vars = ["g3=$${PWD}"] # TODO(unknown): Switch protobuf to using the proto_include mechanism protoc_label = _PROTOC protobuf_label = _PROTOBUF protobuf_hdrs = "%s:well_known_types_srcs" % protobuf_label protobuf_srcs = [protobuf_hdrs] protobuf_include = "$${g3}/protobuf/src" if arch in EMBEDDED_ARCHES: grpc_plugin = _SC_GRPC_PLUGIN else: grpc_plugin = _GRPC_PLUGIN protoc_deps = [] for dep in deps: if dep.endswith("_proto"): protoc_deps.append("%s_%s_headers" % (dep, arch)) name_arch = decorate(name, arch) # We use this filegroup to accumulate the set of .proto files needed to # compile this proto. native.filegroup( name = decorate(name_arch, "headers"), srcs = hdrs + protoc_deps, visibility = visibility, ) my_proto_rollup = decorate(name_arch, "proto_rollup.flags") protoc_srcs_set = (srcs + hdrs + protoc_deps + protobuf_srcs + [my_proto_rollup]) gen_srcs = [] gen_hdrs = [] grpc_gen_hdrs = [] grpc_gen_srcs = [] tools = [protoc_label] grpc_tools = [protoc_label, grpc_plugin] protoc = "$${g3}/%s" % _loc(protoc_label) grpc_plugin = "$${g3}/%s" % _loc(grpc_plugin) cpp_out = "$${g3}/$(GENDIR)/%s/%s" % (native.package_name(), arch) accum_flags = [] full_proto_include = None if proto_include == ".": full_proto_include = native.package_name() elif proto_include: full_proto_include = "%s/%s" % (native.package_name(), proto_include) if full_proto_include: temp_prefix = "%s/%s" % (cpp_out, native.package_name()[len(full_proto_include):]) # We do a bit of extra work with these include flags to avoid generating # warnings. accum_flags.append( "$$(if [[ -e $(GENDIR)/%s ]]; then echo -IG3LOC/$(GENDIR)/%s; fi)" % (full_proto_include, full_proto_include), ) accum_flags.append( "$$(if [[ -e %s ]]; then echo -IG3LOC/%s; fi)" % (full_proto_include, full_proto_include), ) else: temp_prefix = "%s/%s" % (cpp_out, native.package_name()) proto_rollups = [ decorate(decorate(dep, arch), "proto_rollup.flags") for dep in deps if dep.endswith("_proto") ] proto_rollup_cmds = ["printf '%%s\n' %s" % flag for flag in accum_flags] proto_rollup_cmds.append("cat $(SRCS)") proto_rollup_cmd = "{ %s; } | sort -u -o $(@)" % "; ".join(proto_rollup_cmds) native.genrule( name = decorate(name_arch, "proto_rollup"), srcs = proto_rollups, outs = [my_proto_rollup], cmd = proto_rollup_cmd, visibility = visibility, testonly = testonly, ) for src in srcs + hdrs: if src.endswith(".proto"): src_stem = src[0:-6] src_arch = "%s_%s" % (src_stem, arch) temp_stem = "%s/%s" % (temp_prefix, src_stem) gen_stem = "%s.%s" % (src_stem, arch) # We can't use $${PWD} until this step, because our rollup command # might be generated on another forge server. proto_path_cmds = ["rollup=$$(sed \"s,G3LOC,$${PWD},g\" %s)" % _loc(my_proto_rollup)] proto_rollup_flags = ["$${rollup}"] if proto_include: # We'll be cd-ing to another directory before protoc, so # adjust our .proto path accordingly. proto_src_loc = "%s/%s" % (native.package_name(), src) if proto_src_loc.startswith(full_proto_include + "/"): proto_src_loc = proto_src_loc[len(full_proto_include) + 1:] else: print("Invalid proto include '%s' doesn't match src %s" % (full_proto_include, proto_src_loc)) # By cd-ing to another directory, we force protoc to produce # different symbols. Careful, our proto might be in GENDIR! proto_path_cmds.append("; ".join([ "if [[ -e %s ]]" % ("%s/%s" % (full_proto_include, proto_src_loc)), "then cd %s" % full_proto_include, "else cd $(GENDIR)/%s" % full_proto_include, "fi", ])) gendir_include = ["-I$${g3}/$(GENDIR)", "-I$${g3}", "-I."] else: proto_src_loc = "%s/%s" % (native.package_name(), src) proto_path_cmds.append("[[ -e %s ]] || cd $(GENDIR)" % proto_src_loc) gendir_include = ["-I$(GENDIR)", "-I."] # Generate messages gen_pb_h = gen_stem + ".pb.h" gen_pb_cc = gen_stem + ".pb.cc" gen_hdrs.append(gen_pb_h) gen_srcs.append(gen_pb_cc) cmds = bash_vars + [ "mkdir -p %s" % temp_prefix, ] + proto_path_cmds + [ " ".join([protoc] + gendir_include + proto_rollup_flags + [ "-I%s" % protobuf_include, "--cpp_out=%s" % cpp_out, proto_src_loc, ]), "cd $${g3}", "cp %s.pb.h %s" % (temp_stem, _loc(gen_pb_h)), "cp %s.pb.cc %s" % (temp_stem, _loc(gen_pb_cc)), ] pb_outs = [gen_pb_h, gen_pb_cc] native.genrule( name = src_arch + ".pb", srcs = protoc_srcs_set, outs = pb_outs, tools = tools, cmd = " && ".join(cmds), heuristic_label_expansion = 0, visibility = visibility, ) # Generate GRPC if grpc_shim_rule: gen_grpc_pb_h = gen_stem + ".grpc.pb.h" gen_grpc_pb_cc = gen_stem + ".grpc.pb.cc" grpc_gen_hdrs.append(gen_grpc_pb_h) grpc_gen_srcs.append(gen_grpc_pb_cc) cmds = bash_vars + [ "mkdir -p %s" % temp_prefix, ] + proto_path_cmds + [ " ".join([ protoc, "--plugin=protoc-gen-grpc-cpp=%s" % grpc_plugin, ] + gendir_include + proto_rollup_flags + [ "-I%s" % protobuf_include, "--grpc-cpp_out=%s" % cpp_out, proto_src_loc, ]), "cd $${g3}", "cp %s.grpc.pb.h %s" % (temp_stem, _loc(gen_grpc_pb_h)), "cp %s.grpc.pb.cc %s" % (temp_stem, _loc(gen_grpc_pb_cc)), ] grpc_pb_outs = [gen_grpc_pb_h, gen_grpc_pb_cc] native.genrule( name = src_arch + ".grpc.pb", srcs = protoc_srcs_set, outs = grpc_pb_outs, tools = grpc_tools, cmd = " && ".join(cmds), heuristic_label_expansion = 0, visibility = visibility, ) dep_set = depset(deps) | [protobuf_label] includes = [] if proto_include: includes = [proto_include] # Note: Public sc_proto_lib invokes this once per (listed) arch; # which then calls sc_cc_lib with same name for each arch; # multiple such calls are OK as long as the arches are disjoint. sc_cc_lib( name = decorate(name, arch), deps = dep_set, srcs = gen_srcs, hdrs = hdrs + gen_hdrs, arches = [arch], copts = [], includes = includes, testonly = testonly, textual_hdrs = gen_hdrs, visibility = visibility, ) if grpc_shim_rule: grpc_name = name[:-6] + "_grpc_proto" grpc_dep_set = dep_set | [name] | _SC_GRPC_DEPS grpc_gen_hdrs_plus = grpc_gen_hdrs + gen_hdrs sc_cc_lib( name = decorate(grpc_name, arch), deps = grpc_dep_set, srcs = grpc_gen_srcs, hdrs = hdrs + grpc_gen_hdrs_plus + [grpc_shim_rule], arches = [arch], copts = [], includes = includes, testonly = testonly, textual_hdrs = grpc_gen_hdrs_plus, visibility = visibility, ) def _gen_proto_shims(name, pb_modifier, srcs, arches, visibility): """Macro to build .pb.h multi-arch master switch for sc_proto_lib. For each src path.proto, generates path.pb.h consisting of: #ifdef logic to select path.${arch}.pb.h Also generates an alias that will select the appropriate proto target based on the currently selected platform architecture. Args: name: Base name for this library. pb_modifier: protoc plugin-dependent file extension (e.g.: .pb) srcs: List of proto files. arches: List of arches this shim should support. visibility: The blaze visibility of the generated alias. Returns: Name of shim rule for use in follow-on hdrs and/or src lists. """ outs = [] cmds = [] hdr_ext = pb_modifier + ".h" for src in srcs: pkg, filename = parse_label(src) if not filename.endswith(".proto"): continue hdr_stem = filename[0:-6] new_hdr_name = hdr_stem + hdr_ext outs.append(new_hdr_name) # Generate lines for shim switch file. # Lines expand inside squotes, so quote accordingly. include_fmt = "#include " + dquote(pkg + "/" + hdr_stem + ".%s" + hdr_ext) lines = [ "#if defined(STRATUM_ARCH_%s)" % "PPC", include_fmt % "ppc", "#elif defined(STRATUM_ARCH_%s)" % "X86", include_fmt % "x86", "#elif defined(STRATUM_ARCH_%s)" % "HOST", include_fmt % "host", "#else", "#error Unknown STRATUM_ARCH", "#endif", ] gen_cmds = [("printf '%%s\\n' '%s'" % line) for line in lines] new_hdr_loc = "$(location %s)" % new_hdr_name cmds.append("{ %s; } > %s" % (" && ".join(gen_cmds), new_hdr_loc)) shim_rule = decorate(name, "shims") native.genrule( name = shim_rule, srcs = srcs, outs = outs, cmd = " && ".join(cmds) or "true", ) sc_platform_alias( name = name, host = decorate(name, "host") if "host" in arches else None, ppc = decorate(name, "ppc") if "ppc" in arches else None, x86 = decorate(name, "x86") if "x86" in arches else None, visibility = visibility, ) return shim_rule def _gen_py_proto_lib(name, srcs, deps, visibility, testonly): """Creates a py_proto_library from the given srcs. There's no clean way to make python protos work with sc_proto_lib's proto_include field, so we keep this simple. For library "name", generates: * ${name}_default_pb, a regular proto library. * ${name}_py, a py_proto_library based on ${name}_default_pb. Args: name: Standard blaze name argument. srcs: Standard blaze srcs argument. deps: Standard blaze deps argument. visibility: Standard blaze visibility argument. testonly: Standard blaze testonly argument. """ regular_proto_name = decorate(name, "default_pb") py_name = decorate(name, "py") proto_library( name = regular_proto_name, srcs = srcs, deps = [decorate(dep, "default_pb") for dep in deps], visibility = visibility, testonly = testonly, ) native.py_proto_library( name = py_name, api_version = 2, deps = [regular_proto_name], visibility = visibility, testonly = testonly, ) # TODO(unknown): Add support for depending on normal proto_library rules. def sc_proto_lib( name = None, srcs = [], hdrs = [], deps = [], arches = [], visibility = None, testonly = None, proto_include = None, python_support = False, services = []): """Public macro to build multi-arch library from Message protobuf(s). For library "name", generates: * ${name}_shim aka .pb.h master switch - see _gen_proto_shims, above. * ${name}_${arch}_pb protobuf compile rules - one for each arch. * sc_cc_lib(name) with those as input. * ${name}_py a py_proto_library version of this library. Only generated if python_support == True. Args: name: Base name for this library. srcs: List of .proto files - private to this library. hdrs: As above, but also exported for dependent rules to utilize. deps: List of deps for this library arches: Which architectures to build this library for, None => ALL. visibility: Standard blaze visibility parameter, passed through to subsequent rules. testonly: Standard blaze testonly parameter. proto_include: Path to add to include path. This will affect the symbols generated by protoc, as well as the include paths used for both sc_cc_lib and sc_proto_lib rules that depend on this rule. Typically "." python_support: Defaults to False. If True, generate a python proto library from this rule. Any sc_proto_lib with python support may only depend on sc_proto_libs that also have python support, and may not use the proto_include field in this rule. services: List of services to enable {"grpc", "rpc"}; Only "grpc" is supported. So "rpc" and "grpc" are equivalent. """ if not arches: if testonly: arches = HOST_ARCHES else: arches = ALL_ARCHES service_enable = { "grpc": 0, } for service in services or []: if service == "grpc": service_enable["grpc"] = 1 elif service == "rpc": service_enable["grpc"] = 1 else: fail("service='%s' not in (grpc, rpc)" % service) deps = depset(deps or []) shim_rule = _gen_proto_shims( name = name, pb_modifier = ".pb", srcs = srcs + hdrs, arches = arches, visibility = visibility, ) grpc_shim_rule = None if (service_enable["grpc"]): grpc_shim_rule = _gen_proto_shims( name = decorate(name[:-6], "grpc_proto"), pb_modifier = ".grpc.pb", srcs = srcs + hdrs, arches = arches, visibility = visibility, ) for arch in arches: _gen_proto_lib( name = name, srcs = srcs, hdrs = [shim_rule] + hdrs, deps = deps, arch = arch, visibility = visibility, testonly = testonly, proto_include = proto_include, grpc_shim_rule = grpc_shim_rule, ) if python_support: if proto_include: fail("Cannot use proto_include on an sc_proto_lib with python support.") _gen_py_proto_lib( name = name, srcs = depset(srcs + hdrs), deps = deps, visibility = visibility, testonly = testonly, ) register_extension_info( extension_name = "sc_proto_lib", label_regex_for_dep = "{extension_name}", ) def sc_package( name = None, bins = None, data = None, deps = None, arches = None, visibility = None): """Public macro to package binaries and data for deployment. For package "name", generates: * ${name}_${arch}_bin and ${name}_${arch}_data filesets containing respectively all of the binaries and all of the data needed for this package and all dependency packages. * ${name}_${arch} fileset containing the corresponding bin and data filesets, mapped to bin/ and share/ respectively. * ${name}_${arch}_tarball rule builds that .tar.gz package. Args: name: Base name for this package. bins: List of sc_cc_bin rules to be packaged. data: List of files (and file producing rules) to be packaged. deps: List of other sc_packages to add to this package. arches: Which architectures to build this library for, None => EMBEDDED_ARCHES (HOST_ARCHES not generally supported). visibility: Standard blaze visibility parameter, passed through to all filesets. """ bins = depset(bins or []) data = depset(data or []) deps = depset(deps or []) if not arches: arches = EMBEDDED_ARCHES fileset_name = decorate(name, "fs") for extension, inputs in [ ("bin", ["%s.stripped" % b for b in bins.to_list()]), ("data", data), ]: native.Fileset( name = decorate(fileset_name, extension), out = decorate(name, extension), entries = [ native.FilesetEntry( files = inputs, ), ] + [ native.FilesetEntry(srcdir = decorate(dep, extension)) for dep in deps.to_list() ], visibility = visibility, ) # Add any platform specific files to the final tarball. platform_entries = sc_platform_select( # We use a different ppc toolchain for Stratum. # This means that we must provide portable shared libs for our ppc # executables. ppc = [native.FilesetEntry( srcdir = "%s:BUILD" % _PPC_GRTE, files = [":libs"], destdir = "lib/stratum", symlinks = "dereference", )], default = [], ) native.Fileset( name = fileset_name, out = name, entries = [ native.FilesetEntry( srcdir = decorate(name, "bin"), destdir = "bin", ), native.FilesetEntry( srcdir = decorate(name, "data"), destdir = "share", ), ] + platform_entries, visibility = visibility, ) outs = ["%s.tar.gz" % name] # Copy our files into a temporary directory and make any necessary changes # before tarballing. cmds = [ "TEMP_DIR=$(@D)/stratum_packaging_temp", "mkdir $${TEMP_DIR}", "cp -r %s $${TEMP_DIR}/tarball" % _loc(fileset_name), "if [[ -e $${TEMP_DIR}/tarball/bin ]]", "then for f in $${TEMP_DIR}/tarball/bin/*.stripped", " do mv $${f} $${f%.stripped}", # rename not available. "done", "fi", "tar czf %s -h -C $${TEMP_DIR}/tarball ." % _loc(name + ".tar.gz"), "rm -rf $${TEMP_DIR}", ] native.genrule( name = decorate(name, "tarball"), srcs = [":%s" % fileset_name], outs = outs, cmd = "; ".join(cmds), visibility = visibility, )
updatetranslations.py
erincerys/ergo
1,122
2883
<reponame>erincerys/ergo<gh_stars>1000+ #!/usr/bin/env python3 # updatetranslations.py # # tl;dr this script updates our translation file with the newest, coolest strings we've added! # it manually searches the source code, extracts strings and then updates the language files. # Written in 2018 by <NAME> <<EMAIL>> # # To the extent possible under law, the author(s) have dedicated all copyright # and related and neighboring rights to this software to the public domain # worldwide. This software is distributed without any warranty. # # You should have received a copy of the CC0 Public Domain Dedication along # with this software. If not, see # <http://creativecommons.org/publicdomain/zero/1.0/>. """updatetranslations.py Usage: updatetranslations.py run <irc-dir> <languages-dir> updatetranslations.py --version updatetranslations.py (-h | --help) Options: <irc-dir> Oragono's irc subdirectory where the Go code is kept. <languages-dir> Languages directory.""" import os import re import json from docopt import docopt import yaml ignored_strings = [ 'none', 'saset' ] if __name__ == '__main__': arguments = docopt(__doc__, version="0.1.0") if arguments['run']: # general IRC strings irc_strings = [] for subdir, dirs, files in os.walk(arguments['<irc-dir>']): for fname in files: filepath = subdir + os.sep + fname if filepath.endswith('.go'): content = open(filepath, 'r', encoding='UTF-8').read() matches = re.findall(r'\.t\("((?:[^"]|\\")+)"\)', content) for match in matches: if match not in irc_strings: irc_strings.append(match) matches = re.findall(r'\.t\(\`([^\`]+)\`\)', content) for match in matches: if match not in irc_strings: irc_strings.append(match) for s in ignored_strings: try: irc_strings.remove(s) except ValueError: # ignore any that don't exist ... print("irc strings:", len(irc_strings)) with open(os.path.join(arguments['<languages-dir>'], 'example', 'irc.lang.json'), 'w') as f: f.write(json.dumps({k:k for k in irc_strings}, sort_keys=True, indent=2, separators=(',', ': '))) f.write('\n') for string in irc_strings: if 1 < string.count('%s') + string.count('%d') + string.count('%f'): print(' confirm:', string) # help entries help_strings = [] for subdir, dirs, files in os.walk(arguments['<irc-dir>']): for fname in files: filepath = subdir + os.sep + fname if fname == 'help.go': content = open(filepath, 'r', encoding='UTF-8').read() matches = re.findall(r'\`([^\`]+)\`', content) for match in matches: if '\n' in match and match not in help_strings: help_strings.append(match) for s in ignored_strings: try: help_strings.remove(s) except ValueError: # ignore any that don't exist ... print("help strings:", len(help_strings)) with open(os.path.join(arguments['<languages-dir>'], 'example', 'help.lang.json'), 'w') as f: f.write(json.dumps({k:k for k in help_strings}, sort_keys=True, indent=2, separators=(',', ': '))) f.write('\n') for string in help_strings: if 1 < string.count('%s') + string.count('%d') + string.count('%f'): print(' confirm:', string.split('\n')[0]) # nickserv help entries help_strings = [] for subdir, dirs, files in os.walk(arguments['<irc-dir>']): for fname in files: filepath = subdir + os.sep + fname if fname == 'nickserv.go': content = open(filepath, 'r', encoding='UTF-8').read() matches = re.findall(r'\`([^\`]+)\`', content) for match in matches: if match not in help_strings: help_strings.append(match) for s in ignored_strings: try: help_strings.remove(s) except ValueError: # ignore any that don't exist ... print("nickserv help strings:", len(help_strings)) with open(os.path.join(arguments['<languages-dir>'], 'example', 'nickserv.lang.json'), 'w') as f: f.write(json.dumps({k:k for k in help_strings}, sort_keys=True, indent=2, separators=(',', ': '))) f.write('\n') for string in help_strings: if 1 < string.count('%s') + string.count('%d') + string.count('%f'): print(' confirm:', string) # chanserv help entries help_strings = [] for subdir, dirs, files in os.walk(arguments['<irc-dir>']): for fname in files: filepath = subdir + os.sep + fname if fname == 'chanserv.go': content = open(filepath, 'r', encoding='UTF-8').read() matches = re.findall(r'\`([^\`]+)\`', content) for match in matches: if match not in help_strings: help_strings.append(match) for s in ignored_strings: try: help_strings.remove(s) except ValueError: # ignore any that don't exist ... print("chanserv help strings:", len(help_strings)) with open(os.path.join(arguments['<languages-dir>'], 'example', 'chanserv.lang.json'), 'w') as f: f.write(json.dumps({k:k for k in help_strings}, sort_keys=True, indent=2, separators=(',', ': '))) f.write('\n') for string in help_strings: if 1 < string.count('%s') + string.count('%d') + string.count('%f'): print(' confirm:', string) # hostserv help entries help_strings = [] for subdir, dirs, files in os.walk(arguments['<irc-dir>']): for fname in files: filepath = subdir + os.sep + fname if fname == 'hostserv.go': content = open(filepath, 'r', encoding='UTF-8').read() matches = re.findall(r'\`([^\`]+)\`', content) for match in matches: if match not in help_strings: help_strings.append(match) for s in ignored_strings: try: help_strings.remove(s) except ValueError: # ignore any that don't exist ... print("hostserv help strings:", len(help_strings)) with open(os.path.join(arguments['<languages-dir>'], 'example', 'hostserv.lang.json'), 'w') as f: f.write(json.dumps({k:k for k in help_strings}, sort_keys=True, indent=2, separators=(',', ': '))) f.write('\n') for string in help_strings: if 1 < string.count('%s') + string.count('%d') + string.count('%f'): print(' confirm:', string)
questions/53349623/main.py
sesu089/stackoverflow
302
2893
<gh_stars>100-1000 import sys from PyQt5 import QtCore, QtGui, QtWidgets class Demo(QtWidgets.QWidget): def __init__(self): super(Demo, self).__init__() self.button = QtWidgets.QPushButton() self.label = QtWidgets.QLabel(alignment=QtCore.Qt.AlignCenter) self.combo = QtWidgets.QComboBox(self) self.combo.currentIndexChanged.connect(self.change_func) self.trans = QtCore.QTranslator(self) self.v_layout = QtWidgets.QVBoxLayout(self) self.v_layout.addWidget(self.combo) self.v_layout.addWidget(self.button) self.v_layout.addWidget(self.label) options = ([('English', ''), ('français', 'eng-fr' ), ('中文', 'eng-chs'), ]) for i, (text, lang) in enumerate(options): self.combo.addItem(text) self.combo.setItemData(i, lang) self.retranslateUi() @QtCore.pyqtSlot(int) def change_func(self, index): data = self.combo.itemData(index) if data: self.trans.load(data) QtWidgets.QApplication.instance().installTranslator(self.trans) else: QtWidgets.QApplication.instance().removeTranslator(self.trans) def changeEvent(self, event): if event.type() == QtCore.QEvent.LanguageChange: self.retranslateUi() super(Demo, self).changeEvent(event) def retranslateUi(self): self.button.setText(QtWidgets.QApplication.translate('Demo', 'Start')) self.label.setText(QtWidgets.QApplication.translate('Demo', 'Hello, World')) if __name__ == '__main__': app = QtWidgets.QApplication(sys.argv) demo = Demo() demo.show() sys.exit(app.exec_())
generator/generator.py
GregorKikelj/opendbc
1,059
2917
#!/usr/bin/env python3 import os import re cur_path = os.path.dirname(os.path.realpath(__file__)) opendbc_root = os.path.join(cur_path, '../') include_pattern = re.compile(r'CM_ "IMPORT (.*?)";') def read_dbc(src_dir, filename): with open(os.path.join(src_dir, filename)) as file_in: return file_in.read() def create_dbc(src_dir, filename, output_path): dbc_file_in = read_dbc(src_dir, filename) includes = include_pattern.findall(dbc_file_in) output_filename = filename.replace('.dbc', '_generated.dbc') output_file_location = os.path.join(output_path, output_filename) with open(output_file_location, 'w') as dbc_file_out: dbc_file_out.write('CM_ "AUTOGENERATED FILE, DO NOT EDIT";\n') for include_filename in includes: include_file_header = '\n\nCM_ "Imported file %s starts here";\n' % include_filename dbc_file_out.write(include_file_header) include_file = read_dbc(src_dir, include_filename) dbc_file_out.write(include_file) dbc_file_out.write('\nCM_ "%s starts here";\n' % filename) core_dbc = include_pattern.sub('', dbc_file_in) dbc_file_out.write(core_dbc) def create_all(output_path): for src_dir, _, filenames in os.walk(cur_path): if src_dir == cur_path: continue #print(src_dir) for filename in filenames: if filename.startswith('_') or not filename.endswith('.dbc'): continue #print(filename) create_dbc(src_dir, filename, output_path) if __name__ == "__main__": create_all(opendbc_root)
Python/hello_world-theopaid.py
saurabhcommand/Hello-world
1,428
2932
#Author <NAME> print("Hello World") hello_list = ["Hello World"] print(hello_list[0]) for i in hello_list: print(i)
combo/search/discrete/policy.py
zhangkunliang/BayesOptimization
139
2943
import numpy as np import copy import combo.misc import cPickle as pickle from results import history from .. import utility from ...variable import variable from ..call_simulator import call_simulator from ... import predictor from ...gp import predictor as gp_predictor from ...blm import predictor as blm_predictor import combo.search.score MAX_SEACH = int(20000) class policy: def __init__(self, test_X, config=None): self.predictor = None self.training = variable() self.test = self._set_test(test_X) self.actions = np.arange(0, self.test.X.shape[0]) self.history = history() self.config = self._set_config(config) def set_seed(self, seed): self.seed = seed np.random.seed(self.seed) def delete_actions(self, index, actions=None): actions = self._set_unchosed_actions(actions) return np.delete(actions, index) def write(self, action, t, X=None): if X is None: X = self.test.X[action, :] Z = self.test.Z[action, :] if self.test.Z is not None else None else: Z = self.predictor.get_basis(X) \ if self.predictor is not None else None self.new_data = variable(X, t, Z) self.history.write(t, action) self.training.add(X=X, t=t, Z=Z) def random_search(self, max_num_probes, num_search_each_probe=1, simulator=None, is_disp=True): N = int(num_search_each_probe) if int(max_num_probes) * N > len(self.actions): raise ValueError('max_num_probes * num_search_each_probe must \ be smaller than the length of candidates') if is_disp: utility.show_interactive_mode(simulator, self.history) for n in xrange(0, max_num_probes): if is_disp and N > 1: utility.show_start_message_multi_search(self.history.num_runs) action = self.get_random_action(N) if simulator is None: return action t, X = call_simulator(simulator, action) self.write(action, t, X) if is_disp: utility.show_search_results(self.history, N) return copy.deepcopy(self.history) def bayes_search(self, training=None, max_num_probes=None, num_search_each_probe=1, predictor=None, is_disp=True, simulator=None, score='TS', interval=0, num_rand_basis=0): if max_num_probes is None: max_num_probes = 1 simulator = None is_rand_expans = False if num_rand_basis == 0 else True self.training = self._set_training(training) if predictor is None: self.predictor = self._init_predictor(is_rand_expans) else: self.predictor = predictor N = int(num_search_each_probe) for n in xrange(max_num_probes): if utility.is_learning(n, interval): self.predictor.fit(self.training, num_rand_basis) self.test.Z = self.predictor.get_basis(self.test.X) self.training.Z = self.predictor.get_basis(self.training.X) self.predictor.prepare(self.training) else: try: self.predictor.update(self.training, self.new_data) except: self.predictor.prepare(self.training) if num_search_each_probe != 1: utility.show_start_message_multi_search(self.history.num_runs, score) K = self.config.search.multi_probe_num_sampling alpha = self.config.search.alpha action = self.get_actions(score, N, K, alpha) if simulator is None: return action t, X = call_simulator(simulator, action) self.write(action, t, X) if is_disp: utility.show_search_results(self.history, N) return copy.deepcopy(self.history) def get_score(self, mode, predictor=None, training=None, alpha=1): self._set_training(training) self._set_predictor(predictor) actions = self.actions test = self.test.get_subset(actions) if mode == 'EI': f = combo.search.score.EI(predictor, training, test) elif mode == 'PI': f = combo.search.score.PI(predictor, training, test) elif mode == 'TS': f = combo.search.score.TS(predictor, training, test, alpha) else: raise NotImplementedError('mode must be EI, PI or TS.') return f def get_marginal_score(self, mode, chosed_actions, N, alpha): f = np.zeros((N, len(self.actions))) new_test = self.test.get_subset(chosed_actions) virtual_t \ = self.predictor.get_predict_samples(self.training, new_test, N) for n in xrange(N): predictor = copy.deepcopy(self.predictor) train = copy.deepcopy(self.training) virtual_train = new_test virtual_train.t = virtual_t[n, :] if virtual_train.Z is None: train.add(virtual_train.X, virtual_train.t) else: train.add(virtual_train.X, virtual_train.t, virtual_train.Z) try: predictor.update(train, virtual_train) except: predictor.prepare(train) f[n, :] = self.get_score(mode, predictor, train) return f def get_actions(self, mode, N, K, alpha): f = self.get_score(mode, self.predictor, self.training, alpha) temp = np.argmax(f) action = self.actions[temp] self.actions = self.delete_actions(temp) chosed_actions = np.zeros(N, dtype=int) chosed_actions[0] = action for n in xrange(1, N): f = self.get_marginal_score(mode, chosed_actions[0:n], K, alpha) temp = np.argmax(np.mean(f, 0)) chosed_actions[n] = self.actions[temp] self.actions = self.delete_actions(temp) return chosed_actions def get_random_action(self, N): random_index = np.random.permutation(xrange(self.actions.shape[0])) index = random_index[0:N] action = self.actions[index] self.actions = self.delete_actions(index) return action def load(self, file_history, file_training=None, file_predictor=None): self.history.load(file_history) if file_training is None: N = self.history.total_num_search X = self.test.X[self.history.chosed_actions[0:N], :] t = self.history.fx[0:N] self.training = variable(X=X, t=t) else: self.training = variable() self.training.load(file_training) if file_predictor is not None: with open(file_predictor) as f: self.predictor = pickle.load(f) def export_predictor(self): return self.predictor def export_training(self): return self.training def export_history(self): return self.history def _set_predictor(self, predictor=None): if predictor is None: predictor = self.predictor return predictor def _init_predictor(self, is_rand_expans, predictor=None): self.predictor = self._set_predictor(predictor) if self.predictor is None: if is_rand_expans: self.predictor = blm_predictor(self.config) else: self.predictor = gp_predictor(self.config) return self.predictor def _set_training(self, training=None): if training is None: training = self.training return training def _set_unchosed_actions(self, actions=None): if actions is None: actions = self.actions return actions def _set_test(self, test_X): if isinstance(test_X, np.ndarray): test = variable(X=test_X) elif isinstance(test_X, variable): test = test_X else: raise TypeError('The type of test_X must \ take ndarray or combo.variable') return test def _set_config(self, config=None): if config is None: config = combo.misc.set_config() return config
venv/lib/python3.9/site-packages/py2app/bootstrap/disable_linecache.py
dequeb/asmbattle
193
2944
<filename>venv/lib/python3.9/site-packages/py2app/bootstrap/disable_linecache.py def _disable_linecache(): import linecache def fake_getline(*args, **kwargs): return "" linecache.orig_getline = linecache.getline linecache.getline = fake_getline _disable_linecache()
test/com/facebook/buck/skylark/parser/testdata/rule_with_wrong_types/attr_value_type/subdir/foo.bzl
Unknoob/buck
8,027
2977
<gh_stars>1000+ """ Module docstring """ def _impl(_ctx): """ Function docstring """ pass some_rule = rule( attrs = { "attr1": attr.int( default = 2, mandatory = False, ), "attr2": 5, }, implementation = _impl, )
regtests/calling/function_expression.py
bpmbank/PythonJS
319
2984
"""func expr""" F = function( x,y ): return x+y def main(): TestError( F(1,2) == 3 )
src/fabricflow/fibc/api/fibcapis_pb2_grpc.py
RudSmith/beluganos
119
3017
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT! import grpc import fibcapi_pb2 as fibcapi__pb2 import fibcapis_pb2 as fibcapis__pb2 class FIBCApApiStub(object): # missing associated documentation comment in .proto file pass def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.Monitor = channel.unary_stream( '/fibcapi.FIBCApApi/Monitor', request_serializer=fibcapis__pb2.ApMonitorRequest.SerializeToString, response_deserializer=fibcapis__pb2.ApMonitorReply.FromString, ) self.GetPortStats = channel.unary_stream( '/fibcapi.FIBCApApi/GetPortStats', request_serializer=fibcapis__pb2.ApGetPortStatsRequest.SerializeToString, response_deserializer=fibcapi__pb2.FFPortStats.FromString, ) self.ModPortStats = channel.unary_unary( '/fibcapi.FIBCApApi/ModPortStats', request_serializer=fibcapis__pb2.ApModPortStatsRequest.SerializeToString, response_deserializer=fibcapis__pb2.ApModPortStatsReply.FromString, ) self.GetPortEntries = channel.unary_stream( '/fibcapi.FIBCApApi/GetPortEntries', request_serializer=fibcapis__pb2.ApGetPortEntriesRequest.SerializeToString, response_deserializer=fibcapis__pb2.DbPortEntry.FromString, ) self.GetIDEntries = channel.unary_stream( '/fibcapi.FIBCApApi/GetIDEntries', request_serializer=fibcapis__pb2.ApGetIdEntriesRequest.SerializeToString, response_deserializer=fibcapis__pb2.DbIdEntry.FromString, ) self.GetDpEntries = channel.unary_stream( '/fibcapi.FIBCApApi/GetDpEntries', request_serializer=fibcapis__pb2.ApGetDpEntriesRequest.SerializeToString, response_deserializer=fibcapis__pb2.DbDpEntry.FromString, ) self.AddPortEntry = channel.unary_unary( '/fibcapi.FIBCApApi/AddPortEntry', request_serializer=fibcapis__pb2.DbPortEntry.SerializeToString, response_deserializer=fibcapis__pb2.ApAddPortEntryReply.FromString, ) self.AddIDEntry = channel.unary_unary( '/fibcapi.FIBCApApi/AddIDEntry', request_serializer=fibcapis__pb2.DbIdEntry.SerializeToString, response_deserializer=fibcapis__pb2.ApAddIdEntryReply.FromString, ) self.DelPortEntry = channel.unary_unary( '/fibcapi.FIBCApApi/DelPortEntry', request_serializer=fibcapis__pb2.DbPortKey.SerializeToString, response_deserializer=fibcapis__pb2.ApDelPortEntryReply.FromString, ) self.DelIDEntry = channel.unary_unary( '/fibcapi.FIBCApApi/DelIDEntry', request_serializer=fibcapis__pb2.DbIdEntry.SerializeToString, response_deserializer=fibcapis__pb2.ApDelIdEntryReply.FromString, ) self.GetStats = channel.unary_stream( '/fibcapi.FIBCApApi/GetStats', request_serializer=fibcapis__pb2.ApGetStatsRequest.SerializeToString, response_deserializer=fibcapis__pb2.StatsEntry.FromString, ) self.RunOAM = channel.unary_unary( '/fibcapi.FIBCApApi/RunOAM', request_serializer=fibcapi__pb2.OAM.Request.SerializeToString, response_deserializer=fibcapis__pb2.OAMReplyAck.FromString, ) class FIBCApApiServicer(object): # missing associated documentation comment in .proto file pass def Monitor(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def GetPortStats(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def ModPortStats(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def GetPortEntries(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def GetIDEntries(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def GetDpEntries(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def AddPortEntry(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def AddIDEntry(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def DelPortEntry(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def DelIDEntry(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def GetStats(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def RunOAM(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_FIBCApApiServicer_to_server(servicer, server): rpc_method_handlers = { 'Monitor': grpc.unary_stream_rpc_method_handler( servicer.Monitor, request_deserializer=fibcapis__pb2.ApMonitorRequest.FromString, response_serializer=fibcapis__pb2.ApMonitorReply.SerializeToString, ), 'GetPortStats': grpc.unary_stream_rpc_method_handler( servicer.GetPortStats, request_deserializer=fibcapis__pb2.ApGetPortStatsRequest.FromString, response_serializer=fibcapi__pb2.FFPortStats.SerializeToString, ), 'ModPortStats': grpc.unary_unary_rpc_method_handler( servicer.ModPortStats, request_deserializer=fibcapis__pb2.ApModPortStatsRequest.FromString, response_serializer=fibcapis__pb2.ApModPortStatsReply.SerializeToString, ), 'GetPortEntries': grpc.unary_stream_rpc_method_handler( servicer.GetPortEntries, request_deserializer=fibcapis__pb2.ApGetPortEntriesRequest.FromString, response_serializer=fibcapis__pb2.DbPortEntry.SerializeToString, ), 'GetIDEntries': grpc.unary_stream_rpc_method_handler( servicer.GetIDEntries, request_deserializer=fibcapis__pb2.ApGetIdEntriesRequest.FromString, response_serializer=fibcapis__pb2.DbIdEntry.SerializeToString, ), 'GetDpEntries': grpc.unary_stream_rpc_method_handler( servicer.GetDpEntries, request_deserializer=fibcapis__pb2.ApGetDpEntriesRequest.FromString, response_serializer=fibcapis__pb2.DbDpEntry.SerializeToString, ), 'AddPortEntry': grpc.unary_unary_rpc_method_handler( servicer.AddPortEntry, request_deserializer=fibcapis__pb2.DbPortEntry.FromString, response_serializer=fibcapis__pb2.ApAddPortEntryReply.SerializeToString, ), 'AddIDEntry': grpc.unary_unary_rpc_method_handler( servicer.AddIDEntry, request_deserializer=fibcapis__pb2.DbIdEntry.FromString, response_serializer=fibcapis__pb2.ApAddIdEntryReply.SerializeToString, ), 'DelPortEntry': grpc.unary_unary_rpc_method_handler( servicer.DelPortEntry, request_deserializer=fibcapis__pb2.DbPortKey.FromString, response_serializer=fibcapis__pb2.ApDelPortEntryReply.SerializeToString, ), 'DelIDEntry': grpc.unary_unary_rpc_method_handler( servicer.DelIDEntry, request_deserializer=fibcapis__pb2.DbIdEntry.FromString, response_serializer=fibcapis__pb2.ApDelIdEntryReply.SerializeToString, ), 'GetStats': grpc.unary_stream_rpc_method_handler( servicer.GetStats, request_deserializer=fibcapis__pb2.ApGetStatsRequest.FromString, response_serializer=fibcapis__pb2.StatsEntry.SerializeToString, ), 'RunOAM': grpc.unary_unary_rpc_method_handler( servicer.RunOAM, request_deserializer=fibcapi__pb2.OAM.Request.FromString, response_serializer=fibcapis__pb2.OAMReplyAck.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'fibcapi.FIBCApApi', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,)) class FIBCVmApiStub(object): # missing associated documentation comment in .proto file pass def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.SendHello = channel.unary_unary( '/fibcapi.FIBCVmApi/SendHello', request_serializer=fibcapi__pb2.Hello.SerializeToString, response_deserializer=fibcapis__pb2.HelloReply.FromString, ) self.SendPortConfig = channel.unary_unary( '/fibcapi.FIBCVmApi/SendPortConfig', request_serializer=fibcapi__pb2.PortConfig.SerializeToString, response_deserializer=fibcapis__pb2.PortConfigReply.FromString, ) self.SendFlowMod = channel.unary_unary( '/fibcapi.FIBCVmApi/SendFlowMod', request_serializer=fibcapi__pb2.FlowMod.SerializeToString, response_deserializer=fibcapis__pb2.FlowModReply.FromString, ) self.SendGroupMod = channel.unary_unary( '/fibcapi.FIBCVmApi/SendGroupMod', request_serializer=fibcapi__pb2.GroupMod.SerializeToString, response_deserializer=fibcapis__pb2.GroupModReply.FromString, ) self.SendOAMReply = channel.unary_unary( '/fibcapi.FIBCVmApi/SendOAMReply', request_serializer=fibcapis__pb2.OAMReply.SerializeToString, response_deserializer=fibcapis__pb2.OAMReplyAck.FromString, ) self.Monitor = channel.unary_stream( '/fibcapi.FIBCVmApi/Monitor', request_serializer=fibcapis__pb2.VmMonitorRequest.SerializeToString, response_deserializer=fibcapis__pb2.VmMonitorReply.FromString, ) class FIBCVmApiServicer(object): # missing associated documentation comment in .proto file pass def SendHello(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def SendPortConfig(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def SendFlowMod(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def SendGroupMod(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def SendOAMReply(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def Monitor(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_FIBCVmApiServicer_to_server(servicer, server): rpc_method_handlers = { 'SendHello': grpc.unary_unary_rpc_method_handler( servicer.SendHello, request_deserializer=fibcapi__pb2.Hello.FromString, response_serializer=fibcapis__pb2.HelloReply.SerializeToString, ), 'SendPortConfig': grpc.unary_unary_rpc_method_handler( servicer.SendPortConfig, request_deserializer=fibcapi__pb2.PortConfig.FromString, response_serializer=fibcapis__pb2.PortConfigReply.SerializeToString, ), 'SendFlowMod': grpc.unary_unary_rpc_method_handler( servicer.SendFlowMod, request_deserializer=fibcapi__pb2.FlowMod.FromString, response_serializer=fibcapis__pb2.FlowModReply.SerializeToString, ), 'SendGroupMod': grpc.unary_unary_rpc_method_handler( servicer.SendGroupMod, request_deserializer=fibcapi__pb2.GroupMod.FromString, response_serializer=fibcapis__pb2.GroupModReply.SerializeToString, ), 'SendOAMReply': grpc.unary_unary_rpc_method_handler( servicer.SendOAMReply, request_deserializer=fibcapis__pb2.OAMReply.FromString, response_serializer=fibcapis__pb2.OAMReplyAck.SerializeToString, ), 'Monitor': grpc.unary_stream_rpc_method_handler( servicer.Monitor, request_deserializer=fibcapis__pb2.VmMonitorRequest.FromString, response_serializer=fibcapis__pb2.VmMonitorReply.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'fibcapi.FIBCVmApi', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,)) class FIBCVsApiStub(object): # missing associated documentation comment in .proto file pass def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.SendHello = channel.unary_unary( '/fibcapi.FIBCVsApi/SendHello', request_serializer=fibcapi__pb2.FFHello.SerializeToString, response_deserializer=fibcapis__pb2.FFHelloReply.FromString, ) self.SendFFPacket = channel.unary_unary( '/fibcapi.FIBCVsApi/SendFFPacket', request_serializer=fibcapi__pb2.FFPacket.SerializeToString, response_deserializer=fibcapis__pb2.FFPacketReply.FromString, ) self.SendPacketIn = channel.unary_unary( '/fibcapi.FIBCVsApi/SendPacketIn', request_serializer=fibcapi__pb2.FFPacketIn.SerializeToString, response_deserializer=fibcapis__pb2.FFPacketInReply.FromString, ) self.SendOAMReply = channel.unary_unary( '/fibcapi.FIBCVsApi/SendOAMReply', request_serializer=fibcapis__pb2.OAMReply.SerializeToString, response_deserializer=fibcapis__pb2.OAMReplyAck.FromString, ) self.Monitor = channel.unary_stream( '/fibcapi.FIBCVsApi/Monitor', request_serializer=fibcapis__pb2.VsMonitorRequest.SerializeToString, response_deserializer=fibcapis__pb2.VsMonitorReply.FromString, ) class FIBCVsApiServicer(object): # missing associated documentation comment in .proto file pass def SendHello(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def SendFFPacket(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def SendPacketIn(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def SendOAMReply(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def Monitor(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_FIBCVsApiServicer_to_server(servicer, server): rpc_method_handlers = { 'SendHello': grpc.unary_unary_rpc_method_handler( servicer.SendHello, request_deserializer=fibcapi__pb2.FFHello.FromString, response_serializer=fibcapis__pb2.FFHelloReply.SerializeToString, ), 'SendFFPacket': grpc.unary_unary_rpc_method_handler( servicer.SendFFPacket, request_deserializer=fibcapi__pb2.FFPacket.FromString, response_serializer=fibcapis__pb2.FFPacketReply.SerializeToString, ), 'SendPacketIn': grpc.unary_unary_rpc_method_handler( servicer.SendPacketIn, request_deserializer=fibcapi__pb2.FFPacketIn.FromString, response_serializer=fibcapis__pb2.FFPacketInReply.SerializeToString, ), 'SendOAMReply': grpc.unary_unary_rpc_method_handler( servicer.SendOAMReply, request_deserializer=fibcapis__pb2.OAMReply.FromString, response_serializer=fibcapis__pb2.OAMReplyAck.SerializeToString, ), 'Monitor': grpc.unary_stream_rpc_method_handler( servicer.Monitor, request_deserializer=fibcapis__pb2.VsMonitorRequest.FromString, response_serializer=fibcapis__pb2.VsMonitorReply.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'fibcapi.FIBCVsApi', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,)) class FIBCDpApiStub(object): # missing associated documentation comment in .proto file pass def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.SendHello = channel.unary_unary( '/fibcapi.FIBCDpApi/SendHello', request_serializer=fibcapi__pb2.FFHello.SerializeToString, response_deserializer=fibcapis__pb2.FFHelloReply.FromString, ) self.SendPacketIn = channel.unary_unary( '/fibcapi.FIBCDpApi/SendPacketIn', request_serializer=fibcapi__pb2.FFPacketIn.SerializeToString, response_deserializer=fibcapis__pb2.FFPacketInReply.FromString, ) self.SendPortStatus = channel.unary_unary( '/fibcapi.FIBCDpApi/SendPortStatus', request_serializer=fibcapi__pb2.FFPortStatus.SerializeToString, response_deserializer=fibcapis__pb2.FFPortStatusReply.FromString, ) self.SendL2AddrStatus = channel.unary_unary( '/fibcapi.FIBCDpApi/SendL2AddrStatus', request_serializer=fibcapi__pb2.FFL2AddrStatus.SerializeToString, response_deserializer=fibcapis__pb2.L2AddrStatusReply.FromString, ) self.SendMultipartReply = channel.unary_unary( '/fibcapi.FIBCDpApi/SendMultipartReply', request_serializer=fibcapis__pb2.DpMultipartReply.SerializeToString, response_deserializer=fibcapis__pb2.DpMultipartReplyAck.FromString, ) self.SendOAMReply = channel.unary_unary( '/fibcapi.FIBCDpApi/SendOAMReply', request_serializer=fibcapis__pb2.OAMReply.SerializeToString, response_deserializer=fibcapis__pb2.OAMReplyAck.FromString, ) self.Monitor = channel.unary_stream( '/fibcapi.FIBCDpApi/Monitor', request_serializer=fibcapis__pb2.DpMonitorRequest.SerializeToString, response_deserializer=fibcapis__pb2.DpMonitorReply.FromString, ) class FIBCDpApiServicer(object): # missing associated documentation comment in .proto file pass def SendHello(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def SendPacketIn(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def SendPortStatus(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def SendL2AddrStatus(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def SendMultipartReply(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def SendOAMReply(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def Monitor(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_FIBCDpApiServicer_to_server(servicer, server): rpc_method_handlers = { 'SendHello': grpc.unary_unary_rpc_method_handler( servicer.SendHello, request_deserializer=fibcapi__pb2.FFHello.FromString, response_serializer=fibcapis__pb2.FFHelloReply.SerializeToString, ), 'SendPacketIn': grpc.unary_unary_rpc_method_handler( servicer.SendPacketIn, request_deserializer=fibcapi__pb2.FFPacketIn.FromString, response_serializer=fibcapis__pb2.FFPacketInReply.SerializeToString, ), 'SendPortStatus': grpc.unary_unary_rpc_method_handler( servicer.SendPortStatus, request_deserializer=fibcapi__pb2.FFPortStatus.FromString, response_serializer=fibcapis__pb2.FFPortStatusReply.SerializeToString, ), 'SendL2AddrStatus': grpc.unary_unary_rpc_method_handler( servicer.SendL2AddrStatus, request_deserializer=fibcapi__pb2.FFL2AddrStatus.FromString, response_serializer=fibcapis__pb2.L2AddrStatusReply.SerializeToString, ), 'SendMultipartReply': grpc.unary_unary_rpc_method_handler( servicer.SendMultipartReply, request_deserializer=fibcapis__pb2.DpMultipartReply.FromString, response_serializer=fibcapis__pb2.DpMultipartReplyAck.SerializeToString, ), 'SendOAMReply': grpc.unary_unary_rpc_method_handler( servicer.SendOAMReply, request_deserializer=fibcapis__pb2.OAMReply.FromString, response_serializer=fibcapis__pb2.OAMReplyAck.SerializeToString, ), 'Monitor': grpc.unary_stream_rpc_method_handler( servicer.Monitor, request_deserializer=fibcapis__pb2.DpMonitorRequest.FromString, response_serializer=fibcapis__pb2.DpMonitorReply.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'fibcapi.FIBCDpApi', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,))
dialogue-engine/test/programytest/config/file/test_json.py
cotobadesign/cotoba-agent-oss
104
3030
""" Copyright (c) 2020 COTOBA DESIGN, Inc. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import os from programy.config.file.json_file import JSONConfigurationFile from programy.clients.events.console.config import ConsoleConfiguration from programy.utils.substitutions.substitues import Substitutions from programytest.config.file.base_file_tests import ConfigurationBaseFileTests class JSONConfigurationFileTests(ConfigurationBaseFileTests): def test_get_methods(self): config_data = JSONConfigurationFile() self.assertIsNotNone(config_data) configuration = config_data.load_from_text(""" { "brain": { "overrides": { "allow_system_aiml": true, "allow_learn_aiml": true, "allow_learnf_aiml": true } } } """, ConsoleConfiguration(), ".") self.assertIsNotNone(configuration) section = config_data.get_section("brainx") self.assertIsNone(section) section = config_data.get_section("brain") self.assertIsNotNone(section) child_section = config_data.get_section("overrides", section) self.assertIsNotNone(child_section) keys = list(config_data.get_child_section_keys("overrides", section)) self.assertIsNotNone(keys) self.assertEqual(3, len(keys)) self.assertTrue("allow_system_aiml" in keys) self.assertTrue("allow_learn_aiml" in keys) self.assertTrue("allow_learnf_aiml" in keys) self.assertIsNone(config_data.get_child_section_keys("missing", section)) self.assertEqual(True, config_data.get_option(child_section, "allow_system_aiml")) self.assertEqual(True, config_data.get_option(child_section, "missing", missing_value=True)) self.assertEqual(True, config_data.get_bool_option(child_section, "allow_system_aiml")) self.assertEqual(False, config_data.get_bool_option(child_section, "other_value")) self.assertEqual(0, config_data.get_int_option(child_section, "other_value")) def test_load_from_file(self): config = JSONConfigurationFile() self.assertIsNotNone(config) configuration = config.load_from_file(os.path.dirname(__file__) + os.sep + "test_json.json", ConsoleConfiguration(), ".") self.assertIsNotNone(configuration) self.assert_configuration(configuration) def test_load_from_text_multis_one_value(self): config = JSONConfigurationFile() self.assertIsNotNone(config) configuration = config.load_from_text(""" { "bot": { "brain": "bot1" } } """, ConsoleConfiguration(), ".") self.assertIsNotNone(configuration) self.assertEqual(1, len(configuration.client_configuration.configurations[0].configurations)) def test_load_from_text_multis_multiple_values(self): config = JSONConfigurationFile() self.assertIsNotNone(config) configuration = config.load_from_text(""" { "console": { "bot": "bot" }, "bot": { "brain": ["bot1", "bot2"] } } """, ConsoleConfiguration(), ".") self.assertIsNotNone(configuration) self.assertEqual(2, len(configuration.client_configuration.configurations[0].configurations)) def test_load_from_text(self): config = JSONConfigurationFile() self.assertIsNotNone(config) configuration = config.load_from_text(""" { "console": { "bot": "bot", "prompt": ">>>", "scheduler": { "name": "Scheduler1", "debug_level": 50, "add_listeners": false, "remove_all_jobs": false }, "storage": { "entities": { "users": "sql", "linked_accounts": "sql", "links": "sql", "properties": "file", "conversations": "file", "categories": "file", "maps": "file", "sets": "file", "rdf": "file", "denormal": "file", "normal": "file", "gender": "file", "person": "file", "person2": "file", "spelling_corpus": "file", "license_keys": "file", "nodes": "file", "binaries": "file", "braintree": "file", "preprocessors": "file", "postprocessors": "file", "regex_templates": "file", "usergroups": "file", "learnf": "file" }, "stores": { "sql": { "type": "sql", "config": { "url": "sqlite:///:memory", "echo": false, "encoding": "utf-8", "create_db": true, "drop_all_first": true } }, "mongo": { "type": "mongo", "config": { "url": "mongodb://localhost:27017/", "database": "programy", "drop_all_first": true } }, "redis": { "type": "redis", "config": { "host": "localhost", "port": 6379, "password": <PASSWORD>, "db": 0, "prefix": "programy", "drop_all_first": true } }, "file": { "type": "file", "config": { "category_storage": { "files": "./storage/categories" }, "conversations_storage": { "files": "./storage/conversations" }, "sets_storage": { "files": "./storage/sets", "extension": ".txt", "directories": false }, "maps_storage": { "files": "./storage/maps", "extension": ".txt", "directories": false }, "regex_templates": { "files": "./storage/regex" }, "lookups_storage": { "files": "./storage/lookups", "extension": ".txt", "directories": false }, "properties_storage": { "file": "./storage/properties.txt" }, "defaults_storage": { "file": "./storage/defaults.txt" }, "rdf_storage": { "files": "./storage/rdfs", "extension": ".txt", "directories": true }, "spelling_corpus": { "file": "./storage/spelling/corpus.txt" }, "license_keys": { "file": "./storage/license.keys" }, "nodes": { "files": "./storage/nodes" }, "binaries": { "files": "./storage/binaries" }, "braintree": { "file": "./storage/braintree/braintree.xml", "format": "xml" }, "preprocessors": { "file": "./storage/processing/preprocessors.txt" }, "postprocessors": { "file": "./storage/processing/postprocessing.txt" }, "usergroups": { "files": "./storage/security/usergroups.txt" }, "learnf": { "files": "./storage/categories/learnf" } } } } }, "logger": { "type": "logger", "config": { "conversation_logger": "conversation" } } }, "voice": { "license_keys": "$BOT_ROOT/config/license.keys", "tts": "osx", "stt": "azhang", "osx": { "classname": "talky.clients.voice.tts.osxsay.OSXSayTextToSpeach" }, "pytts": { "classname": "talky.clients.voice.tts.pyttssay.PyTTSSayTextToSpeach", "rate_adjust": 10 }, "azhang": { "classname": "talky.clients.voice.stt.azhang.AnthonyZhangSpeechToText", "ambient_adjust": 3, "service": "ibm" } }, "rest": { "host": "0.0.0.0", "port": 8989, "debug": false, "workers": 4, "license_keys": "$BOT_ROOT/config/license.keys" }, "webchat": { "host": "0.0.0.0", "port": 8090, "debug": false, "license_keys": "$BOT_ROOT/config/license.keys", "api": "/api/web/v1.0/ask" }, "twitter": { "polling": true, "polling_interval": 49, "streaming": false, "use_status": true, "use_direct_message": true, "auto_follow": true, "storage": "file", "welcome_message": "Thanks for following me, send me a message and I'll try and help", "license_keys": "file" }, "xmpp": { "server": "talk.google.com", "port": 5222, "xep_0030": true, "xep_0004": true, "xep_0060": true, "xep_0199": true, "license_keys": "file" }, "socket": { "host": "127.0.0.1", "port": 9999, "queue": 5, "debug": true, "license_keys": "file" }, "telegram": { "unknown_command": "Sorry, that is not a command I have been taught yet!", "license_keys": "file" }, "facebook": { "host": "127.0.0.1", "port": 5000, "debug": false, "license_keys": "file" }, "twilio": { "host": "127.0.0.1", "port": 5000, "debug": false, "license_keys": "file" }, "slack": { "polling_interval": 1, "license_keys": "file" }, "viber": { "name": "Servusai", "avatar": "http://viber.com/avatar.jpg", "license_keys": "file" }, "line": { "host": "127.0.0.1", "port": 8084, "debug": false, "license_keys": "file" }, "kik": { "bot_name": "servusai", "webhook": "https://93638f7a.ngrok.io/api/kik/v1.0/ask", "host": "127.0.0.1", "port": 8082, "debug": false, "license_keys": "file" }, "bot": { "brain": "brain", "initial_question": "Hi, how can I help you today?", "initial_question_srai": "YINITIALQUESTION", "default_response": "Sorry, I don't have an answer for that!", "default_response_srai": "YEMPTY", "empty_string": "YEMPTY", "exit_response": "So long, and thanks for the fish!", "exit_response_srai": "YEXITRESPONSE", "override_properties": true, "max_question_recursion": 1000, "max_question_timeout": 60, "max_search_depth": 100, "max_search_timeout": 60, "spelling": { "load": true, "classname": "programy.spelling.norvig.NorvigSpellingChecker", "check_before": true, "check_and_retry": true }, "conversations": { "max_histories": 100, "restore_last_topic": false, "initial_topic": "TOPIC1", "empty_on_start": false } }, "brain": { "overrides": { "allow_system_aiml": true, "allow_learn_aiml": true, "allow_learnf_aiml": true }, "defaults": { "default-get": "unknown", "default-property": "unknown", "default-map": "unknown", "learnf-path": "file" }, "binaries": { "save_binary": true, "load_binary": true, "load_aiml_on_binary_fail": true }, "braintree": { "create": true }, "services": { "REST": { "classname": "programy.services.rest.GenericRESTService", "method": "GET", "host": "0.0.0.0", "port": 8080 }, "Pannous": { "classname": "programy.services.pannous.PannousService", "url": "http://weannie.pannous.com/api" } }, "security": { "authentication": { "classname": "programy.security.authenticate.passthrough.BasicPassThroughAuthenticationService", "denied_srai": "AUTHENTICATION_FAILED" }, "authorisation": { "classname": "programy.security.authorise.usergroupsauthorisor.BasicUserGroupAuthorisationService", "denied_srai": "AUTHORISATION_FAILED", "usergroups": { "storage": "file" } } }, "oob": { "default": { "classname": "programy.oob.defaults.default.DefaultOutOfBandProcessor" }, "alarm": { "classname": "programy.oob.defaults.alarm.AlarmOutOfBandProcessor" }, "camera": { "classname": "programy.oob.defaults.camera.CameraOutOfBandProcessor" }, "clear": { "classname": "programy.oob.defaults.clear.ClearOutOfBandProcessor" }, "dial": { "classname": "programy.oob.defaults.dial.DialOutOfBandProcessor" }, "dialog": { "classname": "programy.oob.defaults.dialog.DialogOutOfBandProcessor" }, "email": { "classname": "programy.oob.defaults.email.EmailOutOfBandProcessor" }, "geomap": { "classname": "programy.oob.defaults.map.MapOutOfBandProcessor" }, "schedule": { "classname": "programy.oob.defaults.schedule.ScheduleOutOfBandProcessor" }, "search": { "classname": "programy.oob.defaults.search.SearchOutOfBandProcessor" }, "sms": { "classname": "programy.oob.defaults.sms.SMSOutOfBandProcessor" }, "url": { "classname": "programy.oob.defaults.url.URLOutOfBandProcessor" }, "wifi": { "classname": "programy.oob.defaults.wifi.WifiOutOfBandProcessor" } }, "dynamic": { "variables": { "gettime": "programy.dynamic.variables.datetime.GetTime" }, "sets": { "numeric": "programy.dynamic.sets.numeric.IsNumeric", "roman": "programy.dynamic.sets.roman.IsRomanNumeral" }, "maps": { "romantodec": "programy.dynamic.maps.roman.MapRomanToDecimal", "dectoroman": "programy.dynamic.maps.roman.MapDecimalToRoman" } } } } """, ConsoleConfiguration(), ".") self.assertIsNotNone(configuration) self.assert_configuration(configuration) def test_load_additionals(self): config = JSONConfigurationFile() self.assertIsNotNone(config) configuration = config.load_from_text(""" { "console": { "bot": "bot" }, "bot": { "brain": "brain" }, "brain": { "security": { "authentication": { "classname": "programy.security.authenticate.passthrough.PassThroughAuthenticationService", "denied_srai": "ACCESS_DENIED" } } } } """, ConsoleConfiguration(), ".") self.assertIsNotNone(configuration) auth_service = configuration.client_configuration.configurations[0].configurations[0].security.authentication self.assertIsNotNone(auth_service) self.assertEqual("ACCESS_DENIED", auth_service.denied_srai) def test_load_with_subs(self): subs = Substitutions() subs.add_substitute("$ALLOW_SYSTEM", True) config_data = JSONConfigurationFile() self.assertIsNotNone(config_data) configuration = config_data.load_from_text(""" { "brain": { "overrides": { "allow_system_aiml": true, "allow_learn_aiml": true, "allow_learnf_aiml": true } } } """, ConsoleConfiguration(), ".") self.assertIsNotNone(configuration) section = config_data.get_section("brainx") self.assertIsNone(section) section = config_data.get_section("brain") self.assertIsNotNone(section) child_section = config_data.get_section("overrides", section) self.assertIsNotNone(child_section) self.assertEqual(True, config_data.get_option(child_section, "allow_system_aiml")) self.assertEqual(True, config_data.get_bool_option(child_section, "allow_system_aiml")) self.assertEqual(False, config_data.get_bool_option(child_section, "other_value"))
tests/components/evil_genius_labs/test_light.py
liangleslie/core
30,023
3036
<gh_stars>1000+ """Test Evil Genius Labs light.""" from unittest.mock import patch import pytest from homeassistant.components.light import ( ATTR_COLOR_MODE, ATTR_SUPPORTED_COLOR_MODES, ColorMode, LightEntityFeature, ) from homeassistant.const import ATTR_SUPPORTED_FEATURES @pytest.mark.parametrize("platforms", [("light",)]) async def test_works(hass, setup_evil_genius_labs): """Test it works.""" state = hass.states.get("light.fibonacci256_23d4") assert state is not None assert state.state == "on" assert state.attributes["brightness"] == 128 assert state.attributes[ATTR_COLOR_MODE] == ColorMode.RGB assert state.attributes[ATTR_SUPPORTED_COLOR_MODES] == [ColorMode.RGB] assert state.attributes[ATTR_SUPPORTED_FEATURES] == LightEntityFeature.EFFECT @pytest.mark.parametrize("platforms", [("light",)]) async def test_turn_on_color(hass, setup_evil_genius_labs): """Test turning on with a color.""" with patch( "pyevilgenius.EvilGeniusDevice.set_path_value" ) as mock_set_path_value, patch( "pyevilgenius.EvilGeniusDevice.set_rgb_color" ) as mock_set_rgb_color: await hass.services.async_call( "light", "turn_on", { "entity_id": "light.fibonacci256_23d4", "brightness": 100, "rgb_color": (10, 20, 30), }, blocking=True, ) assert len(mock_set_path_value.mock_calls) == 2 mock_set_path_value.mock_calls[0][1] == ("brightness", 100) mock_set_path_value.mock_calls[1][1] == ("power", 1) assert len(mock_set_rgb_color.mock_calls) == 1 mock_set_rgb_color.mock_calls[0][1] == (10, 20, 30) @pytest.mark.parametrize("platforms", [("light",)]) async def test_turn_on_effect(hass, setup_evil_genius_labs): """Test turning on with an effect.""" with patch("pyevilgenius.EvilGeniusDevice.set_path_value") as mock_set_path_value: await hass.services.async_call( "light", "turn_on", { "entity_id": "light.fibonacci256_23d4", "effect": "Pride Playground", }, blocking=True, ) assert len(mock_set_path_value.mock_calls) == 2 mock_set_path_value.mock_calls[0][1] == ("pattern", 4) mock_set_path_value.mock_calls[1][1] == ("power", 1) @pytest.mark.parametrize("platforms", [("light",)]) async def test_turn_off(hass, setup_evil_genius_labs): """Test turning off.""" with patch("pyevilgenius.EvilGeniusDevice.set_path_value") as mock_set_path_value: await hass.services.async_call( "light", "turn_off", { "entity_id": "light.fibonacci256_23d4", }, blocking=True, ) assert len(mock_set_path_value.mock_calls) == 1 mock_set_path_value.mock_calls[0][1] == ("power", 0)
post_office/validators.py
fasih/django-post_office
661
3052
from django.core.exceptions import ValidationError from django.core.validators import validate_email from django.template import Template, TemplateSyntaxError, TemplateDoesNotExist from django.utils.encoding import force_str def validate_email_with_name(value): """ Validate email address. Both "<NAME> <<EMAIL>>" and "<EMAIL>" are valid. """ value = force_str(value) recipient = value if '<' in value and '>' in value: start = value.find('<') + 1 end = value.find('>') if start < end: recipient = value[start:end] validate_email(recipient) def validate_comma_separated_emails(value): """ Validate every email address in a comma separated list of emails. """ if not isinstance(value, (tuple, list)): raise ValidationError('Email list must be a list/tuple.') for email in value: try: validate_email_with_name(email) except ValidationError: raise ValidationError('Invalid email: %s' % email, code='invalid') def validate_template_syntax(source): """ Basic Django Template syntax validation. This allows for robuster template authoring. """ try: Template(source) except (TemplateSyntaxError, TemplateDoesNotExist) as err: raise ValidationError(str(err))
Convert Integer A to Integer B.py
RijuDasgupta9116/LintCode
321
3072
<reponame>RijuDasgupta9116/LintCode """ Determine the number of bits required to convert integer A to integer B Example Given n = 31, m = 14,return 2 (31)10=(11111)2 (14)10=(01110)2 """ __author__ = 'Danyang' class Solution: def bitSwapRequired(self, a, b): """ :param a: :param b: :return: int """ a = self.to_bin(a) b = self.to_bin(b) diff = len(a)-len(b) ret = 0 if diff<0: a, b = b, a diff *= -1 b = "0"*diff+b for i in xrange(len(b)): if a[i]!=b[i]: ret += 1 return ret def to_bin(self, n): """ 2's complement 32-bit :param n: :return: """ """ :param n: :return: """ a = abs(n) lst = [] while a>0: lst.append(a%2) a /= 2 # 2's complement if n>=0: lst.extend([0]*(32-len(lst))) else: pivot = -1 for i in xrange(len(lst)): if pivot==-1 and lst[i]==1: pivot = i continue if pivot!=-1: lst[i] ^= 1 lst.extend([1]*(32-len(lst))) return "".join(map(str, reversed(lst))) if __name__=="__main__": assert Solution().bitSwapRequired(1, -1)==31 assert Solution().bitSwapRequired(31, 14)==2
modules/dbnd/src/dbnd/_core/tracking/managers/callable_tracking.py
busunkim96/dbnd
224
3084
import contextlib import logging import typing from typing import Any, Dict, Tuple import attr from dbnd._core.configuration import get_dbnd_project_config from dbnd._core.constants import ( RESULT_PARAM, DbndTargetOperationStatus, DbndTargetOperationType, TaskRunState, ) from dbnd._core.current import ( current_task_run, get_databand_run, is_verbose, try_get_current_task, ) from dbnd._core.errors.errors_utils import log_exception from dbnd._core.log.external_exception_logging import log_exception_to_server from dbnd._core.parameter.parameter_definition import ParameterDefinition from dbnd._core.parameter.parameter_value import ParameterFilters from dbnd._core.settings import TrackingConfig from dbnd._core.task.tracking_task import TrackingTask from dbnd._core.task_build.task_context import try_get_current_task from dbnd._core.task_build.task_definition import TaskDefinition from dbnd._core.task_build.task_results import FuncResultParameter from dbnd._core.task_run.task_run import TaskRun from dbnd._core.task_run.task_run_error import TaskRunError from dbnd._core.utils.callable_spec import args_to_kwargs from dbnd._core.utils.timezone import utcnow from targets import InMemoryTarget, Target from targets.value_meta import ValueMetaConf from targets.values import get_value_type_of_obj if typing.TYPE_CHECKING: from dbnd._core.task_build.task_decorator import TaskDecorator logger = logging.getLogger(__name__) @attr.s class TrackedFuncCallWithResult(object): call_args = attr.ib() # type: Tuple[Any] call_kwargs = attr.ib() # type: Dict[str,Any] callable = attr.ib() result = attr.ib(default=None) def set_result(self, value): self.result = value return value def invoke(self): func = self.callable return func(*self.call_args, **self.call_kwargs) class CallableTrackingManager(object): def __init__(self, task_decorator): # type: (CallableTrackingManager, TaskDecorator) -> None self.task_decorator = task_decorator self._tracking_task_definition = None self._call_count = 0 self._call_as_func = False self._max_call_count = get_dbnd_project_config().max_calls_per_run @property def callable(self): return self.task_decorator.class_or_func def get_tracking_task_definition(self): if not self._tracking_task_definition: self._tracking_task_definition = self._build_tracking_task_definition() return self._tracking_task_definition def _build_tracking_task_definition(self): return TaskDefinition.from_task_decorator(task_decorator=self.task_decorator) def _call_count_limit_exceeded(self): if not self._call_as_func: self._call_count += 1 if self._call_count > self._max_call_count: logger.info( "Reached maximum tracking limit of {} tasks. Running function regularly.".format( self._max_call_count ) ) self._call_as_func = True return self._call_as_func @contextlib.contextmanager def tracking_context(self, call_args, call_kwargs): user_code_called = False # whether we got to executing of user code user_code_finished = False # whether we passed executing of user code func_call = None try: # 1. check that we don't have too many calls if self._call_count_limit_exceeded(): yield _do_nothing_decorator return # 2. Start or reuse existing "main tracking task" that is root for tracked tasks if not try_get_current_task(): """ try to get existing task, and if not exists - try to get/create inplace_task_run """ from dbnd._core.tracking.script_tracking_manager import ( try_get_inplace_tracking_task_run, ) inplace_tacking_task = try_get_inplace_tracking_task_run() if not inplace_tacking_task: # we didn't manage to start inplace tracking task run, we will not be able to track yield _do_nothing_decorator return tracking_task_definition = self.get_tracking_task_definition() callable_spec = tracking_task_definition.task_decorator.get_callable_spec() func_call = TrackedFuncCallWithResult( callable=self.callable, call_args=tuple(call_args), # prevent original call_args modification call_kwargs=dict(call_kwargs), # prevent original kwargs modification ) # replace any position argument with kwarg if it possible args, kwargs = args_to_kwargs( callable_spec.args, func_call.call_args, func_call.call_kwargs, ) # instantiate inline task task = TrackingTask.for_func(tracking_task_definition, args, kwargs) # update upstream/downstream relations - needed for correct tracking # we can have the task as upstream , as it was executed already parent_task = current_task_run().task if not parent_task.task_dag.has_upstream(task): parent_task.set_upstream(task) # checking if any of the inputs are the outputs of previous task. # we can add that task as upstream. dbnd_run = get_databand_run() call_kwargs_as_targets = dbnd_run.target_origin.get_for_map(kwargs) for value_origin in call_kwargs_as_targets.values(): up_task = value_origin.origin_target.task task.set_upstream(up_task) # creating task_run as a task we found mid-run task_run = dbnd_run.create_task_run_at_execution_time( task, task_engine=current_task_run().task_engine ) should_capture_log = TrackingConfig.current().capture_tracking_log with task_run.runner.task_run_execution_context( handle_sigterm=True, capture_log=should_capture_log ): task_run.set_task_run_state(state=TaskRunState.RUNNING) _log_inputs(task_run) # if we reached this line, then all tracking initialization is # finished successfully, and we're going to execute user code user_code_called = True try: # tracking_context is context manager - user code will run on yield yield func_call.set_result # if we reached this line, this means that user code finished # successfully without any exceptions user_code_finished = True except Exception as ex: task_run.finished_time = utcnow() error = TaskRunError.build_from_ex(ex, task_run) task_run.set_task_run_state(TaskRunState.FAILED, error=error) raise else: task_run.finished_time = utcnow() # func_call.result should contain result, log it _log_result(task_run, func_call.result) task_run.set_task_run_state(TaskRunState.SUCCESS) except Exception: if user_code_called and not user_code_finished: # if we started to call the user code and not got to user_code_finished # line - it means there was user code exception - so just re-raise it raise # else it's either we didn't reached calling user code, or already passed it # then it's some dbnd tracking error - just log it if func_call: _handle_tracking_error("tracking-init", func_call) else: log_exception_to_server() # if we didn't reached user_code_called=True line - there was an error during # dbnd tracking initialization, so nothing is done - user function wasn't called yet if not user_code_called: # tracking_context is context manager - user code will run on yield yield _do_nothing_decorator return def _handle_tracking_error(msg, func_call=None): log_exception_to_server() location = " for %s" % func_call.callable if func_call else "" msg = "Failed during dbnd %s for %s, ignoring, and continue without tracking" % ( msg, location, ) if is_verbose(): logger.warning( msg, exc_info=True, ) else: logger.info(msg) def _do_nothing_decorator(f): return f def _log_inputs(task_run): """ For tracking mode. Logs InMemoryTarget inputs. """ try: params = task_run.task._params for param_value in params.get_param_values(ParameterFilters.INPUTS): param, value = param_value.parameter, param_value.value if isinstance(param_value, InMemoryTarget): try: param = param.modify( value_meta_conf=ValueMetaConf( log_preview=True, log_schema=True, ) ) task_run.tracker.log_parameter_data( parameter=param, target=param_value, value=value, operation_type=DbndTargetOperationType.read, operation_status=DbndTargetOperationStatus.OK, ) except Exception as ex: log_exception( "Failed to log input param to tracking store.", ex=ex, non_critical=True, ) except Exception as ex: log_exception( "Failed to log input params to tracking store.", ex=ex, non_critical=True ) def _log_result(task_run, result): # type: (TaskRun, Any) -> None """ For tracking mode. Logs the task result and adds it to the target_origin map to support relationships between dynamic tasks. """ try: result_param = task_run.task.task_params.get_param_value(RESULT_PARAM) if not result_param: logger.debug( "No result params to log for task {}".format(task_run.task_af_id) ) return # we now the parameter value is a target because this is an output param # the target is created in the task creation result_param_def, result_target = result_param.parameter, result_param.value # spread result into relevant fields. if isinstance(result_param_def, FuncResultParameter): # assign all returned values to relevant band Outputs if result is None: return for result_name, value in result_param_def.named_results(result): # we now the parameter value is a target because this is an output param # the target is created in the task creation parameter_value = task_run.task.task_params.get_param_value(result_name) _log_parameter_value( task_run, parameter_definition=parameter_value.parameter, target=parameter_value.value, value=value, ) else: _log_parameter_value( task_run, parameter_definition=result_param_def, target=result_target, value=result, ) except Exception as ex: log_exception( "Failed to log result to tracking store.", ex=ex, non_critical=True ) def _log_parameter_value(task_run, parameter_definition, target, value): # type: (TaskRun, ParameterDefinition, Target, Any) -> None # make sure it will be logged correctly parameter_definition = parameter_definition.modify( value_meta_conf=ValueMetaConf(log_preview=True, log_schema=True) ) try: # case what if result is Proxy value_type = get_value_type_of_obj(value, parameter_definition.value_type) task_run.run.target_origin.add(target, value, value_type) except Exception as ex: log_exception( "Failed to register result to target tracking.", ex=ex, non_critical=True ) try: task_run.tracker.log_parameter_data( parameter=parameter_definition, # was: task_run.task.task_definition.task_class.result, target=target, value=value, operation_type=DbndTargetOperationType.write, # is it write? (or log?) operation_status=DbndTargetOperationStatus.OK, ) except Exception as ex: log_exception( "Failed to log result to tracking store.", ex=ex, non_critical=True )
tests/test_bindiff.py
Kyle-Kyle/angr
6,132
3087
import nose import angr import logging l = logging.getLogger("angr.tests.test_bindiff") import os test_location = os.path.join(os.path.dirname(os.path.realpath(__file__)), '..', '..', 'binaries', 'tests') # todo make a better test def test_bindiff_x86_64(): binary_path_1 = os.path.join(test_location, 'x86_64', 'bindiff_a') binary_path_2 = os.path.join(test_location, 'x86_64', 'bindiff_b') b = angr.Project(binary_path_1, load_options={"auto_load_libs": False}) b2 = angr.Project(binary_path_2, load_options={"auto_load_libs": False}) bindiff = b.analyses.BinDiff(b2) identical_functions = bindiff.identical_functions differing_functions = bindiff.differing_functions unmatched_functions = bindiff.unmatched_functions # check identical functions nose.tools.assert_in((0x40064c, 0x40066a), identical_functions) # check differing functions nose.tools.assert_in((0x400616, 0x400616), differing_functions) # check unmatched functions nose.tools.assert_less_equal(len(unmatched_functions[0]), 1) nose.tools.assert_less_equal(len(unmatched_functions[1]), 2) # check for no major regressions nose.tools.assert_greater(len(identical_functions), len(differing_functions)) nose.tools.assert_less(len(differing_functions), 4) # check a function diff fdiff = bindiff.get_function_diff(0x400616, 0x400616) block_matches = { (a.addr, b.addr) for a, b in fdiff.block_matches } nose.tools.assert_in((0x40064a, 0x400668), block_matches) nose.tools.assert_in((0x400616, 0x400616), block_matches) nose.tools.assert_in((0x40061e, 0x40061e), block_matches) def run_all(): functions = globals() all_functions = dict(filter((lambda kv: kv[0].startswith('test_')), functions.items())) for f in sorted(all_functions.keys()): if hasattr(all_functions[f], '__call__'): all_functions[f]() if __name__ == "__main__": logging.getLogger("angr.analyses.bindiff").setLevel(logging.DEBUG) import sys if len(sys.argv) > 1: globals()['test_' + sys.argv[1]]() else: run_all()
2018/finals/pwn-gdb-as-a-service/web_challenge/challenge/gaas.py
iicarus-bit/google-ctf
2,757
3089
#!/usr/bin/env python3 # # Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from aiohttp import web import capstone import functools from gdbproc import GDBProcess import socketio import asyncio import codecs import os enable_logging = False premium = 'PREMIUM' in os.environ if premium: access_key = os.getenv('PREMIUM_KEY') runnable = ['/home/user/printwebflag'] else: access_key = os.getenv('TRIAL_KEY') runnable = ['/bin/sleep', '20'] MAX_INSN_LEN = 15 capstone_md = capstone.Cs(capstone.CS_ARCH_X86, capstone.CS_MODE_64) sio = socketio.AsyncServer() app = web.Application() sio.attach(app) with open('index.html') as f: index_html = f.read() async def index(request): if not 'key' in request.cookies: return web.Response(status=401, text='permission denied (missing key)', content_type='text/html') if request.cookies['key'] != access_key: return web.Response(status=401, text='permission denied (invalid key)', content_type='text/html') return web.Response(text=index_html, content_type='text/html') app.add_routes([web.get('/', index), web.get('/{name}', index)]) gdb_sessions = {} stop_queue_readers = {} async def on_shutdown(app): await asyncio.gather(delete_gdb_process(sid) for sid in gdb_sessions.keys()) app.on_shutdown.append(on_shutdown) def log(msg): if enable_logging: print('[*] {}'.format(msg)) @sio.on('connect') def connect(sid, environ): log('connected {}'.format(sid)) if not 'key={}'.format(access_key) in environ['HTTP_COOKIE']: log('access_key not found {}'.format(environ['HTTP_COOKIE'])) return False @sio.on('disconnect') async def disconnect(sid): log('disconnected {}'.format(sid)) await delete_gdb_process(sid) async def stop_queue_reader(sid, queue): while True: pkt = await queue.get() await update_all(sid) async def create_gdb_process(sid): stop_queue = asyncio.Queue() gdb_sessions[sid] = await GDBProcess.create(runnable, stop_queue, env={'KEY': access_key}, log_fn=log) loop = asyncio.get_event_loop() stop_queue_readers[sid] = loop.create_task(stop_queue_reader(sid, stop_queue)) async def delete_gdb_process(sid): if sid in gdb_sessions: stop_queue_readers[sid].cancel() del stop_queue_readers[sid] await gdb_sessions[sid].release() del gdb_sessions[sid] @sio.on('start') async def start(sid): await delete_gdb_process(sid) await create_gdb_process(sid) # Reading registers doesn't work on ubuntu 18.04 for some reason. # Step once as a work around step(sid) async def update_all(sid): log('updating sid {}'.format(sid)) regs_task = getregs(sid) maps_task = getmaps(sid) asm_task = getasm(sid, {'addr': await gdb_sessions[sid].get_reg('rip'), 'count': 100}) await asyncio.gather(regs_task, maps_task, asm_task) log('update done') @sio.on('step') def step(sid): gdb_sessions[sid].step() @sio.on('cont') def cont(sid): gdb_sessions[sid].cont() @sio.on('stop') def stop(sid): gdb_sessions[sid].interrupt() async def getregs(sid): regs = await gdb_sessions[sid].get_regs() await sio.emit('regs', regs, room=sid) @sio.on('mem') async def getmem(sid, msg): addr = msg['addr'] count = msg['count'] data = gdb_sessions[sid].read_mem(addr, count) await sio.emit('mem', {'addr': addr, 'data': data}, room=sid) async def getmaps(sid): maps = gdb_sessions[sid].maps() await sio.emit('maps', maps, room=sid) @sio.on('break') async def setbreakpoint(sid, data): addr = data['addr'] await gdb_sessions[sid].set_breakpoint(addr) await sio.emit('breakpoints', gdb_sessions[sid].breakpoints(), room=sid) @sio.on('unbreak') async def rmbreakpoint(sid, data): addr = data['addr'] await gdb_sessions[sid].remove_breakpoint(addr) await sio.emit('breakpoints', gdb_sessions[sid].breakpoints(), room=sid) @sio.on('search') async def search(sid, data): q = data['q'] qtype = data['type'] await sio.emit('search_result', gdb_sessions[sid].search(q.encode(), qtype), room=sid) async def getasm(sid, data): addr = data['addr'] count = data['count'] result = [] for _ in range(count): data = gdb_sessions[sid].read_mem(addr, MAX_INSN_LEN) try: disasm = next(capstone_md.disasm_lite(data, addr)) except StopIteration: break result.append(disasm) addr += disasm[1] await sio.emit('asm', result, room=sid) if __name__ == '__main__': web.run_app(app)
contrib/functional_tests/functional/test_reorg.py
electrumsv/electrumsv
136
3113
<reponame>electrumsv/electrumsv<filename>contrib/functional_tests/functional/test_reorg.py """ Warning - this will reset all components back to a blank state before running the simulation Runs node1, electrumx1 and electrumsv1 and loads the default wallet on the daemon (so that newly submitted blocks will be synchronized by ElectrumSV reorged txid: 'a1fa9460ca105c1396cd338f7fa202bf79a9d244d730e91e19f6302a05b2f07a' """ import asyncio import os from pathlib import Path import pytest import pytest_asyncio from electrumsv_node import electrumsv_node from electrumsv_sdk import utils import logging import requests from contrib.functional_tests.websocket_client import TxStateWSClient MODULE_DIR = os.path.dirname(os.path.abspath(__file__)) logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger("simulate-fresh-reorg") async def wait_for_reog_transaction_update(reorged_txids, reorg_height): MAX_WAIT_TIME = 10 # seconds async with TxStateWSClient() as ws_client: try: await asyncio.wait_for(ws_client.block_until_confirmed_and_height_updated( reorged_txids, reorg_height), MAX_WAIT_TIME) except asyncio.TimeoutError: logger.exception(f"timed out after {MAX_WAIT_TIME} seconds") raise class TestReorg: @classmethod def setup_class(cls): pass @classmethod def teardown_class(cls): pass @pytest.mark.asyncio def test_reorg(self, event_loop): async def test_reorg(): payload = { "password": "<PASSWORD>" } REORGED_TXIDS = "a1fa9460ca105c1396cd338f7fa202bf79a9d244d730e91e19f6302a05b2f07a" # Load the default wallet on ElectrumSV daemon url = f"http://127.0.0.1:9999/v1/regtest/dapp/wallets/worker1.sqlite/load_wallet" result = requests.post(url, json=payload) result.raise_for_status() # Submit node1 blocks to node if electrumsv_node.is_node_running(): utils.submit_blocks_from_file(node_id='node1', filepath=Path(MODULE_DIR).joinpath('../reorg_blocks/node1_blocks.dat')) else: logger.exception("node unavailable") try: await wait_for_reog_transaction_update([REORGED_TXIDS], 201) # Todo check state of get_balance; get_coin_state; get_transaction_history # Submit node2 blocks to node if electrumsv_node.is_node_running(): utils.submit_blocks_from_file(node_id='node1', filepath=Path(MODULE_DIR).joinpath('../reorg_blocks/node2_blocks.dat')) else: logger.exception("node unavailable") await wait_for_reog_transaction_update([REORGED_TXIDS], 202) except asyncio.TimeoutError: pytest.xfail("work in progress alongside refactoring changes...") # Todo check state of get_balance; get_coin_state; get_transaction_history event_loop.run_until_complete(test_reorg())
torch/_fx/graph_module.py
jsun94/nimble
206
3134
<gh_stars>100-1000 import torch import torch.overrides import linecache from typing import Type, Dict, List, Any, Union from .graph import Graph import copy # normal exec loses the source code, however we can patch # the linecache module to still recover it. # using exec_with_source will add it to our local cache # and then tools like TorchScript will be able to get source info. _next_id = 0 def exec_with_source(src: str, globals: Dict[str, Any]): global _next_id key = f'<eval_with_key_{_next_id}>' _next_id += 1 _eval_cache[key] = [line + '\n' for line in src.splitlines()] exec(compile(src, key, 'exec'), globals) # patch linecache so that any code we exec using exec_with_source # works with inspect _eval_cache : Dict[str, List[str]] = {} _orig_getlines = linecache.getlines def patched_getline(*args, **kwargs): if args[0] in _eval_cache: return _eval_cache[args[0]] return _orig_getlines(*args, **kwargs) linecache.getlines = patched_getline def _forward_from_src(src : str): gbls: Dict[str, Any] = { 'torch': torch } exec_with_source(src, gbls) return gbls['forward'] def deserialize_graphmodule(body : dict) -> torch.nn.Module: """ Deserialize a GraphModule given the dictionary of the original module, using the code to reconstruct the graph. We delete the actual graph before saving the dictionary so that changes to the in-memory graph format do not get serialized. """ # We create a dummy class here because symbolic_trace pulls the forward() # function off of the class, rather than the instance class CodeOnlyModule(torch.nn.Module): def __init__(self, body): super().__init__() self.__dict__ = body CodeOnlyModule.forward = _forward_from_src(body['code']) from .symbolic_trace import Tracer # we shouldn't trace into any of the submodules, they were not # because they were not traced in the original GraphModule class KeepModules(Tracer): def is_leaf_module(self, _: torch.nn.Module, __: str) -> bool: return True return KeepModules().trace(CodeOnlyModule(body)) # copy an attribute value with qualified name 'target' from 'from_module' to 'to_module' # This installs empty Modules where none exist yet if they are subpaths of target def _copy_attr(from_module: torch.nn.Module, to_module: torch.nn.Module, target: str): *prefix, field = target.split('.') for item in prefix: f = getattr(from_module, item) t = getattr(to_module, item, None) if f is t: # we have already installed one of its parents # (e.g. target = root.linear.weight, but we have already installed root.linear) # once we install a parent, we no longer need to copy the children # since all the needed properties will already be present return if t is None: t = torch.nn.Module() setattr(to_module, item, t) from_module, to_module = f, t setattr(to_module, field, getattr(from_module, field)) # Assign attribute 'from_obj' to the qualified name 'target' on 'to_module # This installs empty Modules where none exist yet if they are subpaths of target def _assign_attr(from_obj: Any, to_module: torch.nn.Module, target: str): *prefix, field = target.split('.') for item in prefix: t = getattr(to_module, item, None) if t is None: t = torch.nn.Module() setattr(to_module, item, t) to_module = t setattr(to_module, field, from_obj) class GraphModule(torch.nn.Module): """ GraphModule is an nn.Module generated from an fx.Graph. GraphModule has important attributes: graph : The graph from which this GraphModule was generated code : The Python source code for the function generated from `graph` forward : The Python method generated from `graph` Note that when `graph` is reassigned, `code` and `forward` will be automatically regenerated. """ def __new__(cls: 'Type[GraphModule]', *args, **kwargs): # each instance of a graph module needs its own forward method # so create a new singleton class for each instance. # it is a subclass of the user-defined class, the only difference # is an extra layer to install the forward method class GraphModuleImpl(cls): # type: ignore pass return super().__new__(GraphModuleImpl) def __init__(self, root: Union[torch.nn.Module, Dict[str, Any]], graph: Graph): """ Construct a GraphModule. root - `root` can either be an nn.Module instance or a Dict mapping strings to any attribute type. - In the case that `root` is a Module, any references to Module-based objects (via qualified name) in the Graph's Nodes' `target` field will be copied over from the respective place within `root`'s Module hierarchy into the GraphModule's module hierarchy. - In the case that `root` is a dict, the qualified name found in a Node's `target` will be looked up directly in the dict's keys. The object mapped to by the Dict will be copied over into the appropriate place within the GraphModule's module hierarchy. graph - `graph` contains the nodes this GraphModule should use for code generation """ super().__init__() if isinstance(root, torch.nn.Module): if hasattr(root, 'training'): self.training = root.training for node in graph.nodes: if node.op in ['get_attr', 'call_module']: assert isinstance(node.target, str) _copy_attr(root, self, node.target) elif isinstance(root, dict): targets_to_copy = [] for node in graph.nodes: if node.op in ['get_attr', 'call_module']: assert isinstance(node.target, str) if node.target not in root: raise RuntimeError('Node ' + str(node) + ' referenced target ' + node.target + ' but that target was not provided in `root`!') targets_to_copy.append(node.target) # Sort targets in ascending order of the # of atoms. # This will ensure that less deeply nested attributes are assigned # before more deeply nested attributes. For example, foo.bar # will be assigned before foo.bar.baz. Otherwise, we might assign # the user-provided `foo.bar` and wipe out the previously-assigned # `foo.bar.baz` targets_to_copy.sort(key=lambda t: t.count('.')) for target_to_copy in targets_to_copy: _assign_attr(root[target_to_copy], self, target_to_copy) else: raise RuntimeError('Unsupported type ' + str(root) + ' passed for root!') self.graph = graph # TorchScript breaks trying to compile the graph setter because of the # continued string literal. Issue here: https://github.com/pytorch/pytorch/issues/44842 # # Shouldn't be an issue since these methods shouldn't be used in TorchScript anyway __jit_unused_properties__ = ['graph'] @property def graph(self): return self._graph @graph.setter def graph(self, val) -> None: self._graph = val body, result, free_variables = self._graph.python_code(root_module='self') body = '\n'.join(' ' + line for line in body.split('\n')) + '\n' self.code = f"""\ def forward(self, {', '.join(free_variables)}): {body} return {result} """ cls = type(self) cls.forward = _forward_from_src(self.code) def __reduce__(self): dict_without_graph = self.__dict__.copy() del dict_without_graph['_graph'] return (deserialize_graphmodule, (dict_without_graph,)) # because __reduce__ is defined for serialization, # we need to define deepcopy otherwise it will call __reduce__ # and cause symbolic tracing to occur every time we try to copy the object def __deepcopy__(self, memo): fake_mod = torch.nn.Module() fake_mod.__dict__ = copy.deepcopy(self.__dict__) return GraphModule(fake_mod, self.graph) def __copy__(self): return GraphModule(self, self.graph) def __str__(self) -> str: orig_str = super().__str__() return '\n'.join([orig_str, self.code]) # workarounds for issues in __torch_function__ # WAR for __torch_function__ not handling tensor lists, # fix is in https://github.com/pytorch/pytorch/pull/34725 # orig_cat = torch.cat # def patched_cat(*args, **kwargs): # tensors = args[0] # for t in tensors: # if isinstance(t, Proxy): # return t.__torch_function__(patched_cat, (), args, kwargs) # return orig_cat(*args, **kwargs) # patched_cat.__module__ = 'torch' # patched_cat.__name__ = 'cat' # torch.cat = patched_cat
tests/utils/test_metrics.py
haochuanwei/hover
251
3136
<filename>tests/utils/test_metrics.py<gh_stars>100-1000 from hover.utils.metrics import classification_accuracy import numpy as np def test_classification_accuracy(): true = np.array([1, 2, 3, 4, 5, 6, 7, 7]) pred = np.array([1, 2, 3, 4, 5, 6, 7, 8]) accl = classification_accuracy(true, pred) accr = classification_accuracy(pred, true) assert np.allclose(accl, 7/8) assert np.allclose(accr, 7/8)
test/tests/bootstrap/test_api20_windows_bootstrap.py
arunrordell/RackHD
451
3141
''' Copyright 2017 Dell Inc. or its subsidiaries. All Rights Reserved. This script tests arbitrary payload of the RackHD API 2.0 OS bootstrap workflows. The default case is running a minimum payload Windows OS install. Other Windows-type OS install cases can be specified by creating a payload file and specifiying it using the '-extra' argument. This test takes 30-45 minutes to run. Example payload file (installed in configuration dir): {"bootstrap-payload": {"name": "Graph.InstallWindowsServer", "options": {"defaults": {"version": "2012", "repo": "http://172.31.128.1:8080/repo/winpe", "smbRepo": "\\\\172.31.128.1\\windowsServer2012", "productkey": "<KEY>", "username": "rackhduser", "password": "<PASSWORD>", "smbUser": "vagrant", "smbPassword": "<PASSWORD>"}}} } Example command line using external payload file: python run_tests.py -stack 4 -test tests/bootstrap/test_api20_windows_bootstrap.py -extra base_windows_2012_install.json RackHD Windows installation workflow requires special configuration of the RackHD server: - A customized WinPE environment installed on RackHD server as documented here: https://github.com/RackHD/on-tools/tree/master/winpe - Samba installed on the RackHD server and configured as documented here: http://rackhd.readthedocs.io/en/latest/rackhd/install_os.html?highlight=os%20install - Windows 2012 installation distro installed on RackHD server or equivalent NFS mount. - Windows 2012 activation key in the installation payload file. ''' import fit_path # NOQA: unused import from nose.plugins.attrib import attr import fit_common import flogging import random import json import time from nosedep import depends from datetime import datetime log = flogging.get_loggers() # sample default base payload PAYLOAD = {"name": "Graph.InstallWindowsServer", "options": {"defaults": {"version": "2012", "repo": "http://172.31.128.1:8080/repo/winpe", "smbRepo": "\\\\172.31.128.1\\windowsServer2012", "productkey": "<KEY>", "username": "rackhduser", "password": "<PASSWORD>", "smbUser": "vagrant", "smbPassword": "<PASSWORD>"}}} # if an external payload file is specified, use that config = fit_common.fitcfg().get('bootstrap-payload', None) if config: PAYLOAD = config # function to return the value of a field from the workflow response def findall(obj, key): if isinstance(obj, dict): for k, v in obj.items(): if k == key: log.error(" workflow error: %s", v) findall(v, key) elif isinstance(obj, list): for item in obj: findall(item, key) else: pass # this routine polls a workflow task ID for completion def wait_for_workflow_complete(instanceid, start_time, waittime=3200, cycle=30): log.info_1(" Workflow started at time: " + str(datetime.fromtimestamp(start_time))) while time.time() - start_time < waittime: # limit test to waittime seconds result = fit_common.rackhdapi("/api/2.0/workflows/" + instanceid) if result['status'] != 200: log.error(" HTTP error: " + result['text']) return False if result['json']['status'] in ['running', 'pending']: log.info_5("{} workflow status: {}".format(result['json']['injectableName'], result['json']['status'])) fit_common.time.sleep(cycle) elif result['json']['status'] == 'succeeded': log.info_1("{} workflow status: {}".format(result['json']['injectableName'], result['json']['status'])) end_time = time.time() log.info_1(" Workflow completed at time: " + str(datetime.fromtimestamp(end_time))) log.info_1(" Workflow duration: " + str(end_time - start_time)) return True else: end_time = time.time() log.info_1(" Workflow failed at time: " + str(datetime.fromtimestamp(end_time))) log.info_1(" Workflow duration: " + str(end_time - start_time)) try: res = json.loads(result['text']) findall(res, "error") except: res = result['text'] log.error(" Workflow failed: status: %s", result['json']['status']) log.error(" Data: %s", json.dumps(res, indent=4, separators=(',', ':'))) return False try: res = json.loads(result['text']) except: res = result['text'] log.error(" Workflow Timeout: " + json.dumps(res, indent=4, separators=(',', ':'))) return False # ------------------------ Tests ------------------------------------- @attr(all=False) class api20_bootstrap_windows(fit_common.unittest.TestCase): @classmethod def setUpClass(cls): # Get the list of nodes NODECATALOG = fit_common.node_select() assert (len(NODECATALOG) != 0), "There are no nodes currently discovered" # Select one node at random cls.__NODE = NODECATALOG[random.randint(0, len(NODECATALOG) - 1)] # Print node Id, node BMC mac ,node type nodeinfo = fit_common.rackhdapi('/api/2.0/nodes/' + cls.__NODE)['json'] nodesku = fit_common.rackhdapi(nodeinfo.get('sku'))['json']['name'] monurl = "/api/2.0/nodes/" + cls.__NODE + "/catalogs/bmc" mondata = fit_common.rackhdapi(monurl, action="get") catalog = mondata['json'] bmcresult = mondata['status'] if bmcresult != 200: log.info_1(" Node ID: " + cls.__NODE) log.info_1(" Error on catalog/bmc command") else: log.info_1(" Node ID: " + cls.__NODE) log.info_1(" Node SKU: " + nodesku) log.info_1(" Node BMC Mac: %s", catalog.get('data')['MAC Address']) log.info_1(" Node BMC IP Addr: %s", catalog.get('data')['IP Address']) log.info_1(" Node BMC IP Addr Src: %s", catalog.get('data')['IP Address Source']) # delete active workflows for specified node result = fit_common.cancel_active_workflows(cls.__NODE) assert (result is True), "There are still some active workflows running against the node" def test01_node_check(self): # Log node data nodeinfo = fit_common.rackhdapi('/api/2.0/nodes/' + self.__class__.__NODE)['json'] nodesku = fit_common.rackhdapi(nodeinfo.get('sku'))['json']['name'] log.info_1(" Node ID: %s ", self.__class__.__NODE) log.info_1(" Node SKU: %s ", nodesku) log.info_1(" Graph Name: Graph.PowerOn.Node") # Ensure the compute node is powered on and reachable result = fit_common.rackhdapi('/api/2.0/nodes/' + self.__class__.__NODE + '/workflows', action='post', payload={"name": "Graph.PowerOn.Node"}) self.assertEqual(result['status'], 201, "Node Power on workflow API failed, see logs.") self.assertTrue(wait_for_workflow_complete(result['json']['instanceId'], time.time(), 50, 5), "Node Power on workflow failed, see logs.") @depends(after=test01_node_check) def test02_os_install(self): # Log node data nodeinfo = fit_common.rackhdapi('/api/2.0/nodes/' + self.__class__.__NODE)['json'] nodesku = fit_common.rackhdapi(nodeinfo.get('sku'))['json']['name'] log.info_1(" Node ID: " + self.__class__.__NODE) log.info_1(" Node SKU: " + nodesku) log.info_1(" Graph Name: Graph.InstallWindowsServer") log.info_1(" Payload: " + fit_common.json.dumps(PAYLOAD)) # launch workflow workflowid = None result = fit_common.rackhdapi('/api/2.0/nodes/' + self.__class__.__NODE + '/workflows', action='post', payload=PAYLOAD) if result['status'] == 201: # workflow running log.info_1(" InstanceID: " + result['json']['instanceId']) workflowid = result['json']['instanceId'] else: # workflow failed with response code log.error(" InstanceID: " + result['text']) self.fail("Workflow failed with response code: " + result['status']) self.assertTrue(wait_for_workflow_complete(workflowid, time.time()), "OS Install workflow failed, see logs.") if __name__ == '__main__': fit_common.unittest.main()
tensorflow/tools/quantization/quantize_graph_test.py
tianyapiaozi/tensorflow
374
3148
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests the graph quantization script. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys import numpy as np from tensorflow.core.framework import graph_pb2 from tensorflow.python.client import session from tensorflow.python.framework import dtypes from tensorflow.python.framework import graph_util from tensorflow.python.framework import importer from tensorflow.python.framework import ops as ops_lib from tensorflow.python.platform import flags as flags_lib from tensorflow.python.platform import test from tensorflow.python.platform import tf_logging from tensorflow.tools.quantization import quantize_graph flags = flags_lib FLAGS = flags.FLAGS def run_graph_def(graph_def, input_map, outputs): graph = ops_lib.Graph() with graph.as_default(): importer.import_graph_def(graph_def, input_map={}, name="") with session.Session(graph=graph) as sess: results = sess.run(outputs, feed_dict=input_map) return results def test_mat_mul(m, n, k, a, b): """Tests a MatMul replacement.""" a_constant_name = "a_constant" b_constant_name = "b_constant" mat_mul_name = "mat_mul" float_graph_def = graph_pb2.GraphDef() a_constant = quantize_graph.create_constant_node( a_constant_name, value=a, dtype=dtypes.float32, shape=[m, k]) float_graph_def.node.extend([a_constant]) b_constant = quantize_graph.create_constant_node( b_constant_name, value=b, dtype=dtypes.float32, shape=[k, n]) float_graph_def.node.extend([b_constant]) mat_mul_node = quantize_graph.create_node("MatMul", mat_mul_name, [a_constant_name, b_constant_name]) quantize_graph.set_attr_dtype(mat_mul_node, "T", dtypes.float32) quantize_graph.set_attr_bool(mat_mul_node, "transpose_a", False) quantize_graph.set_attr_bool(mat_mul_node, "transpose_b", False) float_graph_def.node.extend([mat_mul_node]) test_graph(float_graph_def, {}, [mat_mul_name]) def test_conv(depth, image_width, image_height, image_batch_count, filter_size, filter_count, stride, padding, input_values, filter_values): """Tests a Conv replacement.""" input_constant_name = "input_constant" filter_constant_name = "filter_constant" conv_name = "conv" float_graph_def = graph_pb2.GraphDef() input_constant = quantize_graph.create_constant_node( input_constant_name, value=input_values, dtype=dtypes.float32, shape=[image_batch_count, image_height, image_width, depth]) float_graph_def.node.extend([input_constant]) filter_constant = quantize_graph.create_constant_node( filter_constant_name, value=filter_values, dtype=dtypes.float32, shape=[filter_size, filter_size, depth, filter_count]) float_graph_def.node.extend([filter_constant]) conv_node = quantize_graph.create_node( "Conv2D", conv_name, [input_constant_name, filter_constant_name]) quantize_graph.set_attr_dtype(conv_node, "T", dtypes.float32) quantize_graph.set_attr_int_list(conv_node, "strides", [1, stride, stride, 1]) quantize_graph.set_attr_string(conv_node, "padding", padding) float_graph_def.node.extend([conv_node]) test_graph(float_graph_def, {}, [conv_name]) def are_tensors_near(a, b, tolerance): """Tests whether two tensors are nearly identical. This is a specialized comparison function designed to help debug problems with quantization. It prints out information about the differences between tensors on failure, paying special attention to possible biases by looking at the mean and absolute average errors. Args: a: First comparison tensor. b: Second comparison tensor. tolerance: Float value indicating how large an error between values is ok. Returns: Boolean indicating whether the two inputs were close enough. """ flat_a = a.flatten() flat_b = b.flatten() if len(flat_a) != len(flat_b): tf_logging.info("Tensors are different sizes: " + str(len(flat_a)) + " vs " + str(len(flat_b))) return False value_count = len(flat_a) how_many_different = 0 total_difference = 0 total_abs_difference = 0 for index in range(value_count): a_value = flat_a[index] b_value = flat_b[index] difference = a_value - b_value total_difference += difference total_abs_difference += abs(difference) if abs(difference) > tolerance: how_many_different += 1 mean_difference = total_difference / value_count mean_abs_difference = total_abs_difference / value_count proportion_different = (how_many_different * 1.0) / value_count if how_many_different == 0: return True else: tf_logging.info("Tensors have {0} different values ({1}%), with mean" " difference {2} and mean absolute difference {3}".format( how_many_different, proportion_different * 100, mean_difference, mean_abs_difference)) return False def get_top_value(input_values): max_value = None max_index = None for index, value in enumerate(input_values.flatten()): if max_value is None or value > max: max_value = value max_index = index return max_index, max_value def test_graph(float_graph_def, input_map, output_names, log_graph=False): """Runs the float graph through the rewriter and tests the results.""" float_results = run_graph_def( float_graph_def, input_map, [output_name + ":0" for output_name in output_names]) # TODO(petewarden): round test is currently failing because there is no # RoundToSteps op available. # round_rewriter = quantize_graph.GraphRewriter(float_graph_def, "round") # round_graph_def = round_rewriter.rewrite(output_name) # round_results = run_graph_def(round_graph_def, input_map, # [output_name + ":0"]) # assert are_tensors_near(expected, round_results[0], 1.0) # # TODO(petewarden): Add test for "quantize" mode. eightbit_rewriter = quantize_graph.GraphRewriter( float_graph_def, "eightbit", quantized_input_range=None) eightbit_graph_def = eightbit_rewriter.rewrite(output_names) eightbit_results = run_graph_def( eightbit_graph_def, input_map, [output_name + ":0" for output_name in output_names]) for expected, result in zip(float_results, eightbit_results): assert are_tensors_near(expected, result, 1.0) if log_graph: tf_logging.info("8bit:\n%s", str(eightbit_graph_def)) # Test the weights_rounded mode. This uses the default bit_depth. weights_rounded_rewriter = quantize_graph.GraphRewriter( float_graph_def, "weights_rounded", quantized_input_range=None) weights_rounded_graph_def = weights_rounded_rewriter.rewrite(output_names) weights_rounded_results = run_graph_def( weights_rounded_graph_def, input_map, [output_name + ":0" for output_name in output_names]) for expected, result in zip(float_results, weights_rounded_results): assert are_tensors_near(expected, result, 1.0) class QuantizeGraphTest(test.TestCase): def test_negative_const_problem(self): shape_constant_name = "shape_constant" shape_constant = quantize_graph.create_constant_node( shape_constant_name, value=-0.8, dtype=dtypes.float32, shape=[1]) quantization_result = quantize_graph.quantize_weight_eightbit( shape_constant, b"MIN_COMBINED") self.assertEqual(4, len(quantization_result)) def test_odd_padding_problem(self): """Tests one error case we ran into in a real graph.""" test_conv(1, 4, 4, 1, 3, 1, 2, b"SAME", [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], [1, 2, 3, 4, 5, 6, 7, 8, 9]) def test_mat_mul_tiny(self): # These tests are added to test the generate case where # min(matrix) == max(matrix), which used to cause problems. test_mat_mul(1, 1, 1, [2], [3]) test_mat_mul(1, 2, 1, [1], [2, 3]) test_mat_mul(1, 1, 2, [1, 1], [1, 1]) test_mat_mul(1, 1, 2, [0, 0], [1, 1]) # The general case. test_mat_mul(1, 1, 2, [1, 2], [1, 2]) def test_mat_mul_small(self): test_mat_mul(2, 4, 3, [1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]) def test_conv(self): test_conv(1, 4, 3, 1, 3, 1, 1, b"SAME", [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], [1, 4, 7, 2, 5, 8, 3, 6, 9]) def test_reshape(self): """Tests that MatMul->Reshape->MatMul avoids extra quantize/dequantize.""" def make_matmul(name, a, b): n = quantize_graph.create_node("MatMul", name, [a.name, b.name]) quantize_graph.set_attr_dtype(n, "T", dtypes.float32) quantize_graph.set_attr_bool(n, "transpose_a", False) quantize_graph.set_attr_bool(n, "transpose_b", False) return n # matmul_1 = input*weight_1 input_node = quantize_graph.create_constant_node( "input", value=[0, 1, 2, 3], dtype=dtypes.float32, shape=[4, 1]) weight_1_node = quantize_graph.create_constant_node( "weight_1", value=[.5, .6, .7, .8, .9], dtype=dtypes.float32, shape=[1, 5]) matmul_1_node = make_matmul("matmul_1", input_node, weight_1_node) # Reshape 4x5 to 10x2. new_shape_node = quantize_graph.create_constant_node( "new_shape_node", value=[10, 2], dtype=dtypes.int32, shape=[2]) reshape_node = quantize_graph.create_node( "Reshape", "reshape", [matmul_1_node.name, new_shape_node.name]) quantize_graph.set_attr_dtype(reshape_node, "T", dtypes.float32) # matmul_2_node = reshape*weight_2 weight_2_node = quantize_graph.create_constant_node( "weight_2", value=[1.5, 2.5], dtype=dtypes.float32, shape=[2, 1]) matmul_2_node = make_matmul("matmul_2", reshape_node, weight_2_node) g = graph_pb2.GraphDef() g.node.extend([ input_node, weight_1_node, matmul_1_node, new_shape_node, reshape_node, weight_2_node, matmul_2_node ]) # Test the graph test_graph(g, {}, ["matmul_2"]) # Verify there is only one Quantize and one Requantize op. eightbit_rewriter = quantize_graph.GraphRewriter( g, "eightbit", quantized_input_range=None) eightbit_graph_def = eightbit_rewriter.rewrite(["matmul_2"]) ops = [node.op for node in eightbit_graph_def.node] # No quantize since all inputs are const and can be quantized up-front. self.assertEqual(0, ops.count("QuantizeV2") + ops.count("Quantize")) self.assertEqual(1, ops.count("QuantizedReshape")) # One dequantize at the end. self.assertEqual(1, ops.count("Dequantize")) def test_quantize_array(self): # Test invalid parameters (empty array, or 0 buckets. self.assertRaises(ValueError, quantize_graph.quantize_array, np.array([]), 2) self.assertRaises(ValueError, quantize_graph.quantize_array, np.array([1, 2]), 0) # Test input array of length 1. arr = np.array([1]) qarr = quantize_graph.quantize_array(arr, 1) self.assertEqual(arr, qarr) qarr = quantize_graph.quantize_array(arr, 2) self.assertEqual(arr, qarr) # Test input array with all elements equal. arr = np.array([1, 1, 1]) qarr = quantize_graph.quantize_array(arr, 10) self.assertTrue((np.array([1, 1, 1]) == qarr).all()) # Test "normal" input arrays. arr = np.array([0, 0.3, 0.6, 1]) qarr = quantize_graph.quantize_array(arr, 1) self.assertTrue((np.array([0.5, 0.5, 0.5, 0.5]) == qarr).all()) qarr = quantize_graph.quantize_array(arr, 2) self.assertTrue((np.array([0.25, 0.25, 0.75, 0.75]) == qarr).all()) qarr = quantize_graph.quantize_array(arr.reshape((2, 2)), 2) self.assertTrue((np.array([[0.25, 0.25], [0.75, 0.75]]) == qarr).all()) def test_non_float_concat(self): concat_dim = quantize_graph.create_constant_node( "concat_dim", value=0, dtype=dtypes.int32, shape=[]) a = quantize_graph.create_constant_node( "a", value=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], dtype=dtypes.int32, shape=[2, 2, 3]) b = quantize_graph.create_constant_node( "b", value=[13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24], dtype=dtypes.int32, shape=[2, 2, 3]) concat = quantize_graph.create_node("Concat", "concat", [concat_dim.name, a.name, b.name]) quantize_graph.set_attr_int(concat, "N", 2) quantize_graph.set_attr_dtype(concat, "T", dtypes.int32) g = graph_pb2.GraphDef() g.node.extend([concat_dim, a, b, concat]) test_graph(g, {}, [concat.name]) def test_non_float_reshape(self): a = quantize_graph.create_constant_node( "a", value=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], dtype=dtypes.int32, shape=[2, 2, 3]) shape = quantize_graph.create_constant_node( "shape", value=[12], dtype=dtypes.int32, shape=[1]) reshape = quantize_graph.create_node("Reshape", "reshape", [a.name, shape.name]) quantize_graph.set_attr_dtype(reshape, "T", dtypes.int32) g = graph_pb2.GraphDef() g.node.extend([a, shape, reshape]) test_graph(g, {}, [reshape.name]) def test_concat(self): shape_constant_name = "shape_constant" a_constant_name = "a_constant" b_constant_name = "b_constant" concat_name = "concat" float_graph_def = graph_pb2.GraphDef() shape_constant = quantize_graph.create_constant_node( shape_constant_name, value=0, dtype=dtypes.int32, shape=[]) float_graph_def.node.extend([shape_constant]) a_constant = quantize_graph.create_constant_node( a_constant_name, value=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], dtype=dtypes.float32, shape=[2, 2, 3]) float_graph_def.node.extend([a_constant]) b_constant = quantize_graph.create_constant_node( b_constant_name, value=[13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24], dtype=dtypes.float32, shape=[2, 2, 3]) float_graph_def.node.extend([b_constant]) concat_node = quantize_graph.create_node( "Concat", concat_name, [shape_constant_name, a_constant_name, b_constant_name]) quantize_graph.set_attr_int(concat_node, "N", 2) quantize_graph.set_attr_dtype(concat_node, "T", dtypes.float32) float_graph_def.node.extend([concat_node]) test_graph(float_graph_def, {}, [concat_name]) # Verify the concat is quantized. eightbit_rewriter = quantize_graph.GraphRewriter( float_graph_def, "eightbit", quantized_input_range=None) eightbit_graph_def = eightbit_rewriter.rewrite([concat_name]) ops = [node.op for node in eightbit_graph_def.node] self.assertEqual(1, ops.count("QuantizedConcat")) def test_multiple_outputs(self): input_constant_name = "input_constant" split_constant_name = "split_constant" split_name = "split" concat_constant_name = "concat_constant" concat_name = "concat" float_graph_def = graph_pb2.GraphDef() input_constant = quantize_graph.create_constant_node( input_constant_name, value=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], dtype=dtypes.float32, shape=[2, 6]) float_graph_def.node.extend([input_constant]) split_constant = quantize_graph.create_constant_node( split_constant_name, value=1, dtype=dtypes.int32, shape=[]) float_graph_def.node.extend([split_constant]) split_node = quantize_graph.create_node( "Split", split_name, [split_constant_name, input_constant_name]) quantize_graph.set_attr_int(split_node, "num_split", 2) quantize_graph.set_attr_dtype(split_node, "T", dtypes.float32) float_graph_def.node.extend([split_node]) concat_constant = quantize_graph.create_constant_node( concat_constant_name, value=1, dtype=dtypes.int32, shape=[]) float_graph_def.node.extend([concat_constant]) concat_node = quantize_graph.create_node( "Concat", concat_name, [concat_constant_name, split_name + ":0", split_name + ":1"]) quantize_graph.set_attr_int(concat_node, "N", 2) quantize_graph.set_attr_dtype(concat_node, "T", dtypes.float32) float_graph_def.node.extend([concat_node]) test_graph(float_graph_def, {}, [concat_name]) def test_node_name_from_input(self): self.assertEqual("SomeName", quantize_graph.node_name_from_input("^SomeName:2")) def test_unique_node_name_from_input(self): self.assertEqual("__hat__SomeName__port__2", quantize_graph.unique_node_name_from_input("^SomeName:2")) def test_identity(self): input_constant_name = "input_constant" identity_name = "identity" float_graph_def = graph_pb2.GraphDef() input_constant = quantize_graph.create_constant_node( input_constant_name, value=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], dtype=dtypes.float32, shape=[2, 6]) float_graph_def.node.extend([input_constant]) identity_node = quantize_graph.create_node("Identity", identity_name, [input_constant_name]) quantize_graph.set_attr_dtype(identity_node, "T", dtypes.float32) float_graph_def.node.extend([identity_node]) mul_name = "mul" mul_node = quantize_graph.create_node("Mul", mul_name, [identity_name, identity_name]) quantize_graph.set_attr_dtype(mul_node, "T", dtypes.float32) float_graph_def.node.extend([mul_node]) test_graph(float_graph_def, {}, [mul_name]) def test_keep_control_edges(self): no_op_name = "no_op" a_constant_name = "a_constant" b_constant_name = "b_constant" a_check_name = "a_check" b_check_name = "b_check" a_identity_name = "a_identity" b_identity_name = "b_identity" add_name = "add" graph_def = graph_pb2.GraphDef() no_op = quantize_graph.create_node("NoOp", no_op_name, []) graph_def.node.extend([no_op]) a_constant = quantize_graph.create_constant_node( a_constant_name, value=1, dtype=dtypes.float32, shape=[]) graph_def.node.extend([a_constant]) a_check_node = quantize_graph.create_node("CheckNumerics", a_check_name, [a_constant_name]) graph_def.node.extend([a_check_node]) a_identity_node = quantize_graph.create_node( "Identity", a_identity_name, [a_constant_name, "^" + a_check_name, "^" + no_op_name]) graph_def.node.extend([a_identity_node]) b_constant = quantize_graph.create_constant_node( b_constant_name, value=1, dtype=dtypes.float32, shape=[]) graph_def.node.extend([b_constant]) b_check_node = quantize_graph.create_node("CheckNumerics", b_check_name, [b_constant_name]) graph_def.node.extend([b_check_node]) b_identity_node = quantize_graph.create_node( "Identity", b_identity_name, [b_constant_name, "^" + b_check_name]) graph_def.node.extend([b_identity_node]) add_node = quantize_graph.create_node("Add", add_name, [a_identity_name, b_identity_name]) quantize_graph.set_attr_dtype(add_node, "T", dtypes.float32) graph_def.node.extend([add_node]) expected_output = graph_pb2.GraphDef() no_op = quantize_graph.create_node("NoOp", no_op_name, []) expected_output.node.extend([no_op]) a_constant = quantize_graph.create_constant_node( a_constant_name, value=1, dtype=dtypes.float32, shape=[]) expected_output.node.extend([a_constant]) a_identity_node = quantize_graph.create_node( "Identity", a_identity_name, [a_constant_name, "^" + no_op_name]) expected_output.node.extend([a_identity_node]) b_constant = quantize_graph.create_constant_node( b_constant_name, value=1, dtype=dtypes.float32, shape=[]) expected_output.node.extend([b_constant]) add_node = quantize_graph.create_node("Add", add_name, [a_identity_name, b_constant_name]) quantize_graph.set_attr_dtype(add_node, "T", dtypes.float32) expected_output.node.extend([add_node]) expected_output.versions.CopyFrom(graph_def.versions) expected_output.library.CopyFrom(graph_def.library) output = graph_util.remove_training_nodes(graph_def) stripped_output = graph_util.extract_sub_graph(output, [add_name]) self.assertProtoEquals(expected_output, stripped_output) def test_batch_norm(self): input_constant_name = "input_constant" mean_constant_name = "mean_constant" variance_constant_name = "variance_constant" beta_constant_name = "beta_constant" gamma_constant_name = "gamma_constant" batch_norm_name = "batch_norm" float_graph_def = graph_pb2.GraphDef() input_constant = quantize_graph.create_constant_node( input_constant_name, value=[1, 4, 2, 5, 3, 6, -1, -4, -2, -5, -3, -6], dtype=dtypes.float32, shape=[1, 1, 6, 2]) float_graph_def.node.extend([input_constant]) mean_constant = quantize_graph.create_constant_node( mean_constant_name, value=[10, 20], dtype=dtypes.float32, shape=[2]) float_graph_def.node.extend([mean_constant]) variance_constant = quantize_graph.create_constant_node( variance_constant_name, value=[0.25, 0.5], dtype=dtypes.float32, shape=[2]) float_graph_def.node.extend([variance_constant]) beta_constant = quantize_graph.create_constant_node( beta_constant_name, value=[0.1, 0.6], dtype=dtypes.float32, shape=[2]) float_graph_def.node.extend([beta_constant]) gamma_constant = quantize_graph.create_constant_node( gamma_constant_name, value=[0, 0], dtype=dtypes.float32, shape=[2]) float_graph_def.node.extend([gamma_constant]) batch_norm_node = quantize_graph.create_node( "BatchNormWithGlobalNormalization", batch_norm_name, [ input_constant_name, mean_constant_name, variance_constant_name, beta_constant_name, gamma_constant_name ]) quantize_graph.set_attr_dtype(batch_norm_node, "T", dtypes.float32) quantize_graph.set_attr_bool(batch_norm_node, "scale_after_normalization", False) quantize_graph.set_attr_float(batch_norm_node, "variance_epsilon", 0.001) float_graph_def.node.extend([batch_norm_node]) test_graph(float_graph_def, {}, [batch_norm_name]) def test_max_pool(self): input_constant_name = "input_constant" max_pool_name = "max_pool" float_graph_def = graph_pb2.GraphDef() input_constant = quantize_graph.create_constant_node( input_constant_name, value=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], dtype=dtypes.float32, shape=[1, 2, 6, 1]) float_graph_def.node.extend([input_constant]) max_pool_node = quantize_graph.create_node("MaxPool", max_pool_name, [input_constant_name]) quantize_graph.set_attr_int_list(max_pool_node, "ksize", [1, 2, 2, 1]) quantize_graph.set_attr_int_list(max_pool_node, "strides", [1, 1, 1, 1]) quantize_graph.set_attr_string(max_pool_node, "padding", b"SAME") float_graph_def.node.extend([max_pool_node]) test_graph(float_graph_def, {}, [max_pool_name]) def test_avg_pool(self): input_constant_name = "input_constant" avg_pool_name = "avg_pool" float_graph_def = graph_pb2.GraphDef() input_constant = quantize_graph.create_constant_node( input_constant_name, value=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], dtype=dtypes.float32, shape=[1, 2, 6, 1]) float_graph_def.node.extend([input_constant]) avg_pool_node = quantize_graph.create_node("AvgPool", avg_pool_name, [input_constant_name]) quantize_graph.set_attr_dtype(avg_pool_node, "T", dtypes.float32) quantize_graph.set_attr_int_list(avg_pool_node, "ksize", [1, 2, 2, 1]) quantize_graph.set_attr_int_list(avg_pool_node, "strides", [1, 1, 1, 1]) quantize_graph.set_attr_string(avg_pool_node, "padding", b"SAME") float_graph_def.node.extend([avg_pool_node]) test_graph(float_graph_def, {}, [avg_pool_name]) def test_relu(self): input_constant_name = "input_constant" relu_name = "relu" float_graph_def = graph_pb2.GraphDef() input_constant = quantize_graph.create_constant_node( input_constant_name, value=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], dtype=dtypes.float32, shape=[1, 2, 6, 1]) float_graph_def.node.extend([input_constant]) relu_node = quantize_graph.create_node("Relu", relu_name, [input_constant_name]) quantize_graph.set_attr_dtype(relu_node, "T", dtypes.float32) float_graph_def.node.extend([relu_node]) test_graph(float_graph_def, {}, [relu_name]) def test_relu_w_fake_quant_w_min_max_vars(self): input_node = quantize_graph.create_constant_node( "input", value=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], dtype=dtypes.float32, shape=[1, 2, 6, 1]) relu_node = quantize_graph.create_node("Relu", "relu", [input_node.name]) quantize_graph.set_attr_dtype(relu_node, "T", dtypes.float32) min_node = quantize_graph.create_constant_node( "min_bias_add", value=0, dtype=dtypes.float32, shape=[]) max_node = quantize_graph.create_constant_node( "max_bias_add", value=12, dtype=dtypes.float32, shape=[]) fake_quant_node = quantize_graph.create_node( "FakeQuantWithMinMaxVars", "fake_quant", [relu_node.name, min_node.name, max_node.name]) float_graph_def = graph_pb2.GraphDef() float_graph_def.node.extend( [input_node, relu_node, min_node, max_node, fake_quant_node]) test_graph(float_graph_def, {}, [fake_quant_node.name], log_graph=True) # Verify there is only one Quantize and one Requantize op. eightbit_rewriter = quantize_graph.GraphRewriter( float_graph_def, "eightbit", quantized_input_range=None) eightbit_graph_def = eightbit_rewriter.rewrite([fake_quant_node.name]) ops = [node.op for node in eightbit_graph_def.node] # No quantize since all inputs are const and can be quantized up-front. self.assertEqual(0, ops.count("QuantizeV2") + ops.count("Quantize")) # One dequantize at the end. self.assertEqual(1, ops.count("Dequantize")) def test_relu6(self): input_constant_name = "input_constant" relu6_name = "relu6" float_graph_def = graph_pb2.GraphDef() input_constant = quantize_graph.create_constant_node( input_constant_name, value=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], dtype=dtypes.float32, shape=[1, 2, 6, 1]) float_graph_def.node.extend([input_constant]) relu6_node = quantize_graph.create_node("Relu6", relu6_name, [input_constant_name]) quantize_graph.set_attr_dtype(relu6_node, "T", dtypes.float32) float_graph_def.node.extend([relu6_node]) test_graph(float_graph_def, {}, [relu6_name]) def test_bias_add(self): input_constant_name = "input_constant" offset_constant_name = "offset_constant" bias_add_name = "bias_add" float_graph_def = graph_pb2.GraphDef() input_constant = quantize_graph.create_constant_node( input_constant_name, value=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], dtype=dtypes.float32, shape=[1, 1, 2, 6]) float_graph_def.node.extend([input_constant]) offset_constant = quantize_graph.create_constant_node( offset_constant_name, value=[1, 2, 3, 4, 5, 6], dtype=dtypes.float32, shape=[6]) float_graph_def.node.extend([offset_constant]) bias_add_node = quantize_graph.create_node( "BiasAdd", bias_add_name, [input_constant_name, offset_constant_name]) quantize_graph.set_attr_dtype(bias_add_node, "T", dtypes.float32) float_graph_def.node.extend([bias_add_node]) test_graph(float_graph_def, {}, [bias_add_name]) def test_quantized_input_range_errors(self): with self.assertRaises(ValueError): # Invalid mode. quantize_graph.GraphRewriter(graph_pb2.GraphDef(), "weights_rounded", [0, 1]) with self.assertRaises(ValueError): # Invalid range. quantize_graph.GraphRewriter(graph_pb2.GraphDef(), "eightbit", [0, -1]) def test_quantized_input_range_bias_add(self): input_shape = [1, 1, 2, 6] input_n = quantize_graph.create_node("Placeholder", "input", []) quantize_graph.set_attr_dtype(input_n, "dtype", dtypes.float32) quantize_graph.set_attr_shape(input_n, "shape", input_shape) offset_n = quantize_graph.create_constant_node( "offset", value=[1, 2, 3, 4, 5, 6], dtype=dtypes.float32, shape=[6]) bias_add_n = quantize_graph.create_node("BiasAdd", "bias_add", [input_n.name, offset_n.name]) quantize_graph.set_attr_dtype(bias_add_n, "T", dtypes.float32) float_graph_def = graph_pb2.GraphDef() float_graph_def.node.extend([input_n, offset_n, bias_add_n]) input_map = { input_n.name + ":0": np.reshape([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], input_shape) } self._RunTestsForQuantizedInputRange(float_graph_def, input_map, [bias_add_n.name], [-1, 20.]) self._RunTestsForQuantizedInputRange(float_graph_def, input_map, [bias_add_n.name], [0, 12.]) def test_quantized_input_range_mat_mul(self): shapes = [[3, 2], [2, 4]] inputs = [] for i, shape in enumerate(shapes): node = quantize_graph.create_node("Placeholder", "input_%s" % i, []) quantize_graph.set_attr_dtype(node, "dtype", dtypes.float32) quantize_graph.set_attr_shape(node, "shape", shape) inputs.append(node) mat_mul_node = quantize_graph.create_node("MatMul", "mat_mul", [n.name for n in inputs]) quantize_graph.set_attr_dtype(mat_mul_node, "T", dtypes.float32) float_graph_def = graph_pb2.GraphDef() float_graph_def.node.extend(inputs + [mat_mul_node]) input_map = { inputs[0].name + ":0": np.reshape([1, 2, 3, 4, 5, 6], shapes[0]), inputs[1].name + ":0": np.reshape([.8, .7, .6, .5, .4, .3, .2, .1], shapes[1]) } self._RunTestsForQuantizedInputRange(float_graph_def, input_map, [mat_mul_node.name], [-1, 20.]) self._RunTestsForQuantizedInputRange(float_graph_def, input_map, [mat_mul_node.name], [0, 6.]) def _RunTestsForQuantizedInputRange(self, float_graph_def, input_map, output_names, input_range): if sys.version_info[0] == 3: # uint8->quint8 conversion for numpy is not working currently. return quantized_input_map = {} for k, v in input_map.items(): arr = [ int( round((n - input_range[0]) * 255 / (input_range[1] - input_range[ 0]))) for n in v.flat ] arr = np.array(arr, np.uint8) arr = arr.reshape(v.shape) arr = arr.astype(dtypes.quint8.as_numpy_dtype) quantized_input_map[k] = arr output_tensors = [output_name + ":0" for output_name in output_names] float_results = run_graph_def(float_graph_def, input_map, output_tensors) # Quantize treating the input as quantized in range <input_range>. rewriter = quantize_graph.GraphRewriter(float_graph_def, "eightbit", input_range) graph_def = rewriter.rewrite(output_names) results = run_graph_def(graph_def, quantized_input_map, output_tensors) for expected, result in zip(float_results, results): assert are_tensors_near(expected, result, .5) ops = [node.op for node in graph_def.node] self.assertEqual(0, ops.count("QuantizeV2") + ops.count("Quantize")) self.assertEqual(len(output_names), ops.count("Dequantize")) # Quantize without treating input as quantized. rewriter = quantize_graph.GraphRewriter( float_graph_def, "eightbit", quantized_input_range=None) graph_def = rewriter.rewrite(output_names) results = run_graph_def(graph_def, input_map, output_tensors) for expected, result in zip(float_results, results): assert are_tensors_near(expected, result, .5) ops = [node.op for node in graph_def.node] self.assertEqual( len(input_map), ops.count("QuantizeV2") + ops.count("Quantize")) self.assertEqual(len(output_names), ops.count("Dequantize")) def test_bias_add_w_fake_quant_w_min_max_vars(self): input_node = quantize_graph.create_constant_node( "input", value=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10], dtype=dtypes.float32, shape=[1, 1, 2, 5]) offset_node = quantize_graph.create_constant_node( "offset", value=[1, 2, 3, 4, 5], dtype=dtypes.float32, shape=[5]) bias_add_node = quantize_graph.create_node( "BiasAdd", "bias_add", [input_node.name, offset_node.name]) quantize_graph.set_attr_dtype(bias_add_node, "T", dtypes.float32) min_node = quantize_graph.create_constant_node( "min_bias_add", value=-.5, dtype=dtypes.float32, shape=[]) max_node = quantize_graph.create_constant_node( "max_bias_add", value=15.5, dtype=dtypes.float32, shape=[]) fake_quant_node = quantize_graph.create_node( "FakeQuantWithMinMaxVars", "fake_quant", [bias_add_node.name, min_node.name, max_node.name]) float_graph_def = graph_pb2.GraphDef() float_graph_def.node.extend([ input_node, offset_node, bias_add_node, min_node, max_node, fake_quant_node ]) test_graph(float_graph_def, {}, [fake_quant_node.name], log_graph=True) # Verify there is only one Quantize and one Requantize op. # Pass in fallback_quantization_range, although it will have no effect # because the FakeQuantWithMinMaxVars are used instead. eightbit_rewriter = quantize_graph.GraphRewriter( float_graph_def, "eightbit", quantized_input_range=None, fallback_quantization_range=[-100, 100]) eightbit_graph_def = eightbit_rewriter.rewrite([fake_quant_node.name]) ops = [node.op for node in eightbit_graph_def.node] node_names = [node.name for node in eightbit_graph_def.node] # No quantize since all inputs are const and can be quantized up-front. self.assertEqual(0, ops.count("QuantizeV2") + ops.count("Quantize")) # One dequantize at the end. self.assertEqual(1, ops.count("Dequantize")) # The fallback constants are not in the graph. self.assertEqual(0, node_names.count("fallback_quantization_min_value")) self.assertEqual(0, node_names.count("fallback_quantization_max_value")) def test_bias_add_w_fallback_min_max_vars(self): input_node = quantize_graph.create_constant_node( "input", value=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10], dtype=dtypes.float32, shape=[1, 1, 2, 5]) offset_node = quantize_graph.create_constant_node( "offset", value=[1, 2, 3, 4, 5], dtype=dtypes.float32, shape=[5]) bias_add_node = quantize_graph.create_node( "BiasAdd", "bias_add", [input_node.name, offset_node.name]) quantize_graph.set_attr_dtype(bias_add_node, "T", dtypes.float32) float_graph_def = graph_pb2.GraphDef() float_graph_def.node.extend([input_node, offset_node, bias_add_node]) test_graph(float_graph_def, {}, [bias_add_node.name], log_graph=True) # Verify there is only one Quantize, one Requantize op, and no # RequantizationRange op. eightbit_rewriter = quantize_graph.GraphRewriter( float_graph_def, "eightbit", quantized_input_range=None, fallback_quantization_range=[-.5, 15.5]) eightbit_graph_def = eightbit_rewriter.rewrite([bias_add_node.name]) ops = [node.op for node in eightbit_graph_def.node] node_names = [node.name for node in eightbit_graph_def.node] # No quantize since all inputs are const and can be quantized up-front. self.assertEqual(0, ops.count("QuantizeV2") + ops.count("Quantize")) # One dequantize at the end. self.assertEqual(1, ops.count("Dequantize")) # No RequantizationRange self.assertEqual(0, ops.count("RequantizationRange")) # The fallback constants are in the graph. self.assertEqual(1, node_names.count("fallback_quantization_min_value")) self.assertEqual(1, node_names.count("fallback_quantization_max_value")) def test_remove_redundant_quantization(self): a_constant_name = "a_constant" a_constant_min_name = "a_constant_min" a_constant_max_name = "a_constant_max" a_dequantize_name = "a_dequantize" a_quantize_name = "a_quantize" b_constant_name = "b_constant" b_constant_min_name = "b_constant_min" b_constant_max_name = "b_constant_max" b_dequantize_name = "b_dequantize" b_quantize_name = "b_quantize" mat_mul_name = "mat_mul" graph_def = graph_pb2.GraphDef() a_constant = quantize_graph.create_constant_node( a_constant_name, value=(0,), dtype=dtypes.quint8, shape=[]) graph_def.node.extend([a_constant]) a_constant_min = quantize_graph.create_constant_node( a_constant_min_name, value=2, dtype=dtypes.float32, shape=[]) graph_def.node.extend([a_constant_min]) a_constant_max = quantize_graph.create_constant_node( a_constant_max_name, value=2, dtype=dtypes.float32, shape=[]) graph_def.node.extend([a_constant_max]) a_dequantize_node = quantize_graph.create_node( "Dequantize", a_dequantize_name, [a_constant_name, a_constant_min_name, a_constant_max_name]) quantize_graph.set_attr_dtype(a_dequantize_node, "T", dtypes.uint8) graph_def.node.extend([a_dequantize_node]) a_quantize_node = quantize_graph.create_node( "QuantizeV2", a_quantize_name, [a_dequantize_name, a_dequantize_name + ":1", a_dequantize_name + ":2"]) quantize_graph.set_attr_dtype(a_quantize_node, "T", dtypes.uint8) graph_def.node.extend([a_quantize_node]) b_constant = quantize_graph.create_constant_node( b_constant_name, value=(0,), dtype=dtypes.quint8, shape=[]) graph_def.node.extend([b_constant]) b_constant_min = quantize_graph.create_constant_node( b_constant_min_name, value=3, dtype=dtypes.float32, shape=[]) graph_def.node.extend([b_constant_min]) b_constant_max = quantize_graph.create_constant_node( b_constant_max_name, value=3, dtype=dtypes.float32, shape=[]) graph_def.node.extend([b_constant_max]) b_dequantize_node = quantize_graph.create_node( "Dequantize", b_dequantize_name, [b_constant_name, b_constant_min_name, b_constant_max_name]) quantize_graph.set_attr_dtype(b_dequantize_node, "T", dtypes.uint8) graph_def.node.extend([b_dequantize_node]) b_quantize_node = quantize_graph.create_node( "QuantizeV2", b_quantize_name, [b_dequantize_name, b_dequantize_name + ":1", b_dequantize_name + ":2"]) quantize_graph.set_attr_dtype(b_quantize_node, "T", dtypes.uint8) graph_def.node.extend([b_quantize_node]) mat_mul_node = quantize_graph.create_node("QuantizedMatMul", mat_mul_name, [ a_quantize_name, b_quantize_name, a_quantize_name + ":1", a_quantize_name + ":2", b_quantize_name + ":1", b_quantize_name + ":2" ]) quantize_graph.set_attr_dtype(mat_mul_node, "T1", dtypes.uint8) quantize_graph.set_attr_dtype(mat_mul_node, "T2", dtypes.int32) graph_def.node.extend([mat_mul_node]) expected_output = graph_pb2.GraphDef() a_constant = quantize_graph.create_constant_node( a_constant_name, value=(0,), dtype=dtypes.quint8, shape=[]) expected_output.node.extend([a_constant]) a_constant_min = quantize_graph.create_constant_node( a_constant_min_name, value=2, dtype=dtypes.float32, shape=[]) expected_output.node.extend([a_constant_min]) a_constant_max = quantize_graph.create_constant_node( a_constant_max_name, value=2, dtype=dtypes.float32, shape=[]) expected_output.node.extend([a_constant_max]) b_constant = quantize_graph.create_constant_node( b_constant_name, value=(0,), dtype=dtypes.quint8, shape=[]) expected_output.node.extend([b_constant]) b_constant_min = quantize_graph.create_constant_node( b_constant_min_name, value=3, dtype=dtypes.float32, shape=[]) expected_output.node.extend([b_constant_min]) b_constant_max = quantize_graph.create_constant_node( b_constant_max_name, value=3, dtype=dtypes.float32, shape=[]) expected_output.node.extend([b_constant_max]) mat_mul_node = quantize_graph.create_node("QuantizedMatMul", mat_mul_name, [ a_constant_name, b_constant_name, a_constant_min_name, a_constant_max_name, b_constant_min_name, b_constant_max_name ]) quantize_graph.set_attr_dtype(mat_mul_node, "T1", dtypes.uint8) quantize_graph.set_attr_dtype(mat_mul_node, "T2", dtypes.int32) expected_output.node.extend([mat_mul_node]) expected_output.versions.CopyFrom(graph_def.versions) expected_output.library.CopyFrom(graph_def.library) rewriter = quantize_graph.GraphRewriter( graph_def, [mat_mul_name], quantized_input_range=None) output = rewriter.remove_redundant_quantization(graph_def) stripped_output = graph_util.extract_sub_graph(output, [mat_mul_name]) self.assertProtoEquals(expected_output, stripped_output) if __name__ == "__main__": test.main()
litex_boards/platforms/xilinx_kcu105.py
smunaut/litex-boards
177
3160
# # This file is part of LiteX-Boards. # # Copyright (c) 2017-2019 <NAME> <<EMAIL>> # SPDX-License-Identifier: BSD-2-Clause from litex.build.generic_platform import * from litex.build.xilinx import XilinxPlatform, VivadoProgrammer # IOs ---------------------------------------------------------------------------------------------- _io = [ # Clk / Rst ("clk125", 0, Subsignal("p", Pins("G10"), IOStandard("LVDS")), Subsignal("n", Pins("F10"), IOStandard("LVDS")) ), ("clk300", 0, Subsignal("p", Pins("AK17"), IOStandard("DIFF_SSTL12")), Subsignal("n", Pins("AK16"), IOStandard("DIFF_SSTL12")) ), ("cpu_reset", 0, Pins("AN8"), IOStandard("LVCMOS18")), # Leds ("user_led", 0, Pins("AP8"), IOStandard("LVCMOS18")), ("user_led", 1, Pins("H23"), IOStandard("LVCMOS18")), ("user_led", 2, Pins("P20"), IOStandard("LVCMOS18")), ("user_led", 3, Pins("P21"), IOStandard("LVCMOS18")), ("user_led", 4, Pins("N22"), IOStandard("LVCMOS18")), ("user_led", 5, Pins("M22"), IOStandard("LVCMOS18")), ("user_led", 6, Pins("R23"), IOStandard("LVCMOS18")), ("user_led", 7, Pins("P23"), IOStandard("LVCMOS18")), # Buttons ("user_btn_c", 0, Pins("AE10"), IOStandard("LVCMOS18")), ("user_btn_n", 0, Pins("AD10"), IOStandard("LVCMOS18")), ("user_btn_s", 0, Pins("AF8"), IOStandard("LVCMOS18")), ("user_btn_w", 0, Pins("AF9"), IOStandard("LVCMOS18")), ("user_btn_e", 0, Pins("AE8"), IOStandard("LVCMOS18")), # Switches ("user_dip_btn", 0, Pins("AN16"), IOStandard("LVCMOS12")), ("user_dip_btn", 1, Pins("AN19"), IOStandard("LVCMOS12")), ("user_dip_btn", 2, Pins("AP18"), IOStandard("LVCMOS12")), ("user_dip_btn", 3, Pins("AN14"), IOStandard("LVCMOS12")), # SMA ("user_sma_clock", 0, Subsignal("p", Pins("D23"), IOStandard("LVDS")), Subsignal("n", Pins("C23"), IOStandard("LVDS")) ), ("user_sma_clock_p", 0, Pins("D23"), IOStandard("LVCMOS18")), ("user_sma_clock_n", 0, Pins("C23"), IOStandard("LVCMOS18")), ("user_sma_gpio", 0, Subsignal("p", Pins("H27"), IOStandard("LVDS")), Subsignal("n", Pins("G27"), IOStandard("LVDS")) ), ("user_sma_gpio_p", 0, Pins("H27"), IOStandard("LVCMOS18")), ("user_sma_gpio_n", 0, Pins("G27"), IOStandard("LVCMOS18")), # I2C ("i2c", 0, Subsignal("scl", Pins("J24")), Subsignal("sda", Pins("J25")), IOStandard("LVCMOS18") ), # Serial ("serial", 0, Subsignal("cts", Pins("L23")), Subsignal("rts", Pins("K27")), Subsignal("tx", Pins("K26")), Subsignal("rx", Pins("G25")), IOStandard("LVCMOS18") ), # SPIFlash ("spiflash", 0, # clock needs to be accessed through primitive Subsignal("cs_n", Pins("U7")), Subsignal("dq", Pins("AC7 AB7 AA7 Y7")), IOStandard("LVCMOS18") ), ("spiflash", 1, # clock needs to be accessed through primitive Subsignal("cs_n", Pins("G26")), Subsignal("dq", Pins("M20 L20 R21 R22")), IOStandard("LVCMOS18") ), # SDCard ("spisdcard", 0, Subsignal("clk", Pins("AL10")), Subsignal("cs_n", Pins("AH8")), Subsignal("mosi", Pins("AD9"), Misc("PULLUP")), Subsignal("miso", Pins("AP9"), Misc("PULLUP")), Misc("SLEW=FAST"), IOStandard("LVCMOS18") ), ("sdcard", 0, Subsignal("clk", Pins("AL10")), Subsignal("cmd", Pins("AD9"), Misc("PULLUP True")), Subsignal("data", Pins("AP9 AN9 AH9 AH8"), Misc("PULLUP True")), Misc("SLEW=FAST"), IOStandard("LVCMOS18") ), # Rotary Encoder ("rotary", 0, Subsignal("a", Pins("Y21")), Subsignal("b", Pins("AD26")), Subsignal("push", Pins("AF28")), IOStandard("LVCMOS18") ), # HDMI ("hdmi", 0, Subsignal("d", Pins( "AK11 AP11 AP13 AN13 AN11 AM11 AN12 AM12", "AL12 AK12 AL13 AK13 AD11 AH12 AG12 AJ11", "AG10 AK8")), Subsignal("de", Pins("AE11")), Subsignal("clk", Pins("AF13")), Subsignal("vsync", Pins("AH13")), Subsignal("hsync", Pins("AE13")), Subsignal("spdif", Pins("AE12")), Subsignal("spdif_out", Pins("AF12")), IOStandard("LVCMOS18") ), # DDR4 SDRAM ("ddram", 0, Subsignal("a", Pins( "AE17 AH17 AE18 AJ15 AG16 AL17 AK18 AG17", "AF18 AH19 AF15 AD19 AJ14 AG19"), IOStandard("SSTL12_DCI")), Subsignal("ba", Pins("AF17 AL15"), IOStandard("SSTL12_DCI")), Subsignal("bg", Pins("AG15"), IOStandard("SSTL12_DCI")), Subsignal("ras_n", Pins("AF14"), IOStandard("SSTL12_DCI")), # A16 Subsignal("cas_n", Pins("AG14"), IOStandard("SSTL12_DCI")), # A15 Subsignal("we_n", Pins("AD16"), IOStandard("SSTL12_DCI")), # A14 Subsignal("cs_n", Pins("AL19"), IOStandard("SSTL12_DCI")), Subsignal("act_n", Pins("AH14"), IOStandard("SSTL12_DCI")), #Subsignal("ten", Pins("AH16"), IOStandard("SSTL12_DCI")), #Subsignal("alert_n", Pins("AJ16"), IOStandard("SSTL12_DCI")), #Subsignal("par", Pins("AD18"), IOStandard("SSTL12_DCI")), Subsignal("dm", Pins("AD21 AE25 AJ21 AM21 AH26 AN26 AJ29 AL32"), IOStandard("POD12_DCI")), Subsignal("dq", Pins( "AE23 AG20 AF22 AF20 AE22 AD20 AG22 AE20", "AJ24 AG24 AJ23 AF23 AH23 AF24 AH22 AG25", "AL22 AL25 AM20 AK23 AK22 AL24 AL20 AL23", "AM24 AN23 AN24 AP23 AP25 AN22 AP24 AM22", "AH28 AK26 AK28 AM27 AJ28 AH27 AK27 AM26", "AL30 AP29 AM30 AN28 AL29 AP28 AM29 AN27", "AH31 AH32 AJ34 AK31 AJ31 AJ30 AH34 AK32", "AN33 AP33 AM34 AP31 AM32 AN31 AL34 AN32"), IOStandard("POD12_DCI"), Misc("PRE_EMPHASIS=RDRV_240"), Misc("EQUALIZATION=EQ_LEVEL2")), Subsignal("dqs_p", Pins("AG21 AH24 AJ20 AP20 AL27 AN29 AH33 AN34"), IOStandard("DIFF_POD12_DCI"), Misc("PRE_EMPHASIS=RDRV_240"), Misc("EQUALIZATION=EQ_LEVEL2")), Subsignal("dqs_n", Pins("AH21 AJ25 AK20 AP21 AL28 AP30 AJ33 AP34"), IOStandard("DIFF_POD12_DCI"), Misc("PRE_EMPHASIS=RDRV_240"), Misc("EQUALIZATION=EQ_LEVEL2")), Subsignal("clk_p", Pins("AE16"), IOStandard("DIFF_SSTL12_DCI")), Subsignal("clk_n", Pins("AE15"), IOStandard("DIFF_SSTL12_DCI")), Subsignal("cke", Pins("AD15"), IOStandard("SSTL12_DCI")), Subsignal("odt", Pins("AJ18"), IOStandard("SSTL12_DCI")), Subsignal("reset_n", Pins("AL18"), IOStandard("LVCMOS12")), Misc("SLEW=FAST"), ), # PCIe ("pcie_x1", 0, Subsignal("rst_n", Pins("K22"), IOStandard("LVCMOS18")), Subsignal("clk_p", Pins("AB6")), Subsignal("clk_n", Pins("AB5")), Subsignal("rx_p", Pins("AB2")), Subsignal("rx_n", Pins("AB1")), Subsignal("tx_p", Pins("AC4")), Subsignal("tx_n", Pins("AC3")) ), ("pcie_x2", 0, Subsignal("rst_n", Pins("K22"), IOStandard("LVCMOS18")), Subsignal("clk_p", Pins("AB6")), Subsignal("clk_n", Pins("AB5")), Subsignal("rx_p", Pins("AB2 AD2")), Subsignal("rx_n", Pins("AB1 AD1")), Subsignal("tx_p", Pins("AC4 AE4")), Subsignal("tx_n", Pins("AC3 AE3")) ), ("pcie_x4", 0, Subsignal("rst_n", Pins("K22"), IOStandard("LVCMOS18")), Subsignal("clk_p", Pins("AB6")), Subsignal("clk_n", Pins("AB5")), Subsignal("rx_p", Pins("AB2 AD2 AF2 AH2")), Subsignal("rx_n", Pins("AB1 AD1 AF1 AH1")), Subsignal("tx_p", Pins("AC4 AE4 AG4 AH6")), Subsignal("tx_n", Pins("AC3 AE3 AG3 AH5")) ), ("pcie_x8", 0, Subsignal("rst_n", Pins("K22"), IOStandard("LVCMOS18")), Subsignal("clk_p", Pins("AB6")), Subsignal("clk_n", Pins("AB5")), Subsignal("rx_p", Pins("AB2 AD2 AF2 AH2 AJ4 AK2 AM2 AP2")), Subsignal("rx_n", Pins("AB1 AD1 AF1 AH1 AJ3 AK1 AM1 AP1")), Subsignal("tx_p", Pins("AC4 AE4 AG4 AH6 AK6 AL4 AM6 AN4")), Subsignal("tx_n", Pins("AC3 AE3 AG3 AH5 AK5 AL3 AM5 AN3")) ), # SGMII Clk ("sgmii_clock", 0, Subsignal("p", Pins("P26"), IOStandard("LVDS_25")), Subsignal("n", Pins("N26"), IOStandard("LVDS_25")) ), # SI570 ("si570_refclk", 0, Subsignal("p", Pins("P6")), Subsignal("n", Pins("P5")) ), # SMA ("user_sma_mgt_refclk", 0, Subsignal("p", Pins("V6")), Subsignal("n", Pins("V5")) ), ("user_sma_mgt_tx", 0, Subsignal("p", Pins("R4")), Subsignal("n", Pins("R3")) ), ("user_sma_mgt_rx", 0, Subsignal("p", Pins("P2")), Subsignal("n", Pins("P1")) ), # SFP ("sfp", 0, Subsignal("txp", Pins("U4")), Subsignal("txn", Pins("U3")), Subsignal("rxp", Pins("T2")), Subsignal("rxn", Pins("T1")) ), ("sfp_tx", 0, Subsignal("p", Pins("U4")), Subsignal("n", Pins("U3")), ), ("sfp_rx", 0, Subsignal("p", Pins("T2")), Subsignal("n", Pins("T1")), ), ("sfp_tx_disable_n", 0, Pins("AL8"), IOStandard("LVCMOS18")), ("sfp", 1, Subsignal("txp", Pins("W4")), Subsignal("txn", Pins("W3")), Subsignal("rxp", Pins("V2")), Subsignal("rxn", Pins("V1")) ), ("sfp_tx", 1, Subsignal("p", Pins("W4")), Subsignal("n", Pins("W3")), ), ("sfp_rx", 1, Subsignal("p", Pins("V2")), Subsignal("n", Pins("V1")), ), ("sfp_tx_disable_n", 1, Pins("D28"), IOStandard("LVCMOS18")), ] # Connectors --------------------------------------------------------------------------------------- _connectors = [ ("HPC", { "DP0_C2M_P" : "F6", "DP0_C2M_N" : "F5", "DP0_M2C_P" : "E4", "DP0_M2C_N" : "E3", "DP1_C2M_P" : "D6", "DP1_C2M_N" : "D5", "DP1_M2C_P" : "D2", "DP1_M2C_N" : "D1", "DP2_C2M_P" : "C4", "DP2_C2M_N" : "C3", "DP2_M2C_P" : "B2", "DP2_M2C_N" : "B1", "DP3_C2M_P" : "B6", "DP3_C2M_N" : "B5", "DP3_M2C_P" : "A4", "DP3_M2C_N" : "A3", "DP4_C2M_P" : "N4", "DP4_C2M_N" : "N3", "DP4_M2C_P" : "M2", "DP4_M2C_N" : "M1", "DP5_C2M_P" : "J4", "DP5_C2M_N" : "J3", "DP5_M2C_P" : "H2", "DP5_M2C_N" : "H1", "DP6_C2M_P" : "L4", "DP6_C2M_N" : "L3", "DP6_M2C_P" : "K2", "DP6_M2C_N" : "K1", "DP7_C2M_P" : "G4", "DP7_C2M_N" : "G3", "DP7_M2C_P" : "F2", "DP7_M2C_N" : "F1", "LA06_P" : "D13", "LA06_N" : "C13", "LA10_P" : "L8", "LA10_N" : "K8", "LA14_P" : "B10", "LA14_N" : "A10", "LA18_CC_P" : "E22", "LA18_CC_N" : "E23", "LA27_P" : "H21", "LA27_N" : "G21", "HA01_CC_P" : "E16", "HA01_CC_N" : "D16", "HA05_P" : "J15", "HA05_N" : "J14", "HA09_P" : "F18", "HA09_N" : "F17", "HA13_P" : "B14", "HA13_N" : "A14", "HA16_P" : "A19", "HA16_N" : "A18", "HA20_P" : "C19", "HA20_N" : "B19", "CLK1_M2C_P" : "E25", "CLK1_M2C_N" : "D25", "LA00_CC_P" : "H11", "LA00_CC_N" : "G11", "LA03_P" : "A13", "LA03_N" : "A12", "LA08_P" : "J8", "LA08_N" : "H8", "LA12_P" : "E10", "LA12_N" : "D10", "LA16_P" : "B9", "LA16_N" : "A9", "LA20_P" : "B24", "LA20_N" : "A24", "LA22_P" : "G24", "LA22_N" : "F25", "LA25_P" : "D20", "LA25_N" : "D21", "LA29_P" : "B20", "LA29_N" : "A20", "LA31_P" : "B25", "LA31_N" : "A25", "LA33_P" : "A27", "LA33_N" : "A28", "HA03_P" : "G15", "HA03_N" : "G14", "HA07_P" : "L19", "HA07_N" : "L18", "HA11_P" : "J19", "HA11_N" : "J18", "HA14_P" : "F15", "HA14_N" : "F14", "HA18_P" : "B17", "HA18_N" : "B16", "HA22_P" : "C18", "HA22_N" : "C17", "GBTCLK1_M2C_P" : "H6", "GBTCLK1_M2C_N" : "H5", "GBTCLK0_M2C_P" : "K6", "GBTCLK0_M2C_N" : "K5", "LA01_CC_P" : "G9", "LA01_CC_N" : "F9", "LA05_P" : "L13", "LA05_N" : "K13", "LA09_P" : "J9", "LA09_N" : "H9", "LA13_P" : "D9", "LA13_N" : "C9", "LA17_CC_P" : "D24", "LA17_CC_N" : "C24", "LA23_P" : "G22", "LA23_N" : "F22", "LA26_P" : "G20", "LA26_N" : "F20", "PG_M2C" : "L27", "HA00_CC_P" : "G17", "HA00_CC_N" : "G16", "HA04_P" : "G19", "HA04_N" : "F19", "HA08_P" : "K18", "HA08_N" : "K17", "HA12_P" : "K16", "HA12_N" : "J16", "HA15_P" : "D14", "HA15_N" : "C14", "HA19_P" : "D19", "HA19_N" : "D18", "PRSNT_M2C_B" : "H24", "CLK0_M2C_P" : "H12", "CLK0_M2C_N" : "G12", "LA02_P" : "K10", "LA02_N" : "J10", "LA04_P" : "L12", "LA04_N" : "K12", "LA07_P" : "F8", "LA07_N" : "E8", "LA11_P" : "K11", "LA11_N" : "J11", "LA15_P" : "D8", "LA15_N" : "C8", "LA19_P" : "C21", "LA19_N" : "C22", "LA21_P" : "F23", "LA21_N" : "F24", "LA24_P" : "E20", "LA24_N" : "E21", "LA28_P" : "B21", "LA28_N" : "B22", "LA30_P" : "C26", "LA30_N" : "B26", "LA32_P" : "E26", "LA32_N" : "D26", "HA02_P" : "H19", "HA02_N" : "H18", "HA06_P" : "L15", "HA06_N" : "K15", "HA10_P" : "H17", "HA10_N" : "H16", "HA17_CC_P" : "E18", "HA17_CC_N" : "E17", "HA21_P" : "E15", "HA21_N" : "D15", "HA23_P" : "B15", "HA23_N" : "A15", } ), ("LPC", { "GBTCLK0_M2C_P" : "AA24", "GBTCLK0_M2C_N" : "AA25", "LA01_CC_P" : "W25", "LA01_CC_N" : "Y25", "LA05_P" : "V27", "LA05_N" : "V28", "LA09_P" : "V26", "LA09_N" : "W26", "LA13_P" : "AA20", "LA13_N" : "AB20", "LA17_CC_P" : "AA32", "LA17_CC_N" : "AB32", "LA23_P" : "AD30", "LA23_N" : "AD31", "LA26_P" : "AF33", "LA26_N" : "AG34", "CLK0_M2C_P" : "AA24", "CLK0_M2C_N" : "AA25", "LA02_P" : "AA22", "LA02_N" : "AB22", "LA04_P" : "U26", "LA04_N" : "U27", "LA07_P" : "V22", "LA07_N" : "V23", "LA11_P" : "V21", "LA11_N" : "W21", "LA15_P" : "AB25", "LA15_N" : "AB26", "LA19_P" : "AA29", "LA19_N" : "AB29", "LA21_P" : "AC33", "LA21_N" : "AD33", "LA24_P" : "AE32", "LA24_N" : "AF32", "LA28_P" : "V31", "LA28_N" : "W31", "LA30_P" : "Y31", "LA30_N" : "Y32", "LA32_P" : "W30", "LA32_N" : "Y30", "LA06_P" : "V29", "LA06_N" : "W29", "LA10_P" : "T22", "LA10_N" : "T23", "LA14_P" : "U21", "LA14_N" : "U22", "LA18_CC_P" : "AB30", "LA18_CC_N" : "AB31", "LA27_P" : "AG31", "LA27_N" : "AG32", "CLK1_M2C_P" : "AC31", "CLK1_M2C_N" : "AC32", "LA00_CC_P" : "W23", "LA00_CC_N" : "W24", "LA03_P" : "W28", "LA03_N" : "Y28", "LA08_P" : "U24", "LA08_N" : "U25", "LA12_P" : "AC22", "LA12_N" : "AC23", "LA16_P" : "AB21", "LA16_N" : "AC21", "LA20_P" : "AA34", "LA20_N" : "AB34", "LA22_P" : "AC34", "LA22_N" : "AD34", "LA25_P" : "AE33", "LA25_N" : "AF34", "LA29_P" : "U34", "LA29_N" : "V34", "LA31_P" : "V33", "LA31_N" : "W34", "LA33_P" : "W33", "LA33_N" : "Y33", } ), ("pmod0", "AK25 AN21 AH18 AM19 AE26 AF25 AE21 AM17"), ("pmod1", "AL14 AM14 AP16 AP15 AM16 AM15 AN18 AN17"), ] # Platform ----------------------------------------------------------------------------------------- class Platform(XilinxPlatform): default_clk_name = "clk125" default_clk_period = 1e9/125e6 def __init__(self): XilinxPlatform.__init__(self, "xcku040-ffva1156-2-e", _io, _connectors, toolchain="vivado") def create_programmer(self): return VivadoProgrammer() def do_finalize(self, fragment): XilinxPlatform.do_finalize(self, fragment) self.add_period_constraint(self.lookup_request("clk125", loose=True), 1e9/125e6) self.add_period_constraint(self.lookup_request("clk300", loose=True), 1e9/300e6) self.add_platform_command("set_property INTERNAL_VREF 0.84 [get_iobanks 44]") self.add_platform_command("set_property INTERNAL_VREF 0.84 [get_iobanks 45]") self.add_platform_command("set_property INTERNAL_VREF 0.84 [get_iobanks 46]")
dabl/plot/tests/test_supervised.py
nrohan09-cloud/dabl
500
3180
<reponame>nrohan09-cloud/dabl<gh_stars>100-1000 import pytest import numpy as np import pandas as pd import matplotlib.pyplot as plt import itertools from sklearn.datasets import (make_regression, make_blobs, load_digits, fetch_openml, load_diabetes) from sklearn.preprocessing import KBinsDiscretizer from dabl.preprocessing import clean, detect_types, guess_ordinal from dabl.plot.supervised import ( plot, plot_classification_categorical, plot_classification_continuous, plot_regression_categorical, plot_regression_continuous) from dabl.utils import data_df_from_bunch from dabl import set_config # FIXME: check that target is not y but a column name @pytest.mark.filterwarnings('ignore:the matrix subclass') @pytest.mark.parametrize("continuous_features, categorical_features, task", itertools.product([0, 1, 3, 100], [0, 1, 3, 100], ['classification', 'regression'])) def test_plots_smoke(continuous_features, categorical_features, task): # simple smoke test # should be parametrized n_samples = 100 X_cont, y_cont = make_regression( n_samples=n_samples, n_features=continuous_features, n_informative=min(continuous_features, 2)) X_cat, y_cat = make_regression( n_samples=n_samples, n_features=categorical_features, n_informative=min(categorical_features, 2)) if X_cat.shape[1] > 0: X_cat = KBinsDiscretizer(encode='ordinal').fit_transform(X_cat) cont_columns = ["asdf_%d_cont" % i for i in range(continuous_features)] df_cont = pd.DataFrame(X_cont, columns=cont_columns) if categorical_features > 0: cat_columns = ["asdf_%d_cat" % i for i in range(categorical_features)] df_cat = pd.DataFrame(X_cat, columns=cat_columns).astype('int') df_cat = df_cat.astype("category") X_df = pd.concat([df_cont, df_cat], axis=1) else: X_df = df_cont assert(X_df.shape[1] == continuous_features + categorical_features) X_clean = clean(X_df.copy()) y = y_cont + y_cat if X_df.shape[1] == 0: y = np.random.uniform(size=n_samples) if task == "classification": y = np.digitize(y, np.percentile(y, [5, 10, 60, 85])) X_clean['target'] = y if task == "classification": X_clean['target'] = X_clean['target'].astype('category') types = detect_types(X_clean) column_types = types.T.idxmax() assert np.all(column_types[:continuous_features] == 'continuous') assert np.all(column_types[continuous_features:-1] == 'categorical') if task == "classification": assert column_types[-1] == 'categorical' else: assert column_types[-1] == 'continuous' plot(X_clean, target_col='target') plt.close("all") @pytest.mark.parametrize("add, feature_type, target_type", itertools.product([0, .1], ['continuous', 'categorical'], ['continuous', 'categorical'])) def test_type_hints(add, feature_type, target_type): X = pd.DataFrame(np.random.randint(4, size=100)) + add X['target'] = np.random.uniform(size=100) plot(X, type_hints={0: feature_type, 'target': target_type}, target_col='target') # get title of figure text = plt.gcf()._suptitle.get_text() assert feature_type.capitalize() in text ax = plt.gca() # one of the labels is 'target' iif regression labels = ax.get_ylabel() + ax.get_xlabel() assert ('target' in labels) == (target_type == 'continuous') plt.close("all") def test_float_classification_target(): # check we can plot even if we do classification with a float target X, y = make_blobs() data = pd.DataFrame(X) data['target'] = y.astype(np.float) types = detect_types(data) assert types.categorical['target'] plot(data, target_col='target') # same with "actual float" - we need to specify classification for that :-/ data['target'] = y.astype(np.float) + .2 plot(data, target_col='target', type_hints={'target': 'categorical'}) plt.close("all") @pytest.mark.filterwarnings('ignore:Discarding near-constant') def test_plot_classification_n_classes(): X, y = make_blobs() X = pd.DataFrame(X) X['target'] = 0 with pytest.raises(ValueError, match="Less than two classes"): plot_classification_categorical(X, 'target') with pytest.raises(ValueError, match="Less than two classes"): plot_classification_continuous(X, 'target') def test_plot_wrong_target_type(): X, y = make_blobs() X = pd.DataFrame(X) X['target'] = y with pytest.raises(ValueError, match="need continuous"): plot_regression_categorical(X, 'target') with pytest.raises(ValueError, match="need continuous"): plot_regression_continuous(X, 'target') X['target'] = X[0] with pytest.raises(ValueError, match="need categorical"): plot_classification_categorical(X, 'target') with pytest.raises(ValueError, match="need categorical"): plot_classification_continuous(X, 'target') def test_plot_target_low_card_int(): data = load_digits() df = data_df_from_bunch(data) plot(df[::10], target_col='target') def test_plot_X_y(): X, y = make_blobs() X = pd.DataFrame(X) plot(X, y) def test_plot_regression_numpy(): X, y = make_regression() plot(X, y) def test_plot_lda_binary(): X, y = make_blobs(centers=2) X = pd.DataFrame(X) plot(X, y, univariate_plot='kde') def test_plot_int_column_name(): X, y = make_blobs() X = pd.DataFrame(X) X[3] = y plot(X, target_col=3) def test_negative_ordinal(): # check that a low card int with negative values is plotted correctly data = pd.DataFrame([np.random.randint(0, 10, size=1000) - 5, np.random.randint(0, 2, size=1000)]).T # ensure first column is low_card_int assert (detect_types(data).T.idxmax() == ['low_card_int', 'categorical']).all() assert guess_ordinal(data[0]) # smoke test plot(data, target_col=1) def test_large_ordinal(): # check that large integers don't bring us down (bincount memory error) # here some random phone numbers assert not guess_ordinal(pd.Series([6786930208, 2142878625, 9106275431])) def test_plot_classification_continuous(): data = fetch_openml('MiceProtein') df = data_df_from_bunch(data) # only univariate plots figures = plot_classification_continuous(df, target_col='target', plot_pairwise=False) assert len(figures) == 1 # top 10 axes assert len(figures[0].get_axes()) == 10 # six is the minimum number of features for histograms # (last column is target) figures = plot_classification_continuous(df.iloc[:, -7:], target_col='target', plot_pairwise=False) assert len(figures) == 1 assert len(figures[0].get_axes()) == 6 # for 5 features, do full pairplot figures = plot_classification_continuous(df.iloc[:, -6:], target_col='target', plot_pairwise=False) assert len(figures) == 1 # diagonal has twin axes assert len(figures[0].get_axes()) == 5 * 5 + 5 # also do pairwise plots figures = plot_classification_continuous(df, target_col='target', random_state=42) # univariate, pairwise, pca, lda assert len(figures) == 4 # univariate axes = figures[0].get_axes() assert len(axes) == 10 # known result assert axes[0].get_xlabel() == "SOD1_N" # bar plot never has ylabel assert axes[0].get_ylabel() == "" # pairwise axes = figures[1].get_axes() assert len(axes) == 4 # known result assert axes[0].get_xlabel() == "SOD1_N" assert axes[0].get_ylabel() == 'S6_N' # PCA axes = figures[2].get_axes() assert len(axes) == 4 # known result assert axes[0].get_xlabel() == "PCA 1" assert axes[0].get_ylabel() == 'PCA 5' # LDA axes = figures[3].get_axes() assert len(axes) == 4 # known result assert axes[0].get_xlabel() == "LDA 0" assert axes[0].get_ylabel() == 'LDA 1' def test_plot_string_target(): X, y = make_blobs(n_samples=30) data = pd.DataFrame(X) y = pd.Series(y) y[y == 0] = 'a' y[y == 1] = 'b' y[y == 2] = 'c' data['target'] = y plot(data, target_col='target') def test_na_vals_reg_plot_raise_warning(): X, y = load_diabetes(return_X_y=True) X = pd.DataFrame(X) y[::50] = np.NaN X['target_col'] = y with pytest.warns(UserWarning, match="Missing values in target_col have " "been removed for regression"): plot(X, 'target_col') with pytest.warns(UserWarning, match="Missing values in target_col have " "been removed for regression"): plot_regression_continuous(X, 'target_col') with pytest.warns(UserWarning, match="Missing values in target_col have " "been removed for regression"): plot_regression_categorical(X, 'target_col') def test_plot_regression_continuous_with_target_outliers(): df = pd.DataFrame( data={ "feature": np.random.randint(low=1, high=100, size=200), # target values are bound between 50 and 100 "target": np.random.randint(low=50, high=100, size=200) } ) # append single outlier record with target value 0 df = df.append({"feature": 50, "target": 0}, ignore_index=True) with pytest.warns( UserWarning, match="Dropped 1 outliers in column target." ): plot_regression_continuous(df, 'target') def test_plot_regression_categorical_missing_value(): df = pd.DataFrame({'y': np.random.normal(size=300)}) df.loc[100:200, 'y'] += 1 df.loc[200:300, 'y'] += 2 df['x'] = 'a' df.loc[100:200, 'x'] = 'b' df.loc[200:300, 'x'] = np.NaN res = plot(df, target_col='y') assert len(res[1][0, 0].get_yticklabels()) == 3 assert res[1][0, 0].get_yticklabels()[2].get_text() == 'dabl_mi...' def test_label_truncation(): a = ('a_really_long_name_that_would_mess_up_the_layout_a_lot' '_by_just_being_very_long') b = ('the_target_that_has_an_equally_long_name_which_would_' 'mess_up_everything_as_well_but_in_different_places') df = pd.DataFrame({a: np.random.uniform(0, 1, 1000)}) df[b] = df[a] + np.random.uniform(0, 0.1, 1000) res = plot_regression_continuous(df, target_col=b) assert res[0, 0].get_ylabel() == 'the_target_that_h...' assert res[0, 0].get_xlabel() == 'a_really_long_nam...' set_config(truncate_labels=False) res = plot_regression_continuous(df, target_col=b) assert res[0, 0].get_ylabel() == b assert res[0, 0].get_xlabel() == a set_config(truncate_labels=True)
tests/dummy_repo/tvm/python/tvm/api.py
csullivan/ffi-navigator
148
3192
from ._ffi.base import string_types from ._ffi.object import register_object, Object from ._ffi.node import register_node, NodeBase from ._ffi.node import convert_to_node as _convert_to_node from ._ffi.node_generic import _scalar_type_inference from ._ffi.function import Function from ._ffi.function import _init_api, register_func, get_global_func, extract_ext_funcs from ._ffi.function import convert_to_tvm_func as _convert_tvm_func from ._ffi.runtime_ctypes import TVMType from . import _api_internal from . import make as _make from . import expr as _expr from . import tensor as _tensor from . import schedule as _schedule from . import container as _container from . import tag as _tag int8 = "int8" int32 = "int32" float32 = "float32" handle = "handle" def min_value(dtype): return _api_internal._min_value(dtype)
torchattacks/attacks/multiattack.py
Harry24k/adversarial-attacks-pytorch
782
3193
<filename>torchattacks/attacks/multiattack.py import copy import torch from ..attack import Attack class MultiAttack(Attack): r""" MultiAttack is a class to attack a model with various attacks agains same images and labels. Arguments: model (nn.Module): model to attack. attacks (list): list of attacks. Examples:: >>> atk1 = torchattacks.PGD(model, eps=8/255, alpha=2/255, iters=40, random_start=True) >>> atk2 = torchattacks.PGD(model, eps=8/255, alpha=2/255, iters=40, random_start=True) >>> atk = torchattacks.MultiAttack([atk1, atk2]) >>> adv_images = attack(images, labels) """ def __init__(self, attacks, verbose=False): # Check validity ids = [] for attack in attacks: ids.append(id(attack.model)) if len(set(ids)) != 1: raise ValueError("At least one of attacks is referencing a different model.") super().__init__("MultiAttack", attack.model) self.attacks = attacks self.verbose = verbose self._accumulate_multi_atk_records = False self._multi_atk_records = [0.0] self._supported_mode = ['default'] def forward(self, images, labels): r""" Overridden. """ batch_size = images.shape[0] fails = torch.arange(batch_size).to(self.device) final_images = images.clone().detach().to(self.device) labels = labels.clone().detach().to(self.device) multi_atk_records = [batch_size] for _, attack in enumerate(self.attacks): adv_images = attack(images[fails], labels[fails]) outputs = self.model(adv_images) _, pre = torch.max(outputs.data, 1) corrects = (pre == labels[fails]) wrongs = ~corrects succeeds = torch.masked_select(fails, wrongs) succeeds_of_fails = torch.masked_select(torch.arange(fails.shape[0]).to(self.device), wrongs) final_images[succeeds] = adv_images[succeeds_of_fails] fails = torch.masked_select(fails, corrects) multi_atk_records.append(len(fails)) if len(fails) == 0: break if self.verbose: print(self._return_sr_record(multi_atk_records)) if self._accumulate_multi_atk_records: self._update_multi_atk_records(multi_atk_records) return final_images def _clear_multi_atk_records(self): self._multi_atk_records = [0.0] def _covert_to_success_rates(self, multi_atk_records): sr = [((1-multi_atk_records[i]/multi_atk_records[0])*100) for i in range(1, len(multi_atk_records))] return sr def _return_sr_record(self, multi_atk_records): sr = self._covert_to_success_rates(multi_atk_records) return "Attack success rate: "+" | ".join(["%2.2f %%"%item for item in sr]) def _update_multi_atk_records(self, multi_atk_records): for i, item in enumerate(multi_atk_records): self._multi_atk_records[i] += item def save(self, data_loader, save_path=None, verbose=True, return_verbose=False): r""" Overridden. """ self._clear_multi_atk_records() verbose = self.verbose self.verbose = False self._accumulate_multi_atk_records = True for i, attack in enumerate(self.attacks): self._multi_atk_records.append(0.0) rob_acc, l2, elapsed_time = super().save(data_loader, save_path, verbose, return_verbose) sr = self._covert_to_success_rates(self._multi_atk_records) self._clear_multi_atk_records() self._accumulate_multi_atk_records = False self.verbose = verbose if return_verbose: return rob_acc, sr, l2, elapsed_time def _save_print(self, progress, rob_acc, l2, elapsed_time, end): r""" Overridden. """ print("- Save progress: %2.2f %% / Robust accuracy: %2.2f %%"%(progress, rob_acc)+\ " / "+self._return_sr_record(self._multi_atk_records)+\ ' / L2: %1.5f (%2.3f it/s) \t'%(l2, elapsed_time), end=end)
models/LRF_COCO_300.py
vaesl/LRF-Net
180
3205
import torch import torch.nn as nn import os import torch.nn.functional as F class LDS(nn.Module): def __init__(self,): super(LDS, self).__init__() self.pool1 = nn.MaxPool2d(kernel_size=(2, 2), stride=2, padding=0) self.pool2 = nn.MaxPool2d(kernel_size=(2, 2), stride=2, padding=0) self.pool3 = nn.MaxPool2d(kernel_size=(2, 2), stride=2, padding=1) def forward(self, x): x_pool1 = self.pool1(x) x_pool2 = self.pool2(x_pool1) x_pool3 = self.pool3(x_pool2) return x_pool3 class ConvBlock(nn.Module): def __init__(self, in_planes, out_planes, kernel_size, stride=1, padding=0, dilation=1, groups=1, relu=True, bn=True, bias=False): super(ConvBlock, self).__init__() self.out_channels = out_planes self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias) self.bn = nn.BatchNorm2d(out_planes, eps=1e-5, momentum=0.01, affine=True) if bn else None self.relu = nn.ReLU(inplace=False) if relu else None def forward(self, x): x = self.conv(x) if self.bn is not None: x = self.bn(x) if self.relu is not None: x = self.relu(x) return x class LSN_init(nn.Module): def __init__(self, in_planes, out_planes, stride=1): super(LSN_init, self).__init__() self.out_channels = out_planes inter_planes = out_planes // 4 self.part_a = nn.Sequential( ConvBlock(in_planes, inter_planes, kernel_size=(3, 3), stride=stride, padding=1), ConvBlock(inter_planes, inter_planes, kernel_size=1, stride=1), ConvBlock(inter_planes, inter_planes, kernel_size=(3, 3), stride=stride, padding=1) ) self.part_b = ConvBlock(inter_planes, out_planes, kernel_size=1, stride=1, relu=False) def forward(self, x): out1 = self.part_a(x) out2 = self.part_b(out1) return out1, out2 class LSN_later(nn.Module): def __init__(self, in_planes, out_planes, stride=1): super(LSN_later, self).__init__() self.out_channels = out_planes inter_planes = out_planes // 4 self.part_a = ConvBlock(in_planes, inter_planes, kernel_size=(3, 3), stride=stride, padding=1) self.part_b = ConvBlock(inter_planes, out_planes, kernel_size=1, stride=1, relu=False) def forward(self, x): out1 = self.part_a(x) out2 = self.part_b(out1) return out1, out2 class IBN(nn.Module): def __init__(self, out_planes, bn=True): super(IBN, self).__init__() self.out_channels = out_planes self.bn = nn.BatchNorm2d(out_planes, eps=1e-5, momentum=0.01, affine=True) if bn else None def forward(self, x): if self.bn is not None: x = self.bn(x) return x class One_Three_Conv(nn.Module): def __init__(self, in_planes, out_planes, stride=1): super(One_Three_Conv, self).__init__() self.out_channels = out_planes inter_planes = in_planes // 4 self.single_branch = nn.Sequential( ConvBlock(in_planes, inter_planes, kernel_size=1, stride=1), ConvBlock(inter_planes, out_planes, kernel_size=(3, 3), stride=stride, padding=1, relu=False) ) def forward(self, x): out = self.single_branch(x) return out class Relu_Conv(nn.Module): def __init__(self, in_planes, out_planes, stride=1): super(Relu_Conv, self).__init__() self.out_channels = out_planes self.relu = nn.ReLU(inplace=False) self.single_branch = nn.Sequential( ConvBlock(in_planes, out_planes, kernel_size=(3, 3), stride=stride, padding=1) ) def forward(self, x): x = self.relu(x) out = self.single_branch(x) return out class Ds_Conv(nn.Module): def __init__(self, in_planes, out_planes, stride=1, padding=(1, 1)): super(Ds_Conv, self).__init__() self.out_channels = out_planes self.single_branch = nn.Sequential( ConvBlock(in_planes, out_planes, kernel_size=(3, 3), stride=stride, padding=padding, relu=False) ) def forward(self, x): out = self.single_branch(x) return out class LRFNet(nn.Module): """LRFNet for object detection The network is based on the SSD architecture. Each multibox layer branches into 1) conv2d for class conf scores 2) conv2d for localization predictions 3) associated priorbox layer to produce default bounding boxes specific to the layer's feature map size. Args: phase: (string) Can be "test" or "train" base: VGG16 layers for input, size of either 300 or 512 extras: extra layers that feed to multibox loc and conf layers head: "multibox head" consists of loc and conf conv layers """ def __init__(self, phase, size, base, extras, head, num_classes): super(LRFNet, self).__init__() self.phase = phase self.num_classes = num_classes self.size = size # vgg network self.base = nn.ModuleList(base) self.lds = LDS() # convs for merging the lsn and ssd features self.Norm1 = Relu_Conv(512, 512, stride=1) self.Norm2 = Relu_Conv(1024, 1024, stride=1) self.Norm3 = Relu_Conv(512, 512, stride=1) self.Norm4 = Relu_Conv(256, 256, stride=1) # convs for generate the lsn features self.icn1 = LSN_init(3, 512, stride=1) self.icn2 = LSN_later(128, 1024, stride=2) self.icn3 = LSN_later(256, 512, stride=2) # convs with s=2 to downsample the features self.dsc1 = Ds_Conv(512, 1024, stride=2, padding=(1, 1)) self.dsc2 = Ds_Conv(1024, 512, stride=2, padding=(1, 1)) self.dsc3 = Ds_Conv(512, 256, stride=2, padding=(1, 1)) # convs to reduce the feature dimensions of current level self.agent1 = ConvBlock(512, 256, kernel_size=1, stride=1) self.agent2 = ConvBlock(1024, 512, kernel_size=1, stride=1) self.agent3 = ConvBlock(512, 256, kernel_size=1, stride=1) # convs to reduce the feature dimensions of other levels self.proj1 = ConvBlock(1024, 128, kernel_size=1, stride=1) self.proj2 = ConvBlock(512, 128, kernel_size=1, stride=1) self.proj3 = ConvBlock(256, 128, kernel_size=1, stride=1) # convs to reduce the feature dimensions of other levels self.convert1 = ConvBlock(384, 256, kernel_size=1) self.convert2 = ConvBlock(256, 512, kernel_size=1) self.convert3 = ConvBlock(128, 256, kernel_size=1) # convs to merge the features of the current and higher level features self.merge1 = ConvBlock(512, 512, kernel_size=3, stride=1, padding=1) self.merge2 = ConvBlock(1024, 1024, kernel_size=3, stride=1, padding=1) self.merge3 = ConvBlock(512, 512, kernel_size=3, stride=1, padding=1) self.ibn1 = IBN(512, bn=True) self.ibn2 = IBN(1024, bn=True) self.relu = nn.ReLU(inplace=False) self.extras = nn.ModuleList(extras) self.loc = nn.ModuleList(head[0]) self.conf = nn.ModuleList(head[1]) if self.phase == 'test': self.softmax = nn.Softmax() def forward(self, x): """Applies network layers and ops on input image(s) x. Args: x: input image or batch of images. Shape: [batch,3,300,300]. Return: Depending on phase: test: list of concat outputs from: 1: softmax layers, Shape: [batch*num_priors,num_classes] 2: localization layers, Shape: [batch,num_priors*4] 3: priorbox layers, Shape: [2,num_priors*4] train: list of concat outputs from: 1: confidence layers, Shape: [batch*num_priors,num_classes] 2: localization layers, Shape: [batch,num_priors*4] 3: priorbox layers, Shape: [2,num_priors*4] """ sources = list() loc = list() conf = list() new_sources = list() # apply lds to the initial image x_pool = self.lds(x) # apply vgg up to conv4_3 for k in range(22): x = self.base[k](x) conv4_3_bn = self.ibn1(x) x_pool1_skip, x_pool1_icn = self.icn1(x_pool) s = self.Norm1(conv4_3_bn * x_pool1_icn) # apply vgg up to fc7 for k in range(22, 34): x = self.base[k](x) conv7_bn = self.ibn2(x) x_pool2_skip, x_pool2_icn = self.icn2(x_pool1_skip) p = self.Norm2(self.dsc1(s) + conv7_bn * x_pool2_icn) x = self.base[34](x) # apply extra layers and cache source layer outputs for k, v in enumerate(self.extras): x = v(x) if k == 0: x_pool3_skip, x_pool3_icn = self.icn3(x_pool2_skip) w = self.Norm3(self.dsc2(p) + x * x_pool3_icn) elif k == 2: q = self.Norm4(self.dsc3(w) + x) sources.append(q) elif k == 5 or k == 7: sources.append(x) else: pass # project the forward features into lower dimension. tmp1 = self.proj1(p) tmp2 = self.proj2(w) tmp3 = self.proj3(q) # The conv4_3 level proj1 = F.upsample(tmp1, size=(38, 38), mode='bilinear') proj2 = F.upsample(tmp2, size=(38, 38), mode='bilinear') proj3 = F.upsample(tmp3, size=(38, 38), mode='bilinear') proj = torch.cat([proj1, proj2, proj3], dim=1) agent1 = self.agent1(s) convert1 = self.convert1(proj) pred1 = torch.cat([agent1, convert1], dim=1) pred1 = self.merge1(pred1) new_sources.append(pred1) # The fc_7 level proj2 = F.upsample(tmp2, size=(19, 19), mode='bilinear') proj3 = F.upsample(tmp3, size=(19, 19), mode='bilinear') proj = torch.cat([proj2, proj3], dim=1) agent2 = self.agent2(p) convert2 = self.convert2(proj) pred2 = torch.cat([agent2, convert2], dim=1) pred2 = self.merge2(pred2) new_sources.append(pred2) # The conv8 level proj3 = F.upsample(tmp3, size=(10, 10), mode='bilinear') proj = proj3 agent3 = self.agent3(w) convert3 = self.convert3(proj) pred3 = torch.cat([agent3, convert3], dim=1) pred3 = self.merge3(pred3) new_sources.append(pred3) for prediction in sources: new_sources.append(prediction) # apply multibox head to source layers for (x, l, c) in zip(new_sources, self.loc, self.conf): loc.append(l(x).permute(0, 2, 3, 1).contiguous()) conf.append(c(x).permute(0, 2, 3, 1).contiguous()) loc = torch.cat([o.view(o.size(0), -1) for o in loc], 1) conf = torch.cat([o.view(o.size(0), -1) for o in conf], 1) if self.phase == "test": output = ( loc.view(loc.size(0), -1, 4), # loc preds self.softmax(conf.view(-1, self.num_classes)), # conf preds ) else: output = ( loc.view(loc.size(0), -1, 4), conf.view(conf.size(0), -1, self.num_classes), ) return output def load_weights(self, base_file): other, ext = os.path.splitext(base_file) if ext == '.pkl' or '.pth': print('Loading weights into state dict...') self.load_state_dict(torch.load(base_file)) print('Finished!') else: print('Sorry only .pth and .pkl files supported.') def vgg(cfg, i, batch_norm=False): layers = [] in_channels = i for v in cfg: if v == 'M': layers += [nn.MaxPool2d(kernel_size=2, stride=2)] elif v == 'C': layers += [nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True)] else: conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1) if batch_norm: layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=False)] else: layers += [conv2d, nn.ReLU(inplace=False)] in_channels = v pool5 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1) conv6 = nn.Conv2d(512, 1024, kernel_size=3, padding=6, dilation=6) conv7 = nn.Conv2d(1024, 1024, kernel_size=1) layers += [pool5, conv6, nn.ReLU(inplace=False), conv7, nn.ReLU(inplace=False)] return layers base = { '300': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'C', 512, 512, 512, 'M', 512, 512, 512]} def add_extras(size, cfg, i, batch_norm=False): # Extra layers added to VGG for feature scaling layers = [] in_channels = i flag = False for k, v in enumerate(cfg): if in_channels != 'S': if v == 'S': if in_channels == 256 and size == 512: layers += [One_Three_Conv(in_channels, cfg[k+1], stride=2), nn.ReLU(inplace=False)] else: layers += [One_Three_Conv(in_channels, cfg[k+1], stride=2), nn.ReLU(inplace=False)] in_channels = v layers += [ConvBlock(256, 128, kernel_size=1,stride=1)] layers += [ConvBlock(128, 256, kernel_size=3,stride=1)] layers += [ConvBlock(256, 128, kernel_size=1,stride=1)] layers += [ConvBlock(128, 256, kernel_size=3,stride=1)] return layers extras = { '300': [1024, 'S', 512, 'S', 256]} def multibox(size, vgg, extra_layers, cfg, num_classes): loc_layers = [] conf_layers = [] vgg_source = [1, -2] for k, v in enumerate(vgg_source): if k == 0: loc_layers += [nn.Conv2d(512, cfg[k] * 4, kernel_size=3, padding=1)] conf_layers +=[nn.Conv2d(512, cfg[k] * num_classes, kernel_size=3, padding=1)] else: loc_layers += [nn.Conv2d(vgg[v].out_channels, cfg[k] * 4, kernel_size=3, padding=1)] conf_layers += [nn.Conv2d(vgg[v].out_channels, cfg[k] * num_classes, kernel_size=3, padding=1)] i = 2 indicator = 3 for k, v in enumerate(extra_layers): if (k < indicator+1 and k % 2 == 0) or (k > indicator+1 and k % 2 != 0): loc_layers += [nn.Conv2d(v.out_channels, cfg[i] * 4, kernel_size=3, padding=1)] conf_layers += [nn.Conv2d(v.out_channels, cfg[i] * num_classes, kernel_size=3, padding=1)] i += 1 return vgg, extra_layers, (loc_layers, conf_layers) mbox = { '300': [6, 6, 6, 6, 4, 4]} def build_net(phase, size=300, num_classes=81): if size != 300: print("Error: The input image size is not supported!") return return LRFNet(phase, size, *multibox(size, vgg(base[str(size)], 3), add_extras(size, extras[str(size)], 1024), mbox[str(size)], num_classes), num_classes)
notification/app/node_modules/hiredis/binding.gyp
c2gconsulting/bulkpay
208
3231
{ 'targets': [ { 'target_name': 'hiredis', 'sources': [ 'src/hiredis.cc' , 'src/reader.cc' ], 'include_dirs': ["<!(node -e \"require('nan')\")"], 'dependencies': [ 'deps/hiredis.gyp:hiredis-c' ], 'defines': [ '_GNU_SOURCE' ], 'cflags': [ '-Wall', '-O3' ] } ] }
recipes/cxxopts/all/conanfile.py
dvirtz/conan-center-index
562
3234
import os from conans import ConanFile, tools from conans.errors import ConanInvalidConfiguration class CxxOptsConan(ConanFile): name = "cxxopts" homepage = "https://github.com/jarro2783/cxxopts" url = "https://github.com/conan-io/conan-center-index" description = "Lightweight C++ option parser library, supporting the standard GNU style syntax for options." license = "MIT" topics = ("conan", "option-parser", "positional-arguments ", "header-only") settings = "compiler" options = { "unicode": [True, False] } default_options = { "unicode": False } no_copy_source = True @property def _source_subfolder(self): return "source_subfolder" @property def _minimum_cpp_standard(self): return 11 @property def _minimum_compilers_version(self): return { "Visual Studio": "14", "gcc": "5", "clang": "3.9", "apple-clang": "8", } def configure(self): if self.settings.compiler.get_safe("cppstd"): tools.check_min_cppstd(self, self._minimum_cpp_standard) min_version = self._minimum_compilers_version.get(str(self.settings.compiler)) if not min_version: self.output.warn("{} recipe lacks information about the {} compiler support.".format( self.name, self.settings.compiler)) else: if tools.Version(self.settings.compiler.version) < min_version: raise ConanInvalidConfiguration("{} requires C++{} support. The current compiler {} {} does not support it.".format( self.name, self._minimum_cpp_standard, self.settings.compiler, self.settings.compiler.version)) def requirements(self): if self.options.unicode: self.requires("icu/64.2") def source(self): tools.get(**self.conan_data["sources"][self.version]) os.rename("{}-{}".format(self.name, self.version), self._source_subfolder) def package(self): self.copy("LICENSE", dst="licenses", src=self._source_subfolder) self.copy("{}.hpp".format(self.name), dst="include", src=os.path.join(self._source_subfolder, "include")) def package_id(self): self.info.header_only() def package_info(self): if self.options.unicode: self.cpp_info.defines = ["CXXOPTS_USE_UNICODE"]
mmdet/ops/orn/functions/__init__.py
JarvisUSTC/DARDet
274
3253
<filename>mmdet/ops/orn/functions/__init__.py # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import torch from .active_rotating_filter import active_rotating_filter from .active_rotating_filter import ActiveRotatingFilter from .rotation_invariant_encoding import rotation_invariant_encoding from .rotation_invariant_encoding import RotationInvariantEncoding from .rotation_invariant_pooling import RotationInvariantPooling __all__ = ['ActiveRotatingFilter', 'active_rotating_filter', 'rotation_invariant_encoding', 'RotationInvariantEncoding', 'RotationInvariantPooling']
setup.py
Liang813/einops
4,738
3262
<gh_stars>1000+ __author__ = '<NAME>' from setuptools import setup setup( name="einops", version='0.3.2', description="A new flavour of deep learning operations", long_description=open('README.md', encoding='utf-8').read(), long_description_content_type='text/markdown', url='https://github.com/arogozhnikov/einops', author='<NAME>', packages=['einops', 'einops.layers'], classifiers=[ 'Intended Audience :: Science/Research', 'Programming Language :: Python :: 3 ', ], keywords='deep learning, neural networks, tensor manipulation, machine learning, ' 'scientific computations, einops', install_requires=[ # no run-time or installation-time dependencies ], )
src/finn/custom_op/fpgadataflow/streamingfifo.py
AlexMontgomerie/finn
283
3309
# Copyright (c) 2020, Xilinx # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of FINN nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import os import numpy as np from shutil import copy import subprocess import math import warnings from finn.custom_op.fpgadataflow.hlscustomop import HLSCustomOp from finn.core.datatype import DataType from onnx import TensorProto, helper from finn.util.data_packing import npy_to_rtlsim_input, rtlsim_output_to_npy from . import templates class StreamingFIFO(HLSCustomOp): def __init__(self, onnx_node): super().__init__(onnx_node) self.strm_fifo_wrapper = templates.strm_fifo_wrapper def get_nodeattr_types(self): my_attrs = { # FIFO depth "depth": ("i", True, 0), # folded shape of input/output "folded_shape": ("ints", True, []), # FINN DataTypes for inputs/outputs "dataType": ("s", True, ""), # Toggle between hls or IPI implementation # rtl - use the hls generated IP during stitching # vivado - use the AXI Infrastructure FIFO "impl_style": ("s", False, "rtl", {"rtl", "vivado"}), # FPGA resource type for FIFOs when impl_style is vivado # auto -- let Vivado decide # block -- use BRAM # distributed -- use LUTRAM # ultra -- use URAM (on UltraScale+) "ram_style": ( "s", False, "auto", {"auto", "block", "distributed", "ultra"}, ), } my_attrs.update(super().get_nodeattr_types()) return my_attrs def make_shape_compatible_op(self, model): exp_ishape = self.get_normal_input_shape() oshape = self.get_normal_output_shape() ishape = tuple(model.get_tensor_shape(self.onnx_node.input[0])) assert ishape == tuple(exp_ishape), "Unexpect input shape for StreamingFIFO." # implement tensor with correct shape values = np.random.randn(*oshape).astype(np.float32) return helper.make_node( "Constant", inputs=[], outputs=[self.onnx_node.output[0]], value=helper.make_tensor( name="const_tensor", data_type=TensorProto.FLOAT, dims=values.shape, vals=values.flatten().astype(float), ), ) def infer_node_datatype(self, model): node = self.onnx_node idt = model.get_tensor_datatype(node.input[0]) if idt != self.get_input_datatype(): warn_str = "inputDataType changing for %s: %s -> %s " % ( node.name, str(self.get_input_datatype()), str(idt), ) warnings.warn(warn_str) self.set_nodeattr("dataType", idt.name) # data type stays the same model.set_tensor_datatype(node.output[0], idt) def verify_node(self): pass def get_verilog_top_module_name(self): "Return the Verilog top module name for this node." node = self.onnx_node prefixed_top_name = "%s" % (node.name) return prefixed_top_name def code_generation_ipgen(self, model, fpgapart, clk): code_gen_dir = self.get_nodeattr("code_gen_dir_ipgen") verilog_dir = "{}/project_{}/sol1/impl/verilog".format( code_gen_dir, self.onnx_node.name ) os.makedirs(verilog_dir) # copy Q_srl.v from finn-rtllib to verilog directory memstream_dir = "/workspace/finn/finn-rtllib/memstream/hdl/" Q_file = os.path.join(memstream_dir, "Q_srl.v") copy(Q_file, verilog_dir) # empty code gen dictionary for new entries self.code_gen_dict.clear() self.code_gen_dict["$TOPNAME$"] = ["{}".format(self.onnx_node.name)] self.code_gen_dict["$LAYER_NAME$"] = [ "{}_{}".format(self.onnx_node.name, self.onnx_node.name) ] # make instream width a multiple of 8 for axi interface in_width = self.get_instream_width_padded() count_width = int(self.get_nodeattr("depth") - 1).bit_length() self.code_gen_dict["$COUNT_RANGE$"] = ["[{}:0]".format(count_width - 1)] self.code_gen_dict["$IN_RANGE$"] = ["[{}:0]".format(in_width - 1)] self.code_gen_dict["$OUT_RANGE$"] = ["[{}:0]".format(in_width - 1)] self.code_gen_dict["$WIDTH$"] = [str(in_width)] self.code_gen_dict["$DEPTH$"] = [str(self.get_nodeattr("depth"))] template = self.strm_fifo_wrapper for key in self.code_gen_dict: # transform list into long string separated by '\n' code_gen_line = "\n".join(self.code_gen_dict[key]) template = template.replace(key, code_gen_line) f = open(os.path.join(verilog_dir, "{}.v".format(self.onnx_node.name)), "w") f.write(template) f.close() self.code_gen_dict.clear() def ipgen_singlenode_code(self): code_gen_dir = self.get_nodeattr("code_gen_dir_ipgen") verilog_dir = "{}/project_{}/sol1/impl/verilog".format( code_gen_dir, self.onnx_node.name ) # prepare the IP packaging tcl template template = templates.ip_package_tcl self.code_gen_dict.clear() self.code_gen_dict["$TOPNAME$"] = ["{}".format(self.onnx_node.name)] # note: setting the root dir as absolute can cause path problems # the ipgen script will be invoked from the sources dir so root_dir=. is OK self.code_gen_dict["$VERILOG_DIR$"] = ["."] for key in self.code_gen_dict: # transform list into long string separated by '\n' code_gen_line = "\n".join(self.code_gen_dict[key]) template = template.replace(key, code_gen_line) f = open(os.path.join(verilog_dir, "package_ip.tcl"), "w") f.write(template) f.close() # create a shell script and call Vivado to invoke the IP pkg script make_project_sh = verilog_dir + "/make_ip.sh" working_dir = os.environ["PWD"] with open(make_project_sh, "w") as f: f.write("#!/bin/bash \n") f.write("cd {}\n".format(verilog_dir)) f.write("vivado -mode batch -source package_ip.tcl\n") f.write("cd {}\n".format(working_dir)) bash_command = ["bash", make_project_sh] process_compile = subprocess.Popen(bash_command, stdout=subprocess.PIPE) process_compile.communicate() # set ipgen_path and ip_path to point to the new packaged IP self.set_nodeattr("ipgen_path", verilog_dir) self.set_nodeattr("ip_path", verilog_dir) vlnv = "xilinx.com:hls:%s:1.0" % (self.onnx_node.name) self.set_nodeattr("ip_vlnv", vlnv) self.code_gen_dict.clear() def get_normal_input_shape(self): depth = self.get_nodeattr("depth") # depth has to be between 2 and 256 with the current # StreamingFIFO implementation assert depth >= 2, """Depth is too low""" if depth > 256 and self.get_nodeattr("impl_style") == "rtl": warnings.warn( "Depth is high, set between 2 and 256 for efficient SRL implementation" ) # derive normal shape from folded shape # StreamingFIFOs are inserted in between fpgadataflow nodes # the folded shape could be for example (1, nf, pe) # with nf (neuron folding): mh // pe # the normal input shape is in this case (1, mh) # so to achieve this the two inner dimensions are multiplied # and together with all previous dimensions # this gives the normal input shape folded_shape = self.get_nodeattr("folded_shape") # extract inner dimension inner_dim = folded_shape[-1] # multiply with the next inner dimension folding_factor = folded_shape[-2] * inner_dim normal_ishape = [] # create the normal_ishape for i in range(len(folded_shape) - 2): normal_ishape.append(folded_shape[i]) normal_ishape.append(folding_factor) return normal_ishape def get_normal_output_shape(self): return self.get_normal_input_shape() def get_folded_input_shape(self): return self.get_nodeattr("folded_shape") def get_folded_output_shape(self): return self.get_nodeattr("folded_shape") def get_instream_width(self): dtype = DataType[self.get_nodeattr("dataType")] folded_shape = self.get_nodeattr("folded_shape") in_width = folded_shape[-1] * dtype.bitwidth() return in_width def get_outstream_width(self): dtype = DataType[self.get_nodeattr("dataType")] folded_shape = self.get_nodeattr("folded_shape") in_width = folded_shape[-1] * dtype.bitwidth() return in_width def execute_node(self, context, graph): mode = self.get_nodeattr("exec_mode") node = self.onnx_node inp = context[node.input[0]] exp_shape = self.get_normal_input_shape() if mode == "cppsim": output = inp output = np.asarray([output], dtype=np.float32).reshape(*exp_shape) context[node.output[0]] = output elif mode == "rtlsim": code_gen_dir = self.get_nodeattr("code_gen_dir_ipgen") # create a npy file for the input of the node assert ( str(inp.dtype) == "float32" ), """Input datatype is not float32 as expected.""" expected_inp_shape = self.get_folded_input_shape() reshaped_input = inp.reshape(expected_inp_shape) if DataType[self.get_nodeattr("dataType")] == DataType.BIPOLAR: # store bipolar activations as binary reshaped_input = (reshaped_input + 1) / 2 export_idt = DataType.BINARY else: export_idt = DataType[self.get_nodeattr("dataType")] # make copy before saving the array reshaped_input = reshaped_input.copy() np.save(os.path.join(code_gen_dir, "input_0.npy"), reshaped_input) sim = self.get_rtlsim() nbits = self.get_instream_width() inp = npy_to_rtlsim_input( "{}/input_0.npy".format(code_gen_dir), export_idt, nbits ) super().reset_rtlsim(sim) super().toggle_clk(sim) output = self.rtlsim(sim, inp) odt = DataType[self.get_nodeattr("dataType")] target_bits = odt.bitwidth() packed_bits = self.get_outstream_width() out_npy_path = "{}/output.npy".format(code_gen_dir) out_shape = self.get_folded_output_shape() rtlsim_output_to_npy( output, out_npy_path, odt, out_shape, packed_bits, target_bits ) # load and reshape output output = np.load(out_npy_path) oshape = self.get_normal_output_shape() output = np.asarray([output], dtype=np.float32).reshape(*oshape) context[node.output[0]] = output else: raise Exception( """Invalid value for attribute exec_mode! Is currently set to: {} has to be set to one of the following value ("cppsim", "rtlsim")""".format( mode ) ) def get_number_output_values(self): folded_oshape = self.get_folded_output_shape() return np.prod(folded_oshape[:-1]) def global_includes(self): pass def defines(self, var): pass def read_npy_data(self): pass def strm_decl(self): pass def docompute(self): pass def dataoutstrm(self): pass def save_as_npy(self): pass def blackboxfunction(self): pass def pragmas(self): pass def code_generation_ipi(self): impl_style = self.get_nodeattr("impl_style") if impl_style == "rtl": return super().code_generation_ipi() elif impl_style == "vivado": cmd = [] node_name = self.onnx_node.name depth = self.get_nodeattr("depth") ram_style = self.get_nodeattr("ram_style") # create a hierarchy for this layer, with the same port names clk_name = self.get_verilog_top_module_intf_names()["clk"][0] rst_name = self.get_verilog_top_module_intf_names()["rst"][0] dout_name = self.get_verilog_top_module_intf_names()["m_axis"][0][0] din_name = self.get_verilog_top_module_intf_names()["s_axis"][0][0] cmd.append("create_bd_cell -type hier %s" % node_name) cmd.append("create_bd_pin -dir I -type clk /%s/%s" % (node_name, clk_name)) cmd.append("create_bd_pin -dir I -type rst /%s/%s" % (node_name, rst_name)) cmd.append( "create_bd_intf_pin -mode Master " "-vlnv xilinx.com:interface:axis_rtl:1.0 /%s/%s" % (node_name, dout_name) ) cmd.append( "create_bd_intf_pin -mode Slave " "-vlnv xilinx.com:interface:axis_rtl:1.0 /%s/%s" % (node_name, din_name) ) # instantiate and configure DWC cmd.append( "create_bd_cell -type ip " "-vlnv xilinx.com:ip:axis_data_fifo:2.0 /%s/fifo" % node_name ) cmd.append( "set_property -dict [list CONFIG.FIFO_DEPTH {%d}] " "[get_bd_cells /%s/fifo]" % (depth, node_name) ) cmd.append( "set_property -dict [list CONFIG.FIFO_MEMORY_TYPE {%s}] " "[get_bd_cells /%s/fifo]" % (ram_style, node_name) ) cmd.append( "set_property -dict [list CONFIG.TDATA_NUM_BYTES {%d}] " "[get_bd_cells /%s/fifo]" % (np.ceil(self.get_outstream_width() / 8), node_name) ) cmd.append( "connect_bd_intf_net [get_bd_intf_pins %s/fifo/M_AXIS] " "[get_bd_intf_pins %s/%s]" % (node_name, node_name, dout_name) ) cmd.append( "connect_bd_intf_net [get_bd_intf_pins %s/fifo/S_AXIS] " "[get_bd_intf_pins %s/%s]" % (node_name, node_name, din_name) ) cmd.append( "connect_bd_net [get_bd_pins %s/%s] " "[get_bd_pins %s/fifo/s_axis_aresetn]" % (node_name, rst_name, node_name) ) cmd.append( "connect_bd_net [get_bd_pins %s/%s] " "[get_bd_pins %s/fifo/s_axis_aclk]" % (node_name, clk_name, node_name) ) return cmd else: raise Exception( "FIFO implementation style %s not supported, please use rtl or vivado" % impl_style ) def bram_estimation(self): """Calculates resource estimation for BRAM""" impl = self.get_nodeattr("impl_style") ram_type = self.get_nodeattr("ram_style") depth = self.get_nodeattr("depth") W = self.get_instream_width() if impl == "rtl" or (impl == "vivado" and ram_type != "block"): # Non-BRAM based implementation return 0 if W == 1: return math.ceil(depth / 16384) elif W == 2: return math.ceil(depth / 8192) elif W <= 4: return (math.ceil(depth / 4096)) * (math.ceil(W / 4)) elif W <= 9: return (math.ceil(depth / 2048)) * (math.ceil(W / 9)) elif W <= 18 or depth > 512: return (math.ceil(depth / 1024)) * (math.ceil(W / 18)) else: return (math.ceil(depth / 512)) * (math.ceil(W / 36)) def uram_estimation(self): """Calculates resource estimation for URAM""" impl = self.get_nodeattr("impl_style") ram_type = self.get_nodeattr("ram_style") depth = self.get_nodeattr("depth") W = self.get_instream_width() if impl == "rtl" or (impl == "vivado" and ram_type != "ultra"): # Non-BRAM based implementation return 0 else: return (math.ceil(depth / 4096)) * (math.ceil(W / 72)) def bram_efficiency_estimation(self): depth = self.get_nodeattr("depth") W = self.get_instream_width() bram16_est = self.bram_estimation() if bram16_est == 0: return 1 wbits = W * depth bram16_est_capacity = bram16_est * 36 * 512 return wbits / bram16_est_capacity def lut_estimation(self): """Calculates resource estimations for LUTs""" impl = self.get_nodeattr("impl_style") ram_type = self.get_nodeattr("ram_style") depth = self.get_nodeattr("depth") W = self.get_instream_width() address_luts = 2 * math.ceil(math.log(depth, 2)) if impl == "rtl" or (impl == "vivado" and ram_type == "distributed"): ram_luts = (math.ceil(depth / 32)) * (math.ceil(W / 2)) else: ram_luts = 0 return int(address_luts + ram_luts) def prepare_rtlsim(self): assert self.get_nodeattr("impl_style") != "vivado", ( "StreamingFIFO impl_style " "cannot be vivado for rtlsim. Only impl_style=rtl supported." ) super().prepare_rtlsim()
obswebsocket/requests.py
PanBartosz/obs-websocket-py
123
3320
<filename>obswebsocket/requests.py<gh_stars>100-1000 #!/usr/bin/env python # -*- coding: utf-8 -*- # THIS FILE WAS GENERATED BY generate_classes.py - DO NOT EDIT # # (Generated on 2020-12-20 18:26:33.661372) # from .base_classes import Baserequests class GetVersion(Baserequests): """Returns the latest version of the plugin and the API. :Returns: *version* type: double OBSRemote compatible API version. Fixed to 1.1 for retrocompatibility. *obs_websocket_version* type: String obs-websocket plugin version. *obs_studio_version* type: String OBS Studio program version. *available_requests* type: String List of available request types, formatted as a comma-separated list string (e.g. : "Method1,Method2,Method3"). *supported_image_export_formats* type: String List of supported formats for features that use image export (like the TakeSourceScreenshot request type) formatted as a comma-separated list string """ def __init__(self): Baserequests.__init__(self) self.name = 'GetVersion' self.datain['version'] = None self.datain['obs-websocket-version'] = None self.datain['obs-studio-version'] = None self.datain['available-requests'] = None self.datain['supported-image-export-formats'] = None def getVersion(self): return self.datain['version'] def getObsWebsocketVersion(self): return self.datain['obs-websocket-version'] def getObsStudioVersion(self): return self.datain['obs-studio-version'] def getAvailableRequests(self): return self.datain['available-requests'] def getSupportedImageExportFormats(self): return self.datain['supported-image-export-formats'] class GetAuthRequired(Baserequests): """Tells the client if authentication is required. If so, returns authentication parameters `challenge` and `salt` (see "Authentication" for more information). :Returns: *authRequired* type: boolean Indicates whether authentication is required. *challenge* type: String (optional) *salt* type: String (optional) """ def __init__(self): Baserequests.__init__(self) self.name = 'GetAuthRequired' self.datain['authRequired'] = None self.datain['challenge'] = None self.datain['salt'] = None def getAuthRequired(self): return self.datain['authRequired'] def getChallenge(self): return self.datain['challenge'] def getSalt(self): return self.datain['salt'] class Authenticate(Baserequests): """Attempt to authenticate the client to the server. :Arguments: *auth* type: String Response to the auth challenge (see "Authentication" for more information). """ def __init__(self, auth): Baserequests.__init__(self) self.name = 'Authenticate' self.dataout['auth'] = auth class SetHeartbeat(Baserequests): """Enable/disable sending of the Heartbeat event :Arguments: *enable* type: boolean Starts/Stops emitting heartbeat messages """ def __init__(self, enable): Baserequests.__init__(self) self.name = 'SetHeartbeat' self.dataout['enable'] = enable class SetFilenameFormatting(Baserequests): """Set the filename formatting string :Arguments: *filename_formatting* type: String Filename formatting string to set. """ def __init__(self, filename_formatting): Baserequests.__init__(self) self.name = 'SetFilenameFormatting' self.dataout['filename-formatting'] = filename_formatting class GetFilenameFormatting(Baserequests): """Get the filename formatting string :Returns: *filename_formatting* type: String Current filename formatting string. """ def __init__(self): Baserequests.__init__(self) self.name = 'GetFilenameFormatting' self.datain['filename-formatting'] = None def getFilenameFormatting(self): return self.datain['filename-formatting'] class GetStats(Baserequests): """Get OBS stats (almost the same info as provided in OBS' stats window) :Returns: *stats* type: OBSStats [OBS stats](#obsstats) """ def __init__(self): Baserequests.__init__(self) self.name = 'GetStats' self.datain['stats'] = None def getStats(self): return self.datain['stats'] class BroadcastCustomMessage(Baserequests): """Broadcast custom message to all connected WebSocket clients :Arguments: *realm* type: String Identifier to be choosen by the client *data* type: Object User-defined data """ def __init__(self, realm, data): Baserequests.__init__(self) self.name = 'BroadcastCustomMessage' self.dataout['realm'] = realm self.dataout['data'] = data class GetVideoInfo(Baserequests): """Get basic OBS video information :Returns: *baseWidth* type: int Base (canvas) width *baseHeight* type: int Base (canvas) height *outputWidth* type: int Output width *outputHeight* type: int Output height *scaleType* type: String Scaling method used if output size differs from base size *fps* type: double Frames rendered per second *videoFormat* type: String Video color format *colorSpace* type: String Color space for YUV *colorRange* type: String Color range (full or partial) """ def __init__(self): Baserequests.__init__(self) self.name = 'GetVideoInfo' self.datain['baseWidth'] = None self.datain['baseHeight'] = None self.datain['outputWidth'] = None self.datain['outputHeight'] = None self.datain['scaleType'] = None self.datain['fps'] = None self.datain['videoFormat'] = None self.datain['colorSpace'] = None self.datain['colorRange'] = None def getBaseWidth(self): return self.datain['baseWidth'] def getBaseHeight(self): return self.datain['baseHeight'] def getOutputWidth(self): return self.datain['outputWidth'] def getOutputHeight(self): return self.datain['outputHeight'] def getScaleType(self): return self.datain['scaleType'] def getFps(self): return self.datain['fps'] def getVideoFormat(self): return self.datain['videoFormat'] def getColorSpace(self): return self.datain['colorSpace'] def getColorRange(self): return self.datain['colorRange'] class OpenProjector(Baserequests): """Open a projector window or create a projector on a monitor. Requires OBS v24.0.4 or newer. :Arguments: *type* type: String (Optional) Type of projector: `Preview` (default), `Source`, `Scene`, `StudioProgram`, or `Multiview` (case insensitive). *monitor* type: int (Optional) Monitor to open the projector on. If -1 or omitted, opens a window. *geometry* type: String (Optional) Size and position of the projector window (only if monitor is -1). Encoded in Base64 using [Qt's geometry encoding](https://doc.qt.io/qt-5/qwidget.html#saveGeometry). Corresponds to OBS's saved projectors. *name* type: String (Optional) Name of the source or scene to be displayed (ignored for other projector types). """ def __init__(self, type, monitor, geometry, name): Baserequests.__init__(self) self.name = 'OpenProjector' self.dataout['type'] = type self.dataout['monitor'] = monitor self.dataout['geometry'] = geometry self.dataout['name'] = name class TriggerHotkeyByName(Baserequests): """Executes hotkey routine, identified by hotkey unique name :Arguments: *hotkeyName* type: String Unique name of the hotkey, as defined when registering the hotkey (e.g. "ReplayBuffer.Save") """ def __init__(self, hotkeyName): Baserequests.__init__(self) self.name = 'TriggerHotkeyByName' self.dataout['hotkeyName'] = hotkeyName class TriggerHotkeyBySequence(Baserequests): """Executes hotkey routine, identified by bound combination of keys. A single key combination might trigger multiple hotkey routines depending on user settings :Arguments: *keyId* type: String Main key identifier (e.g. `OBS_KEY_A` for key "A"). Available identifiers [here](https://github.com/obsproject/obs-studio/blob/master/libobs/obs-hotkeys.h) *keyModifiers* type: Object (Optional) Optional key modifiers object. False entries can be ommitted *keyModifiers.shift* type: boolean Trigger Shift Key *keyModifiers.alt* type: boolean Trigger Alt Key *keyModifiers.control* type: boolean Trigger Control (Ctrl) Key *keyModifiers.command* type: boolean Trigger Command Key (Mac) """ def __init__(self, keyId, keyModifiers): Baserequests.__init__(self) self.name = 'TriggerHotkeyBySequence' self.dataout['keyId'] = keyId self.dataout['keyModifiers'] = keyModifiers class PlayPauseMedia(Baserequests): """Pause or play a media source. Supports ffmpeg and vlc media sources (as of OBS v25.0.8) :Arguments: *sourceName* type: String Source name. *playPause* type: boolean Whether to pause or play the source. `false` for play, `true` for pause. """ def __init__(self, sourceName, playPause): Baserequests.__init__(self) self.name = 'PlayPauseMedia' self.dataout['sourceName'] = sourceName self.dataout['playPause'] = playPause class RestartMedia(Baserequests): """Restart a media source. Supports ffmpeg and vlc media sources (as of OBS v25.0.8) :Arguments: *sourceName* type: String Source name. """ def __init__(self, sourceName): Baserequests.__init__(self) self.name = 'RestartMedia' self.dataout['sourceName'] = sourceName class StopMedia(Baserequests): """Stop a media source. Supports ffmpeg and vlc media sources (as of OBS v25.0.8) :Arguments: *sourceName* type: String Source name. """ def __init__(self, sourceName): Baserequests.__init__(self) self.name = 'StopMedia' self.dataout['sourceName'] = sourceName class NextMedia(Baserequests): """Skip to the next media item in the playlist. Supports only vlc media source (as of OBS v25.0.8) :Arguments: *sourceName* type: String Source name. """ def __init__(self, sourceName): Baserequests.__init__(self) self.name = 'NextMedia' self.dataout['sourceName'] = sourceName class PreviousMedia(Baserequests): """Go to the previous media item in the playlist. Supports only vlc media source (as of OBS v25.0.8) :Arguments: *sourceName* type: String Source name. """ def __init__(self, sourceName): Baserequests.__init__(self) self.name = 'PreviousMedia' self.dataout['sourceName'] = sourceName class GetMediaDuration(Baserequests): """Get the length of media in milliseconds. Supports ffmpeg and vlc media sources (as of OBS v25.0.8) Note: For some reason, for the first 5 or so seconds that the media is playing, the total duration can be off by upwards of 50ms. :Arguments: *sourceName* type: String Source name. :Returns: *mediaDuration* type: int The total length of media in milliseconds.. """ def __init__(self, sourceName): Baserequests.__init__(self) self.name = 'GetMediaDuration' self.datain['mediaDuration'] = None self.dataout['sourceName'] = sourceName def getMediaDuration(self): return self.datain['mediaDuration'] class GetMediaTime(Baserequests): """Get the current timestamp of media in milliseconds. Supports ffmpeg and vlc media sources (as of OBS v25.0.8) :Arguments: *sourceName* type: String Source name. :Returns: *timestamp* type: int The time in milliseconds since the start of the media. """ def __init__(self, sourceName): Baserequests.__init__(self) self.name = 'GetMediaTime' self.datain['timestamp'] = None self.dataout['sourceName'] = sourceName def getTimestamp(self): return self.datain['timestamp'] class SetMediaTime(Baserequests): """Set the timestamp of a media source. Supports ffmpeg and vlc media sources (as of OBS v25.0.8) :Arguments: *sourceName* type: String Source name. *timestamp* type: int Milliseconds to set the timestamp to. """ def __init__(self, sourceName, timestamp): Baserequests.__init__(self) self.name = 'SetMediaTime' self.dataout['sourceName'] = sourceName self.dataout['timestamp'] = timestamp class ScrubMedia(Baserequests): """Scrub media using a supplied offset. Supports ffmpeg and vlc media sources (as of OBS v25.0.8) Note: Due to processing/network delays, this request is not perfect. The processing rate of this request has also not been tested. :Arguments: *sourceName* type: String Source name. *timeOffset* type: int Millisecond offset (positive or negative) to offset the current media position. """ def __init__(self, sourceName, timeOffset): Baserequests.__init__(self) self.name = 'ScrubMedia' self.dataout['sourceName'] = sourceName self.dataout['timeOffset'] = timeOffset class GetMediaState(Baserequests): """Get the current playing state of a media source. Supports ffmpeg and vlc media sources (as of OBS v25.0.8) :Arguments: *sourceName* type: String Source name. :Returns: *mediaState* type: String The media state of the provided source. States: `none`, `playing`, `opening`, `buffering`, `paused`, `stopped`, `ended`, `error`, `unknown` """ def __init__(self, sourceName): Baserequests.__init__(self) self.name = 'GetMediaState' self.datain['mediaState'] = None self.dataout['sourceName'] = sourceName def getMediaState(self): return self.datain['mediaState'] class GetMediaSourcesList(Baserequests): """List the media state of all media sources (vlc and media source) :Returns: *mediaSources* type: Array<Object> Array of sources *mediaSources.*.sourceName* type: String Unique source name *mediaSources.*.sourceKind* type: String Unique source internal type (a.k.a `ffmpeg_source` or `vlc_source`) *mediaSources.*.mediaState* type: String The current state of media for that source. States: `none`, `playing`, `opening`, `buffering`, `paused`, `stopped`, `ended`, `error`, `unknown` """ def __init__(self): Baserequests.__init__(self) self.name = 'GetMediaSourcesList' self.datain['mediaSources'] = None def getMediaSources(self): return self.datain['mediaSources'] class CreateSource(Baserequests): """Create a source and add it as a sceneitem to a scene. :Arguments: *sourceName* type: String Source name. *sourceKind* type: String Source kind, Eg. `vlc_source`. *sceneName* type: String Scene to add the new source to. *sourceSettings* type: Object (optional) Source settings data. *setVisible* type: boolean (optional) Set the created SceneItem as visible or not. Defaults to true :Returns: *itemId* type: int ID of the SceneItem in the scene. """ def __init__(self, sourceName, sourceKind, sceneName, sourceSettings=None, setVisible=None): Baserequests.__init__(self) self.name = 'CreateSource' self.datain['itemId'] = None self.dataout['sourceName'] = sourceName self.dataout['sourceKind'] = sourceKind self.dataout['sceneName'] = sceneName self.dataout['sourceSettings'] = sourceSettings self.dataout['setVisible'] = setVisible def getItemId(self): return self.datain['itemId'] class GetSourcesList(Baserequests): """List all sources available in the running OBS instance :Returns: *sources* type: Array<Object> Array of sources *sources.*.name* type: String Unique source name *sources.*.typeId* type: String Non-unique source internal type (a.k.a kind) *sources.*.type* type: String Source type. Value is one of the following: "input", "filter", "transition", "scene" or "unknown" """ def __init__(self): Baserequests.__init__(self) self.name = 'GetSourcesList' self.datain['sources'] = None def getSources(self): return self.datain['sources'] class GetSourceTypesList(Baserequests): """Get a list of all available sources types :Returns: *types* type: Array<Object> Array of source types *types.*.typeId* type: String Non-unique internal source type ID *types.*.displayName* type: String Display name of the source type *types.*.type* type: String Type. Value is one of the following: "input", "filter", "transition" or "other" *types.*.defaultSettings* type: Object Default settings of this source type *types.*.caps* type: Object Source type capabilities *types.*.caps.isAsync* type: Boolean True if source of this type provide frames asynchronously *types.*.caps.hasVideo* type: Boolean True if sources of this type provide video *types.*.caps.hasAudio* type: Boolean True if sources of this type provide audio *types.*.caps.canInteract* type: Boolean True if interaction with this sources of this type is possible *types.*.caps.isComposite* type: Boolean True if sources of this type composite one or more sub-sources *types.*.caps.doNotDuplicate* type: Boolean True if sources of this type should not be fully duplicated *types.*.caps.doNotSelfMonitor* type: Boolean True if sources of this type may cause a feedback loop if it's audio is monitored and shouldn't be """ def __init__(self): Baserequests.__init__(self) self.name = 'GetSourceTypesList' self.datain['types'] = None def getTypes(self): return self.datain['types'] class GetVolume(Baserequests): """Get the volume of the specified source. Default response uses mul format, NOT SLIDER PERCENTAGE. :Arguments: *source* type: String Source name. *useDecibel* type: boolean (optional) Output volume in decibels of attenuation instead of amplitude/mul. :Returns: *name* type: String Source name. *volume* type: double Volume of the source. Between `0.0` and `20.0` if using mul, under `26.0` if using dB. *muted* type: boolean Indicates whether the source is muted. """ def __init__(self, source, useDecibel=None): Baserequests.__init__(self) self.name = 'GetVolume' self.datain['name'] = None self.datain['volume'] = None self.datain['muted'] = None self.dataout['source'] = source self.dataout['useDecibel'] = useDecibel def getName(self): return self.datain['name'] def getVolume(self): return self.datain['volume'] def getMuted(self): return self.datain['muted'] class SetVolume(Baserequests): """Set the volume of the specified source. Default request format uses mul, NOT SLIDER PERCENTAGE. :Arguments: *source* type: String Source name. *volume* type: double Desired volume. Must be between `0.0` and `20.0` for mul, and under 26.0 for dB. OBS will interpret dB values under -100.0 as Inf. Note: The OBS volume sliders only reach a maximum of 1.0mul/0.0dB, however OBS actually supports larger values. *useDecibel* type: boolean (optional) Interperet `volume` data as decibels instead of amplitude/mul. """ def __init__(self, source, volume, useDecibel=None): Baserequests.__init__(self) self.name = 'SetVolume' self.dataout['source'] = source self.dataout['volume'] = volume self.dataout['useDecibel'] = useDecibel class GetMute(Baserequests): """Get the mute status of a specified source. :Arguments: *source* type: String Source name. :Returns: *name* type: String Source name. *muted* type: boolean Mute status of the source. """ def __init__(self, source): Baserequests.__init__(self) self.name = 'GetMute' self.datain['name'] = None self.datain['muted'] = None self.dataout['source'] = source def getName(self): return self.datain['name'] def getMuted(self): return self.datain['muted'] class SetMute(Baserequests): """Sets the mute status of a specified source. :Arguments: *source* type: String Source name. *mute* type: boolean Desired mute status. """ def __init__(self, source, mute): Baserequests.__init__(self) self.name = 'SetMute' self.dataout['source'] = source self.dataout['mute'] = mute class ToggleMute(Baserequests): """Inverts the mute status of a specified source. :Arguments: *source* type: String Source name. """ def __init__(self, source): Baserequests.__init__(self) self.name = 'ToggleMute' self.dataout['source'] = source class GetAudioActive(Baserequests): """Get the audio's active status of a specified source. :Arguments: *sourceName* type: String Source name. :Returns: *audioActive* type: boolean Audio active status of the source. """ def __init__(self, sourceName): Baserequests.__init__(self) self.name = 'GetAudioActive' self.datain['audioActive'] = None self.dataout['sourceName'] = sourceName def getAudioActive(self): return self.datain['audioActive'] class SetSourceName(Baserequests): """ Note: If the new name already exists as a source, obs-websocket will return an error. :Arguments: *sourceName* type: String Source name. *newName* type: String New source name. """ def __init__(self, sourceName, newName): Baserequests.__init__(self) self.name = 'SetSourceName' self.dataout['sourceName'] = sourceName self.dataout['newName'] = newName class SetSyncOffset(Baserequests): """Set the audio sync offset of a specified source. :Arguments: *source* type: String Source name. *offset* type: int The desired audio sync offset (in nanoseconds). """ def __init__(self, source, offset): Baserequests.__init__(self) self.name = 'SetSyncOffset' self.dataout['source'] = source self.dataout['offset'] = offset class GetSyncOffset(Baserequests): """Get the audio sync offset of a specified source. :Arguments: *source* type: String Source name. :Returns: *name* type: String Source name. *offset* type: int The audio sync offset (in nanoseconds). """ def __init__(self, source): Baserequests.__init__(self) self.name = 'GetSyncOffset' self.datain['name'] = None self.datain['offset'] = None self.dataout['source'] = source def getName(self): return self.datain['name'] def getOffset(self): return self.datain['offset'] class GetSourceSettings(Baserequests): """Get settings of the specified source :Arguments: *sourceName* type: String Source name. *sourceType* type: String (optional) Type of the specified source. Useful for type-checking if you expect a specific settings schema. :Returns: *sourceName* type: String Source name *sourceType* type: String Type of the specified source *sourceSettings* type: Object Source settings (varies between source types, may require some probing around). """ def __init__(self, sourceName, sourceType=None): Baserequests.__init__(self) self.name = 'GetSourceSettings' self.datain['sourceName'] = None self.datain['sourceType'] = None self.datain['sourceSettings'] = None self.dataout['sourceName'] = sourceName self.dataout['sourceType'] = sourceType def getSourceName(self): return self.datain['sourceName'] def getSourceType(self): return self.datain['sourceType'] def getSourceSettings(self): return self.datain['sourceSettings'] class SetSourceSettings(Baserequests): """Set settings of the specified source. :Arguments: *sourceName* type: String Source name. *sourceType* type: String (optional) Type of the specified source. Useful for type-checking to avoid settings a set of settings incompatible with the actual source's type. *sourceSettings* type: Object Source settings (varies between source types, may require some probing around). :Returns: *sourceName* type: String Source name *sourceType* type: String Type of the specified source *sourceSettings* type: Object Updated source settings """ def __init__(self, sourceName, sourceSettings, sourceType=None): Baserequests.__init__(self) self.name = 'SetSourceSettings' self.datain['sourceName'] = None self.datain['sourceType'] = None self.datain['sourceSettings'] = None self.dataout['sourceName'] = sourceName self.dataout['sourceSettings'] = sourceSettings self.dataout['sourceType'] = sourceType def getSourceName(self): return self.datain['sourceName'] def getSourceType(self): return self.datain['sourceType'] def getSourceSettings(self): return self.datain['sourceSettings'] class GetTextGDIPlusProperties(Baserequests): """Get the current properties of a Text GDI Plus source. :Arguments: *source* type: String Source name. :Returns: *source* type: String Source name. *align* type: String Text Alignment ("left", "center", "right"). *bk_color* type: int Background color. *bk_opacity* type: int Background opacity (0-100). *chatlog* type: boolean Chat log. *chatlog_lines* type: int Chat log lines. *color* type: int Text color. *extents* type: boolean Extents wrap. *extents_cx* type: int Extents cx. *extents_cy* type: int Extents cy. *file* type: String File path name. *read_from_file* type: boolean Read text from the specified file. *font* type: Object Holds data for the font. Ex: `"font": { "face": "Arial", "flags": 0, "size": 150, "style": "" }` *font.face* type: String Font face. *font.flags* type: int Font text styling flag. `Bold=1, Italic=2, Bold Italic=3, Underline=5, Strikeout=8` *font.size* type: int Font text size. *font.style* type: String Font Style (unknown function). *gradient* type: boolean Gradient enabled. *gradient_color* type: int Gradient color. *gradient_dir* type: float Gradient direction. *gradient_opacity* type: int Gradient opacity (0-100). *outline* type: boolean Outline. *outline_color* type: int Outline color. *outline_size* type: int Outline size. *outline_opacity* type: int Outline opacity (0-100). *text* type: String Text content to be displayed. *valign* type: String Text vertical alignment ("top", "center", "bottom"). *vertical* type: boolean Vertical text enabled. """ def __init__(self, source): Baserequests.__init__(self) self.name = 'GetTextGDIPlusProperties' self.datain['source'] = None self.datain['align'] = None self.datain['bk_color'] = None self.datain['bk_opacity'] = None self.datain['chatlog'] = None self.datain['chatlog_lines'] = None self.datain['color'] = None self.datain['extents'] = None self.datain['extents_cx'] = None self.datain['extents_cy'] = None self.datain['file'] = None self.datain['read_from_file'] = None self.datain['font'] = None self.datain['gradient'] = None self.datain['gradient_color'] = None self.datain['gradient_dir'] = None self.datain['gradient_opacity'] = None self.datain['outline'] = None self.datain['outline_color'] = None self.datain['outline_size'] = None self.datain['outline_opacity'] = None self.datain['text'] = None self.datain['valign'] = None self.datain['vertical'] = None self.dataout['source'] = source def getSource(self): return self.datain['source'] def getAlign(self): return self.datain['align'] def getBk_color(self): return self.datain['bk_color'] def getBk_opacity(self): return self.datain['bk_opacity'] def getChatlog(self): return self.datain['chatlog'] def getChatlog_lines(self): return self.datain['chatlog_lines'] def getColor(self): return self.datain['color'] def getExtents(self): return self.datain['extents'] def getExtents_cx(self): return self.datain['extents_cx'] def getExtents_cy(self): return self.datain['extents_cy'] def getFile(self): return self.datain['file'] def getRead_from_file(self): return self.datain['read_from_file'] def getFont(self): return self.datain['font'] def getGradient(self): return self.datain['gradient'] def getGradient_color(self): return self.datain['gradient_color'] def getGradient_dir(self): return self.datain['gradient_dir'] def getGradient_opacity(self): return self.datain['gradient_opacity'] def getOutline(self): return self.datain['outline'] def getOutline_color(self): return self.datain['outline_color'] def getOutline_size(self): return self.datain['outline_size'] def getOutline_opacity(self): return self.datain['outline_opacity'] def getText(self): return self.datain['text'] def getValign(self): return self.datain['valign'] def getVertical(self): return self.datain['vertical'] class SetTextGDIPlusProperties(Baserequests): """Set the current properties of a Text GDI Plus source. :Arguments: *source* type: String Name of the source. *align* type: String (optional) Text Alignment ("left", "center", "right"). *bk_color* type: int (optional) Background color. *bk_opacity* type: int (optional) Background opacity (0-100). *chatlog* type: boolean (optional) Chat log. *chatlog_lines* type: int (optional) Chat log lines. *color* type: int (optional) Text color. *extents* type: boolean (optional) Extents wrap. *extents_cx* type: int (optional) Extents cx. *extents_cy* type: int (optional) Extents cy. *file* type: String (optional) File path name. *read_from_file* type: boolean (optional) Read text from the specified file. *font* type: Object (optional) Holds data for the font. Ex: `"font": { "face": "Arial", "flags": 0, "size": 150, "style": "" }` *font.face* type: String (optional) Font face. *font.flags* type: int (optional) Font text styling flag. `Bold=1, Italic=2, Bold Italic=3, Underline=5, Strikeout=8` *font.size* type: int (optional) Font text size. *font.style* type: String (optional) Font Style (unknown function). *gradient* type: boolean (optional) Gradient enabled. *gradient_color* type: int (optional) Gradient color. *gradient_dir* type: float (optional) Gradient direction. *gradient_opacity* type: int (optional) Gradient opacity (0-100). *outline* type: boolean (optional) Outline. *outline_color* type: int (optional) Outline color. *outline_size* type: int (optional) Outline size. *outline_opacity* type: int (optional) Outline opacity (0-100). *text* type: String (optional) Text content to be displayed. *valign* type: String (optional) Text vertical alignment ("top", "center", "bottom"). *vertical* type: boolean (optional) Vertical text enabled. *render* type: boolean (optional) Visibility of the scene item. """ def __init__(self, source, align=None, bk_color=None, bk_opacity=None, chatlog=None, chatlog_lines=None, color=None, extents=None, extents_cx=None, extents_cy=None, file=None, read_from_file=None, font=None, gradient=None, gradient_color=None, gradient_dir=None, gradient_opacity=None, outline=None, outline_color=None, outline_size=None, outline_opacity=None, text=None, valign=None, vertical=None, render=None): Baserequests.__init__(self) self.name = 'SetTextGDIPlusProperties' self.dataout['source'] = source self.dataout['align'] = align self.dataout['bk_color'] = bk_color self.dataout['bk_opacity'] = bk_opacity self.dataout['chatlog'] = chatlog self.dataout['chatlog_lines'] = chatlog_lines self.dataout['color'] = color self.dataout['extents'] = extents self.dataout['extents_cx'] = extents_cx self.dataout['extents_cy'] = extents_cy self.dataout['file'] = file self.dataout['read_from_file'] = read_from_file self.dataout['font'] = font self.dataout['gradient'] = gradient self.dataout['gradient_color'] = gradient_color self.dataout['gradient_dir'] = gradient_dir self.dataout['gradient_opacity'] = gradient_opacity self.dataout['outline'] = outline self.dataout['outline_color'] = outline_color self.dataout['outline_size'] = outline_size self.dataout['outline_opacity'] = outline_opacity self.dataout['text'] = text self.dataout['valign'] = valign self.dataout['vertical'] = vertical self.dataout['render'] = render class GetTextFreetype2Properties(Baserequests): """Get the current properties of a Text Freetype 2 source. :Arguments: *source* type: String Source name. :Returns: *source* type: String Source name *color1* type: int Gradient top color. *color2* type: int Gradient bottom color. *custom_width* type: int Custom width (0 to disable). *drop_shadow* type: boolean Drop shadow. *font* type: Object Holds data for the font. Ex: `"font": { "face": "Arial", "flags": 0, "size": 150, "style": "" }` *font.face* type: String Font face. *font.flags* type: int Font text styling flag. `Bold=1, Italic=2, Bold Italic=3, Underline=5, Strikeout=8` *font.size* type: int Font text size. *font.style* type: String Font Style (unknown function). *from_file* type: boolean Read text from the specified file. *log_mode* type: boolean Chat log. *outline* type: boolean Outline. *text* type: String Text content to be displayed. *text_file* type: String File path. *word_wrap* type: boolean Word wrap. """ def __init__(self, source): Baserequests.__init__(self) self.name = 'GetTextFreetype2Properties' self.datain['source'] = None self.datain['color1'] = None self.datain['color2'] = None self.datain['custom_width'] = None self.datain['drop_shadow'] = None self.datain['font'] = None self.datain['from_file'] = None self.datain['log_mode'] = None self.datain['outline'] = None self.datain['text'] = None self.datain['text_file'] = None self.datain['word_wrap'] = None self.dataout['source'] = source def getSource(self): return self.datain['source'] def getColor1(self): return self.datain['color1'] def getColor2(self): return self.datain['color2'] def getCustom_width(self): return self.datain['custom_width'] def getDrop_shadow(self): return self.datain['drop_shadow'] def getFont(self): return self.datain['font'] def getFrom_file(self): return self.datain['from_file'] def getLog_mode(self): return self.datain['log_mode'] def getOutline(self): return self.datain['outline'] def getText(self): return self.datain['text'] def getText_file(self): return self.datain['text_file'] def getWord_wrap(self): return self.datain['word_wrap'] class SetTextFreetype2Properties(Baserequests): """Set the current properties of a Text Freetype 2 source. :Arguments: *source* type: String Source name. *color1* type: int (optional) Gradient top color. *color2* type: int (optional) Gradient bottom color. *custom_width* type: int (optional) Custom width (0 to disable). *drop_shadow* type: boolean (optional) Drop shadow. *font* type: Object (optional) Holds data for the font. Ex: `"font": { "face": "Arial", "flags": 0, "size": 150, "style": "" }` *font.face* type: String (optional) Font face. *font.flags* type: int (optional) Font text styling flag. `Bold=1, Italic=2, Bold Italic=3, Underline=5, Strikeout=8` *font.size* type: int (optional) Font text size. *font.style* type: String (optional) Font Style (unknown function). *from_file* type: boolean (optional) Read text from the specified file. *log_mode* type: boolean (optional) Chat log. *outline* type: boolean (optional) Outline. *text* type: String (optional) Text content to be displayed. *text_file* type: String (optional) File path. *word_wrap* type: boolean (optional) Word wrap. """ def __init__(self, source, color1=None, color2=None, custom_width=None, drop_shadow=None, font=None, from_file=None, log_mode=None, outline=None, text=None, text_file=None, word_wrap=None): Baserequests.__init__(self) self.name = 'SetTextFreetype2Properties' self.dataout['source'] = source self.dataout['color1'] = color1 self.dataout['color2'] = color2 self.dataout['custom_width'] = custom_width self.dataout['drop_shadow'] = drop_shadow self.dataout['font'] = font self.dataout['from_file'] = from_file self.dataout['log_mode'] = log_mode self.dataout['outline'] = outline self.dataout['text'] = text self.dataout['text_file'] = text_file self.dataout['word_wrap'] = word_wrap class GetBrowserSourceProperties(Baserequests): """Get current properties for a Browser Source. :Arguments: *source* type: String Source name. :Returns: *source* type: String Source name. *is_local_file* type: boolean Indicates that a local file is in use. *local_file* type: String file path. *url* type: String Url. *css* type: String CSS to inject. *width* type: int Width. *height* type: int Height. *fps* type: int Framerate. *shutdown* type: boolean Indicates whether the source should be shutdown when not visible. """ def __init__(self, source): Baserequests.__init__(self) self.name = 'GetBrowserSourceProperties' self.datain['source'] = None self.datain['is_local_file'] = None self.datain['local_file'] = None self.datain['url'] = None self.datain['css'] = None self.datain['width'] = None self.datain['height'] = None self.datain['fps'] = None self.datain['shutdown'] = None self.dataout['source'] = source def getSource(self): return self.datain['source'] def getIs_local_file(self): return self.datain['is_local_file'] def getLocal_file(self): return self.datain['local_file'] def getUrl(self): return self.datain['url'] def getCss(self): return self.datain['css'] def getWidth(self): return self.datain['width'] def getHeight(self): return self.datain['height'] def getFps(self): return self.datain['fps'] def getShutdown(self): return self.datain['shutdown'] class SetBrowserSourceProperties(Baserequests): """Set current properties for a Browser Source. :Arguments: *source* type: String Name of the source. *is_local_file* type: boolean (optional) Indicates that a local file is in use. *local_file* type: String (optional) file path. *url* type: String (optional) Url. *css* type: String (optional) CSS to inject. *width* type: int (optional) Width. *height* type: int (optional) Height. *fps* type: int (optional) Framerate. *shutdown* type: boolean (optional) Indicates whether the source should be shutdown when not visible. *render* type: boolean (optional) Visibility of the scene item. """ def __init__(self, source, is_local_file=None, local_file=None, url=None, css=None, width=None, height=None, fps=None, shutdown=None, render=None): Baserequests.__init__(self) self.name = 'SetBrowserSourceProperties' self.dataout['source'] = source self.dataout['is_local_file'] = is_local_file self.dataout['local_file'] = local_file self.dataout['url'] = url self.dataout['css'] = css self.dataout['width'] = width self.dataout['height'] = height self.dataout['fps'] = fps self.dataout['shutdown'] = shutdown self.dataout['render'] = render class GetSpecialSources(Baserequests): """Get configured special sources like Desktop Audio and Mic/Aux sources. :Returns: *desktop_1* type: String (optional) Name of the first Desktop Audio capture source. *desktop_2* type: String (optional) Name of the second Desktop Audio capture source. *mic_1* type: String (optional) Name of the first Mic/Aux input source. *mic_2* type: String (optional) Name of the second Mic/Aux input source. *mic_3* type: String (optional) NAme of the third Mic/Aux input source. """ def __init__(self): Baserequests.__init__(self) self.name = 'GetSpecialSources' self.datain['desktop-1'] = None self.datain['desktop-2'] = None self.datain['mic-1'] = None self.datain['mic-2'] = None self.datain['mic-3'] = None def getDesktop1(self): return self.datain['desktop-1'] def getDesktop2(self): return self.datain['desktop-2'] def getMic1(self): return self.datain['mic-1'] def getMic2(self): return self.datain['mic-2'] def getMic3(self): return self.datain['mic-3'] class GetSourceFilters(Baserequests): """List filters applied to a source :Arguments: *sourceName* type: String Source name :Returns: *filters* type: Array<Object> List of filters for the specified source *filters.*.enabled* type: Boolean Filter status (enabled or not) *filters.*.type* type: String Filter type *filters.*.name* type: String Filter name *filters.*.settings* type: Object Filter settings """ def __init__(self, sourceName): Baserequests.__init__(self) self.name = 'GetSourceFilters' self.datain['filters'] = None self.dataout['sourceName'] = sourceName def getFilters(self): return self.datain['filters'] class GetSourceFilterInfo(Baserequests): """List filters applied to a source :Arguments: *sourceName* type: String Source name *filterName* type: String Source filter name :Returns: *enabled* type: Boolean Filter status (enabled or not) *type* type: String Filter type *name* type: String Filter name *settings* type: Object Filter settings """ def __init__(self, sourceName, filterName): Baserequests.__init__(self) self.name = 'GetSourceFilterInfo' self.datain['enabled'] = None self.datain['type'] = None self.datain['name'] = None self.datain['settings'] = None self.dataout['sourceName'] = sourceName self.dataout['filterName'] = filterName def getEnabled(self): return self.datain['enabled'] def getType(self): return self.datain['type'] def getName(self): return self.datain['name'] def getSettings(self): return self.datain['settings'] class AddFilterToSource(Baserequests): """Add a new filter to a source. Available source types along with their settings properties are available from `GetSourceTypesList`. :Arguments: *sourceName* type: String Name of the source on which the filter is added *filterName* type: String Name of the new filter *filterType* type: String Filter type *filterSettings* type: Object Filter settings """ def __init__(self, sourceName, filterName, filterType, filterSettings): Baserequests.__init__(self) self.name = 'AddFilterToSource' self.dataout['sourceName'] = sourceName self.dataout['filterName'] = filterName self.dataout['filterType'] = filterType self.dataout['filterSettings'] = filterSettings class RemoveFilterFromSource(Baserequests): """Remove a filter from a source :Arguments: *sourceName* type: String Name of the source from which the specified filter is removed *filterName* type: String Name of the filter to remove """ def __init__(self, sourceName, filterName): Baserequests.__init__(self) self.name = 'RemoveFilterFromSource' self.dataout['sourceName'] = sourceName self.dataout['filterName'] = filterName class ReorderSourceFilter(Baserequests): """Move a filter in the chain (absolute index positioning) :Arguments: *sourceName* type: String Name of the source to which the filter belongs *filterName* type: String Name of the filter to reorder *newIndex* type: Integer Desired position of the filter in the chain """ def __init__(self, sourceName, filterName, newIndex): Baserequests.__init__(self) self.name = 'ReorderSourceFilter' self.dataout['sourceName'] = sourceName self.dataout['filterName'] = filterName self.dataout['newIndex'] = newIndex class MoveSourceFilter(Baserequests): """Move a filter in the chain (relative positioning) :Arguments: *sourceName* type: String Name of the source to which the filter belongs *filterName* type: String Name of the filter to reorder *movementType* type: String How to move the filter around in the source's filter chain. Either "up", "down", "top" or "bottom". """ def __init__(self, sourceName, filterName, movementType): Baserequests.__init__(self) self.name = 'MoveSourceFilter' self.dataout['sourceName'] = sourceName self.dataout['filterName'] = filterName self.dataout['movementType'] = movementType class SetSourceFilterSettings(Baserequests): """Update settings of a filter :Arguments: *sourceName* type: String Name of the source to which the filter belongs *filterName* type: String Name of the filter to reconfigure *filterSettings* type: Object New settings. These will be merged to the current filter settings. """ def __init__(self, sourceName, filterName, filterSettings): Baserequests.__init__(self) self.name = 'SetSourceFilterSettings' self.dataout['sourceName'] = sourceName self.dataout['filterName'] = filterName self.dataout['filterSettings'] = filterSettings class SetSourceFilterVisibility(Baserequests): """Change the visibility/enabled state of a filter :Arguments: *sourceName* type: String Source name *filterName* type: String Source filter name *filterEnabled* type: Boolean New filter state """ def __init__(self, sourceName, filterName, filterEnabled): Baserequests.__init__(self) self.name = 'SetSourceFilterVisibility' self.dataout['sourceName'] = sourceName self.dataout['filterName'] = filterName self.dataout['filterEnabled'] = filterEnabled class GetAudioMonitorType(Baserequests): """Get the audio monitoring type of the specified source. :Arguments: *sourceName* type: String Source name. :Returns: *monitorType* type: String The monitor type in use. Options: `none`, `monitorOnly`, `monitorAndOutput`. """ def __init__(self, sourceName): Baserequests.__init__(self) self.name = 'GetAudioMonitorType' self.datain['monitorType'] = None self.dataout['sourceName'] = sourceName def getMonitorType(self): return self.datain['monitorType'] class SetAudioMonitorType(Baserequests): """Set the audio monitoring type of the specified source. :Arguments: *sourceName* type: String Source name. *monitorType* type: String The monitor type to use. Options: `none`, `monitorOnly`, `monitorAndOutput`. """ def __init__(self, sourceName, monitorType): Baserequests.__init__(self) self.name = 'SetAudioMonitorType' self.dataout['sourceName'] = sourceName self.dataout['monitorType'] = monitorType class TakeSourceScreenshot(Baserequests): """ At least `embedPictureFormat` or `saveToFilePath` must be specified. Clients can specify `width` and `height` parameters to receive scaled pictures. Aspect ratio is preserved if only one of these two parameters is specified. :Arguments: *sourceName* type: String (optional) Source name. Note that, since scenes are also sources, you can also provide a scene name. If not provided, the currently active scene is used. *embedPictureFormat* type: String (optional) Format of the Data URI encoded picture. Can be "png", "jpg", "jpeg" or "bmp" (or any other value supported by Qt's Image module) *saveToFilePath* type: String (optional) Full file path (file extension included) where the captured image is to be saved. Can be in a format different from `pictureFormat`. Can be a relative path. *fileFormat* type: String (optional) Format to save the image file as (one of the values provided in the `supported-image-export-formats` response field of `GetVersion`). If not specified, tries to guess based on file extension. *compressionQuality* type: int (optional) Compression ratio between -1 and 100 to write the image with. -1 is automatic, 1 is smallest file/most compression, 100 is largest file/least compression. Varies with image type. *width* type: int (optional) Screenshot width. Defaults to the source's base width. *height* type: int (optional) Screenshot height. Defaults to the source's base height. :Returns: *sourceName* type: String Source name *img* type: String Image Data URI (if `embedPictureFormat` was specified in the request) *imageFile* type: String Absolute path to the saved image file (if `saveToFilePath` was specified in the request) """ def __init__(self, sourceName=None, embedPictureFormat=None, saveToFilePath=None, fileFormat=None, compressionQuality=None, width=None, height=None): Baserequests.__init__(self) self.name = 'TakeSourceScreenshot' self.datain['sourceName'] = None self.datain['img'] = None self.datain['imageFile'] = None self.dataout['sourceName'] = sourceName self.dataout['embedPictureFormat'] = embedPictureFormat self.dataout['saveToFilePath'] = saveToFilePath self.dataout['fileFormat'] = fileFormat self.dataout['compressionQuality'] = compressionQuality self.dataout['width'] = width self.dataout['height'] = height def getSourceName(self): return self.datain['sourceName'] def getImg(self): return self.datain['img'] def getImageFile(self): return self.datain['imageFile'] class ListOutputs(Baserequests): """List existing outputs :Returns: *outputs* type: Array<Output> Outputs list """ def __init__(self): Baserequests.__init__(self) self.name = 'ListOutputs' self.datain['outputs'] = None def getOutputs(self): return self.datain['outputs'] class GetOutputInfo(Baserequests): """Get information about a single output :Arguments: *outputName* type: String Output name :Returns: *outputInfo* type: Output Output info """ def __init__(self, outputName): Baserequests.__init__(self) self.name = 'GetOutputInfo' self.datain['outputInfo'] = None self.dataout['outputName'] = outputName def getOutputInfo(self): return self.datain['outputInfo'] class StartOutput(Baserequests): """ Note: Controlling outputs is an experimental feature of obs-websocket. Some plugins which add outputs to OBS may not function properly when they are controlled in this way. :Arguments: *outputName* type: String Output name """ def __init__(self, outputName): Baserequests.__init__(self) self.name = 'StartOutput' self.dataout['outputName'] = outputName class StopOutput(Baserequests): """ Note: Controlling outputs is an experimental feature of obs-websocket. Some plugins which add outputs to OBS may not function properly when they are controlled in this way. :Arguments: *outputName* type: String Output name *force* type: boolean (optional) Force stop (default: false) """ def __init__(self, outputName, force=None): Baserequests.__init__(self) self.name = 'StopOutput' self.dataout['outputName'] = outputName self.dataout['force'] = force class SetCurrentProfile(Baserequests): """Set the currently active profile. :Arguments: *profile_name* type: String Name of the desired profile. """ def __init__(self, profile_name): Baserequests.__init__(self) self.name = 'SetCurrentProfile' self.dataout['profile-name'] = profile_name class GetCurrentProfile(Baserequests): """Get the name of the current profile. :Returns: *profile_name* type: String Name of the currently active profile. """ def __init__(self): Baserequests.__init__(self) self.name = 'GetCurrentProfile' self.datain['profile-name'] = None def getProfileName(self): return self.datain['profile-name'] class ListProfiles(Baserequests): """Get a list of available profiles. :Returns: *profiles* type: Array<Object> List of available profiles. *profiles.*.profile_name* type: String Filter name """ def __init__(self): Baserequests.__init__(self) self.name = 'ListProfiles' self.datain['profiles'] = None def getProfiles(self): return self.datain['profiles'] class GetRecordingStatus(Baserequests): """Get current recording status. :Returns: *isRecording* type: boolean Current recording status. *isRecordingPaused* type: boolean Whether the recording is paused or not. *recordTimecode* type: String (optional) Time elapsed since recording started (only present if currently recording). *recordingFilename* type: String (optional) Absolute path to the recording file (only present if currently recording). """ def __init__(self): Baserequests.__init__(self) self.name = 'GetRecordingStatus' self.datain['isRecording'] = None self.datain['isRecordingPaused'] = None self.datain['recordTimecode'] = None self.datain['recordingFilename'] = None def getIsRecording(self): return self.datain['isRecording'] def getIsRecordingPaused(self): return self.datain['isRecordingPaused'] def getRecordTimecode(self): return self.datain['recordTimecode'] def getRecordingFilename(self): return self.datain['recordingFilename'] class StartStopRecording(Baserequests): """Toggle recording on or off (depending on the current recording state). """ def __init__(self): Baserequests.__init__(self) self.name = 'StartStopRecording' class StartRecording(Baserequests): """Start recording. Will return an `error` if recording is already active. """ def __init__(self): Baserequests.__init__(self) self.name = 'StartRecording' class StopRecording(Baserequests): """Stop recording. Will return an `error` if recording is not active. """ def __init__(self): Baserequests.__init__(self) self.name = 'StopRecording' class PauseRecording(Baserequests): """Pause the current recording. Returns an error if recording is not active or already paused. """ def __init__(self): Baserequests.__init__(self) self.name = 'PauseRecording' class ResumeRecording(Baserequests): """Resume/unpause the current recording (if paused). Returns an error if recording is not active or not paused. """ def __init__(self): Baserequests.__init__(self) self.name = 'ResumeRecording' class SetRecordingFolder(Baserequests): """ Please note: if `SetRecordingFolder` is called while a recording is in progress, the change won't be applied immediately and will be effective on the next recording. :Arguments: *rec_folder* type: String Path of the recording folder. """ def __init__(self, rec_folder): Baserequests.__init__(self) self.name = 'SetRecordingFolder' self.dataout['rec-folder'] = rec_folder class GetRecordingFolder(Baserequests): """Get the path of the current recording folder. :Returns: *rec_folder* type: String Path of the recording folder. """ def __init__(self): Baserequests.__init__(self) self.name = 'GetRecordingFolder' self.datain['rec-folder'] = None def getRecFolder(self): return self.datain['rec-folder'] class GetReplayBufferStatus(Baserequests): """Get the status of the OBS replay buffer. :Returns: *isReplayBufferActive* type: boolean Current recording status. """ def __init__(self): Baserequests.__init__(self) self.name = 'GetReplayBufferStatus' self.datain['isReplayBufferActive'] = None def getIsReplayBufferActive(self): return self.datain['isReplayBufferActive'] class StartStopReplayBuffer(Baserequests): """Toggle the Replay Buffer on/off (depending on the current state of the replay buffer). """ def __init__(self): Baserequests.__init__(self) self.name = 'StartStopReplayBuffer' class StartReplayBuffer(Baserequests): """Start recording into the Replay Buffer. Will return an `error` if the Replay Buffer is already active or if the "Save Replay Buffer" hotkey is not set in OBS' settings. Setting this hotkey is mandatory, even when triggering saves only through obs-websocket. """ def __init__(self): Baserequests.__init__(self) self.name = 'StartReplayBuffer' class StopReplayBuffer(Baserequests): """Stop recording into the Replay Buffer. Will return an `error` if the Replay Buffer is not active. """ def __init__(self): Baserequests.__init__(self) self.name = 'StopReplayBuffer' class SaveReplayBuffer(Baserequests): """Flush and save the contents of the Replay Buffer to disk. This is basically the same as triggering the "Save Replay Buffer" hotkey. Will return an `error` if the Replay Buffer is not active. """ def __init__(self): Baserequests.__init__(self) self.name = 'SaveReplayBuffer' class SetCurrentSceneCollection(Baserequests): """Change the active scene collection. :Arguments: *sc_name* type: String Name of the desired scene collection. """ def __init__(self, sc_name): Baserequests.__init__(self) self.name = 'SetCurrentSceneCollection' self.dataout['sc-name'] = sc_name class GetCurrentSceneCollection(Baserequests): """Get the name of the current scene collection. :Returns: *sc_name* type: String Name of the currently active scene collection. """ def __init__(self): Baserequests.__init__(self) self.name = 'GetCurrentSceneCollection' self.datain['sc-name'] = None def getScName(self): return self.datain['sc-name'] class ListSceneCollections(Baserequests): """List available scene collections :Returns: *scene_collections* type: Array<String> Scene collections list *scene_collections.*.sc_name* type: String Scene collection name """ def __init__(self): Baserequests.__init__(self) self.name = 'ListSceneCollections' self.datain['scene-collections'] = None def getSceneCollections(self): return self.datain['scene-collections'] class GetSceneItemList(Baserequests): """Get a list of all scene items in a scene. :Arguments: *sceneName* type: String (optional) Name of the scene to get the list of scene items from. Defaults to the current scene if not specified. :Returns: *sceneName* type: String Name of the requested (or current) scene *sceneItems* type: Array<Object> Array of scene items *sceneItems.*.itemId* type: int Unique item id of the source item *sceneItems.*.sourceKind* type: String ID if the scene item's source. For example `vlc_source` or `image_source` *sceneItems.*.sourceName* type: String Name of the scene item's source *sceneItems.*.sourceType* type: String Type of the scene item's source. Either `input`, `group`, or `scene` """ def __init__(self, sceneName=None): Baserequests.__init__(self) self.name = 'GetSceneItemList' self.datain['sceneName'] = None self.datain['sceneItems'] = None self.dataout['sceneName'] = sceneName def getSceneName(self): return self.datain['sceneName'] def getSceneItems(self): return self.datain['sceneItems'] class GetSceneItemProperties(Baserequests): """Gets the scene specific properties of the specified source item. Coordinates are relative to the item's parent (the scene or group it belongs to). :Arguments: *scene_name* type: String (optional) Name of the scene the scene item belongs to. Defaults to the current scene. *item* type: String | Object Scene Item name (if this field is a string) or specification (if it is an object). *item.name* type: String (optional) Scene Item name (if the `item` field is an object) *item.id* type: int (optional) Scene Item ID (if the `item` field is an object) :Returns: *name* type: String Scene Item name. *itemId* type: int Scene Item ID. *position.x* type: double The x position of the source from the left. *position.y* type: double The y position of the source from the top. *position.alignment* type: int The point on the source that the item is manipulated from. The sum of 1=Left or 2=Right, and 4=Top or 8=Bottom, or omit to center on that axis. *rotation* type: double The clockwise rotation of the item in degrees around the point of alignment. *scale.x* type: double The x-scale factor of the source. *scale.y* type: double The y-scale factor of the source. *crop.top* type: int The number of pixels cropped off the top of the source before scaling. *crop.right* type: int The number of pixels cropped off the right of the source before scaling. *crop.bottom* type: int The number of pixels cropped off the bottom of the source before scaling. *crop.left* type: int The number of pixels cropped off the left of the source before scaling. *visible* type: bool If the source is visible. *muted* type: bool If the source is muted. *locked* type: bool If the source's transform is locked. *bounds.type* type: String Type of bounding box. Can be "OBS_BOUNDS_STRETCH", "OBS_BOUNDS_SCALE_INNER", "OBS_BOUNDS_SCALE_OUTER", "OBS_BOUNDS_SCALE_TO_WIDTH", "OBS_BOUNDS_SCALE_TO_HEIGHT", "OBS_BOUNDS_MAX_ONLY" or "OBS_BOUNDS_NONE". *bounds.alignment* type: int Alignment of the bounding box. *bounds.x* type: double Width of the bounding box. *bounds.y* type: double Height of the bounding box. *sourceWidth* type: int Base width (without scaling) of the source *sourceHeight* type: int Base source (without scaling) of the source *width* type: double Scene item width (base source width multiplied by the horizontal scaling factor) *height* type: double Scene item height (base source height multiplied by the vertical scaling factor) *parentGroupName* type: String (optional) Name of the item's parent (if this item belongs to a group) *groupChildren* type: Array<SceneItemTransform> (optional) List of children (if this item is a group) """ def __init__(self, item, scene_name=None): Baserequests.__init__(self) self.name = 'GetSceneItemProperties' self.datain['name'] = None self.datain['itemId'] = None self.datain['position'] = None self.datain['rotation'] = None self.datain['scale'] = None self.datain['crop'] = None self.datain['visible'] = None self.datain['muted'] = None self.datain['locked'] = None self.datain['bounds'] = None self.datain['sourceWidth'] = None self.datain['sourceHeight'] = None self.datain['width'] = None self.datain['height'] = None self.datain['parentGroupName'] = None self.datain['groupChildren'] = None self.dataout['item'] = item self.dataout['scene-name'] = scene_name def getName(self): return self.datain['name'] def getItemId(self): return self.datain['itemId'] def getPosition(self): return self.datain['position'] def getRotation(self): return self.datain['rotation'] def getScale(self): return self.datain['scale'] def getCrop(self): return self.datain['crop'] def getVisible(self): return self.datain['visible'] def getMuted(self): return self.datain['muted'] def getLocked(self): return self.datain['locked'] def getBounds(self): return self.datain['bounds'] def getSourceWidth(self): return self.datain['sourceWidth'] def getSourceHeight(self): return self.datain['sourceHeight'] def getWidth(self): return self.datain['width'] def getHeight(self): return self.datain['height'] def getParentGroupName(self): return self.datain['parentGroupName'] def getGroupChildren(self): return self.datain['groupChildren'] class SetSceneItemProperties(Baserequests): """Sets the scene specific properties of a source. Unspecified properties will remain unchanged. Coordinates are relative to the item's parent (the scene or group it belongs to). :Arguments: *scene_name* type: String (optional) Name of the scene the source item belongs to. Defaults to the current scene. *item* type: String | Object Scene Item name (if this field is a string) or specification (if it is an object). *item.name* type: String (optional) Scene Item name (if the `item` field is an object) *item.id* type: int (optional) Scene Item ID (if the `item` field is an object) *position.x* type: double (optional) The new x position of the source. *position.y* type: double (optional) The new y position of the source. *position.alignment* type: int (optional) The new alignment of the source. *rotation* type: double (optional) The new clockwise rotation of the item in degrees. *scale.x* type: double (optional) The new x scale of the item. *scale.y* type: double (optional) The new y scale of the item. *crop.top* type: int (optional) The new amount of pixels cropped off the top of the source before scaling. *crop.bottom* type: int (optional) The new amount of pixels cropped off the bottom of the source before scaling. *crop.left* type: int (optional) The new amount of pixels cropped off the left of the source before scaling. *crop.right* type: int (optional) The new amount of pixels cropped off the right of the source before scaling. *visible* type: bool (optional) The new visibility of the source. 'true' shows source, 'false' hides source. *locked* type: bool (optional) The new locked status of the source. 'true' keeps it in its current position, 'false' allows movement. *bounds.type* type: String (optional) The new bounds type of the source. Can be "OBS_BOUNDS_STRETCH", "OBS_BOUNDS_SCALE_INNER", "OBS_BOUNDS_SCALE_OUTER", "OBS_BOUNDS_SCALE_TO_WIDTH", "OBS_BOUNDS_SCALE_TO_HEIGHT", "OBS_BOUNDS_MAX_ONLY" or "OBS_BOUNDS_NONE". *bounds.alignment* type: int (optional) The new alignment of the bounding box. (0-2, 4-6, 8-10) *bounds.x* type: double (optional) The new width of the bounding box. *bounds.y* type: double (optional) The new height of the bounding box. """ def __init__(self, item, scene_name=None, position=None, rotation=None, scale=None, crop=None, visible=None, locked=None, bounds=None): Baserequests.__init__(self) self.name = 'SetSceneItemProperties' self.dataout['item'] = item self.dataout['scene-name'] = scene_name self.dataout['position'] = position self.dataout['rotation'] = rotation self.dataout['scale'] = scale self.dataout['crop'] = crop self.dataout['visible'] = visible self.dataout['locked'] = locked self.dataout['bounds'] = bounds class ResetSceneItem(Baserequests): """Reset a scene item. :Arguments: *scene_name* type: String (optional) Name of the scene the scene item belongs to. Defaults to the current scene. *item* type: String | Object Scene Item name (if this field is a string) or specification (if it is an object). *item.name* type: String (optional) Scene Item name (if the `item` field is an object) *item.id* type: int (optional) Scene Item ID (if the `item` field is an object) """ def __init__(self, item, scene_name=None): Baserequests.__init__(self) self.name = 'ResetSceneItem' self.dataout['item'] = item self.dataout['scene-name'] = scene_name class SetSceneItemRender(Baserequests): """Show or hide a specified source item in a specified scene. :Arguments: *scene_name* type: String (optional) Name of the scene the scene item belongs to. Defaults to the currently active scene. *source* type: String Scene Item name. *render* type: boolean true = shown ; false = hidden """ def __init__(self, source, render, scene_name=None): Baserequests.__init__(self) self.name = 'SetSceneItemRender' self.dataout['source'] = source self.dataout['render'] = render self.dataout['scene-name'] = scene_name class SetSceneItemPosition(Baserequests): """Sets the coordinates of a specified source item. :Arguments: *scene_name* type: String (optional) Name of the scene the scene item belongs to. Defaults to the current scene. *item* type: String Scene Item name. *x* type: double X coordinate. *y* type: double Y coordinate. """ def __init__(self, item, x, y, scene_name=None): Baserequests.__init__(self) self.name = 'SetSceneItemPosition' self.dataout['item'] = item self.dataout['x'] = x self.dataout['y'] = y self.dataout['scene-name'] = scene_name class SetSceneItemTransform(Baserequests): """Set the transform of the specified source item. :Arguments: *scene_name* type: String (optional) Name of the scene the scene item belongs to. Defaults to the current scene. *item* type: String Scene Item name. *x_scale* type: double Width scale factor. *y_scale* type: double Height scale factor. *rotation* type: double Source item rotation (in degrees). """ def __init__(self, item, x_scale, y_scale, rotation, scene_name=None): Baserequests.__init__(self) self.name = 'SetSceneItemTransform' self.dataout['item'] = item self.dataout['x-scale'] = x_scale self.dataout['y-scale'] = y_scale self.dataout['rotation'] = rotation self.dataout['scene-name'] = scene_name class SetSceneItemCrop(Baserequests): """Sets the crop coordinates of the specified source item. :Arguments: *scene_name* type: String (optional) Name of the scene the scene item belongs to. Defaults to the current scene. *item* type: String Scene Item name. *top* type: int Pixel position of the top of the source item. *bottom* type: int Pixel position of the bottom of the source item. *left* type: int Pixel position of the left of the source item. *right* type: int Pixel position of the right of the source item. """ def __init__(self, item, top, bottom, left, right, scene_name=None): Baserequests.__init__(self) self.name = 'SetSceneItemCrop' self.dataout['item'] = item self.dataout['top'] = top self.dataout['bottom'] = bottom self.dataout['left'] = left self.dataout['right'] = right self.dataout['scene-name'] = scene_name class DeleteSceneItem(Baserequests): """Deletes a scene item. :Arguments: *scene* type: String (optional) Name of the scene the scene item belongs to. Defaults to the current scene. *item* type: Object Scene item to delete (required) *item.name* type: String Scene Item name (prefer `id`, including both is acceptable). *item.id* type: int Scene Item ID. """ def __init__(self, item, scene=None): Baserequests.__init__(self) self.name = 'DeleteSceneItem' self.dataout['item'] = item self.dataout['scene'] = scene class AddSceneItem(Baserequests): """Creates a scene item in a scene. In other words, this is how you add a source into a scene. :Arguments: *sceneName* type: String Name of the scene to create the scene item in *sourceName* type: String Name of the source to be added *setVisible* type: boolean Whether to make the sceneitem visible on creation or not. Default `true` :Returns: *itemId* type: int Numerical ID of the created scene item """ def __init__(self, sceneName, sourceName, setVisible): Baserequests.__init__(self) self.name = 'AddSceneItem' self.datain['itemId'] = None self.dataout['sceneName'] = sceneName self.dataout['sourceName'] = sourceName self.dataout['setVisible'] = setVisible def getItemId(self): return self.datain['itemId'] class DuplicateSceneItem(Baserequests): """Duplicates a scene item. :Arguments: *fromScene* type: String (optional) Name of the scene to copy the item from. Defaults to the current scene. *toScene* type: String (optional) Name of the scene to create the item in. Defaults to the current scene. *item* type: Object Scene Item to duplicate from the source scene (required) *item.name* type: String Scene Item name (prefer `id`, including both is acceptable). *item.id* type: int Scene Item ID. :Returns: *scene* type: String Name of the scene where the new item was created *item* type: Object New item info *item.id* type: int New item ID *item.name* type: String New item name """ def __init__(self, item, fromScene=None, toScene=None): Baserequests.__init__(self) self.name = 'DuplicateSceneItem' self.datain['scene'] = None self.datain['item'] = None self.dataout['item'] = item self.dataout['fromScene'] = fromScene self.dataout['toScene'] = toScene def getScene(self): return self.datain['scene'] def getItem(self): return self.datain['item'] class SetCurrentScene(Baserequests): """Switch to the specified scene. :Arguments: *scene_name* type: String Name of the scene to switch to. """ def __init__(self, scene_name): Baserequests.__init__(self) self.name = 'SetCurrentScene' self.dataout['scene-name'] = scene_name class GetCurrentScene(Baserequests): """Get the current scene's name and source items. :Returns: *name* type: String Name of the currently active scene. *sources* type: Array<SceneItem> Ordered list of the current scene's source items. """ def __init__(self): Baserequests.__init__(self) self.name = 'GetCurrentScene' self.datain['name'] = None self.datain['sources'] = None def getName(self): return self.datain['name'] def getSources(self): return self.datain['sources'] class GetSceneList(Baserequests): """Get a list of scenes in the currently active profile. :Returns: *current_scene* type: String Name of the currently active scene. *scenes* type: Array<Scene> Ordered list of the current profile's scenes (See [GetCurrentScene](#getcurrentscene) for more information). """ def __init__(self): Baserequests.__init__(self) self.name = 'GetSceneList' self.datain['current-scene'] = None self.datain['scenes'] = None def getCurrentScene(self): return self.datain['current-scene'] def getScenes(self): return self.datain['scenes'] class CreateScene(Baserequests): """Create a new scene scene. :Arguments: *sceneName* type: String Name of the scene to create. """ def __init__(self, sceneName): Baserequests.__init__(self) self.name = 'CreateScene' self.dataout['sceneName'] = sceneName class ReorderSceneItems(Baserequests): """Changes the order of scene items in the requested scene. :Arguments: *scene* type: String (optional) Name of the scene to reorder (defaults to current). *items* type: Array<Scene> Ordered list of objects with name and/or id specified. Id preferred due to uniqueness per scene *items.*.id* type: int (optional) Id of a specific scene item. Unique on a scene by scene basis. *items.*.name* type: String (optional) Name of a scene item. Sufficiently unique if no scene items share sources within the scene. """ def __init__(self, items, scene=None): Baserequests.__init__(self) self.name = 'ReorderSceneItems' self.dataout['items'] = items self.dataout['scene'] = scene class SetSceneTransitionOverride(Baserequests): """Set a scene to use a specific transition override. :Arguments: *sceneName* type: String Name of the scene to switch to. *transitionName* type: String Name of the transition to use. *transitionDuration* type: int (Optional) Duration in milliseconds of the transition if transition is not fixed. Defaults to the current duration specified in the UI if there is no current override and this value is not given. """ def __init__(self, sceneName, transitionName, transitionDuration): Baserequests.__init__(self) self.name = 'SetSceneTransitionOverride' self.dataout['sceneName'] = sceneName self.dataout['transitionName'] = transitionName self.dataout['transitionDuration'] = transitionDuration class RemoveSceneTransitionOverride(Baserequests): """Remove any transition override on a scene. :Arguments: *sceneName* type: String Name of the scene to switch to. """ def __init__(self, sceneName): Baserequests.__init__(self) self.name = 'RemoveSceneTransitionOverride' self.dataout['sceneName'] = sceneName class GetSceneTransitionOverride(Baserequests): """Get the current scene transition override. :Arguments: *sceneName* type: String Name of the scene to switch to. :Returns: *transitionName* type: String Name of the current overriding transition. Empty string if no override is set. *transitionDuration* type: int Transition duration. `-1` if no override is set. """ def __init__(self, sceneName): Baserequests.__init__(self) self.name = 'GetSceneTransitionOverride' self.datain['transitionName'] = None self.datain['transitionDuration'] = None self.dataout['sceneName'] = sceneName def getTransitionName(self): return self.datain['transitionName'] def getTransitionDuration(self): return self.datain['transitionDuration'] class GetStreamingStatus(Baserequests): """Get current streaming and recording status. :Returns: *streaming* type: boolean Current streaming status. *recording* type: boolean Current recording status. *stream_timecode* type: String (optional) Time elapsed since streaming started (only present if currently streaming). *rec_timecode* type: String (optional) Time elapsed since recording started (only present if currently recording). *preview_only* type: boolean Always false. Retrocompatibility with OBSRemote. """ def __init__(self): Baserequests.__init__(self) self.name = 'GetStreamingStatus' self.datain['streaming'] = None self.datain['recording'] = None self.datain['stream-timecode'] = None self.datain['rec-timecode'] = None self.datain['preview-only'] = None def getStreaming(self): return self.datain['streaming'] def getRecording(self): return self.datain['recording'] def getStreamTimecode(self): return self.datain['stream-timecode'] def getRecTimecode(self): return self.datain['rec-timecode'] def getPreviewOnly(self): return self.datain['preview-only'] class StartStopStreaming(Baserequests): """Toggle streaming on or off (depending on the current stream state). """ def __init__(self): Baserequests.__init__(self) self.name = 'StartStopStreaming' class StartStreaming(Baserequests): """Start streaming. Will return an `error` if streaming is already active. :Arguments: *stream* type: Object (optional) Special stream configuration. Please note: these won't be saved to OBS' configuration. *stream.type* type: String (optional) If specified ensures the type of stream matches the given type (usually 'rtmp_custom' or 'rtmp_common'). If the currently configured stream type does not match the given stream type, all settings must be specified in the `settings` object or an error will occur when starting the stream. *stream.metadata* type: Object (optional) Adds the given object parameters as encoded query string parameters to the 'key' of the RTMP stream. Used to pass data to the RTMP service about the streaming. May be any String, Numeric, or Boolean field. *stream.settings* type: Object (optional) Settings for the stream. *stream.settings.server* type: String (optional) The publish URL. *stream.settings.key* type: String (optional) The publish key of the stream. *stream.settings.use_auth* type: boolean (optional) Indicates whether authentication should be used when connecting to the streaming server. *stream.settings.username* type: String (optional) If authentication is enabled, the username for the streaming server. Ignored if `use_auth` is not set to `true`. *stream.settings.password* type: String (optional) If authentication is enabled, the password for the streaming server. Ignored if `use_auth` is not set to `true`. """ def __init__(self, stream=None): Baserequests.__init__(self) self.name = 'StartStreaming' self.dataout['stream'] = stream class StopStreaming(Baserequests): """Stop streaming. Will return an `error` if streaming is not active. """ def __init__(self): Baserequests.__init__(self) self.name = 'StopStreaming' class SetStreamSettings(Baserequests): """Sets one or more attributes of the current streaming server settings. Any options not passed will remain unchanged. Returns the updated settings in response. If 'type' is different than the current streaming service type, all settings are required. Returns the full settings of the stream (the same as GetStreamSettings). :Arguments: *type* type: String The type of streaming service configuration, usually `rtmp_custom` or `rtmp_common`. *settings* type: Object The actual settings of the stream. *settings.server* type: String (optional) The publish URL. *settings.key* type: String (optional) The publish key. *settings.use_auth* type: boolean (optional) Indicates whether authentication should be used when connecting to the streaming server. *settings.username* type: String (optional) The username for the streaming service. *settings.password* type: String (optional) The password for the streaming service. *save* type: boolean Persist the settings to disk. """ def __init__(self, type, settings, save): Baserequests.__init__(self) self.name = 'SetStreamSettings' self.dataout['type'] = type self.dataout['settings'] = settings self.dataout['save'] = save class GetStreamSettings(Baserequests): """Get the current streaming server settings. :Returns: *type* type: String The type of streaming service configuration. Possible values: 'rtmp_custom' or 'rtmp_common'. *settings* type: Object Stream settings object. *settings.server* type: String The publish URL. *settings.key* type: String The publish key of the stream. *settings.use_auth* type: boolean Indicates whether authentication should be used when connecting to the streaming server. *settings.username* type: String The username to use when accessing the streaming server. Only present if `use_auth` is `true`. *settings.password* type: String The password to use when accessing the streaming server. Only present if `use_auth` is `true`. """ def __init__(self): Baserequests.__init__(self) self.name = 'GetStreamSettings' self.datain['type'] = None self.datain['settings'] = None def getType(self): return self.datain['type'] def getSettings(self): return self.datain['settings'] class SaveStreamSettings(Baserequests): """Save the current streaming server settings to disk. """ def __init__(self): Baserequests.__init__(self) self.name = 'SaveStreamSettings' class SendCaptions(Baserequests): """Send the provided text as embedded CEA-608 caption data. :Arguments: *text* type: String Captions text """ def __init__(self, text): Baserequests.__init__(self) self.name = 'SendCaptions' self.dataout['text'] = text class GetStudioModeStatus(Baserequests): """Indicates if Studio Mode is currently enabled. :Returns: *studio_mode* type: boolean Indicates if Studio Mode is enabled. """ def __init__(self): Baserequests.__init__(self) self.name = 'GetStudioModeStatus' self.datain['studio-mode'] = None def getStudioMode(self): return self.datain['studio-mode'] class GetPreviewScene(Baserequests): """Get the name of the currently previewed scene and its list of sources. Will return an `error` if Studio Mode is not enabled. :Returns: *name* type: String The name of the active preview scene. *sources* type: Array<SceneItem> """ def __init__(self): Baserequests.__init__(self) self.name = 'GetPreviewScene' self.datain['name'] = None self.datain['sources'] = None def getName(self): return self.datain['name'] def getSources(self): return self.datain['sources'] class SetPreviewScene(Baserequests): """Set the active preview scene. Will return an `error` if Studio Mode is not enabled. :Arguments: *scene_name* type: String The name of the scene to preview. """ def __init__(self, scene_name): Baserequests.__init__(self) self.name = 'SetPreviewScene' self.dataout['scene-name'] = scene_name class TransitionToProgram(Baserequests): """Transitions the currently previewed scene to the main output. Will return an `error` if Studio Mode is not enabled. :Arguments: *with_transition* type: Object (optional) Change the active transition before switching scenes. Defaults to the active transition. *with_transition.name* type: String Name of the transition. *with_transition.duration* type: int (optional) Transition duration (in milliseconds). """ def __init__(self, with_transition=None): Baserequests.__init__(self) self.name = 'TransitionToProgram' self.dataout['with-transition'] = with_transition class EnableStudioMode(Baserequests): """Enables Studio Mode. """ def __init__(self): Baserequests.__init__(self) self.name = 'EnableStudioMode' class DisableStudioMode(Baserequests): """Disables Studio Mode. """ def __init__(self): Baserequests.__init__(self) self.name = 'DisableStudioMode' class ToggleStudioMode(Baserequests): """Toggles Studio Mode (depending on the current state of studio mode). """ def __init__(self): Baserequests.__init__(self) self.name = 'ToggleStudioMode' class GetTransitionList(Baserequests): """List of all transitions available in the frontend's dropdown menu. :Returns: *current_transition* type: String Name of the currently active transition. *transitions* type: Array<Object> List of transitions. *transitions.*.name* type: String Name of the transition. """ def __init__(self): Baserequests.__init__(self) self.name = 'GetTransitionList' self.datain['current-transition'] = None self.datain['transitions'] = None def getCurrentTransition(self): return self.datain['current-transition'] def getTransitions(self): return self.datain['transitions'] class GetCurrentTransition(Baserequests): """Get the name of the currently selected transition in the frontend's dropdown menu. :Returns: *name* type: String Name of the selected transition. *duration* type: int (optional) Transition duration (in milliseconds) if supported by the transition. """ def __init__(self): Baserequests.__init__(self) self.name = 'GetCurrentTransition' self.datain['name'] = None self.datain['duration'] = None def getName(self): return self.datain['name'] def getDuration(self): return self.datain['duration'] class SetCurrentTransition(Baserequests): """Set the active transition. :Arguments: *transition_name* type: String The name of the transition. """ def __init__(self, transition_name): Baserequests.__init__(self) self.name = 'SetCurrentTransition' self.dataout['transition-name'] = transition_name class SetTransitionDuration(Baserequests): """Set the duration of the currently selected transition if supported. :Arguments: *duration* type: int Desired duration of the transition (in milliseconds). """ def __init__(self, duration): Baserequests.__init__(self) self.name = 'SetTransitionDuration' self.dataout['duration'] = duration class GetTransitionDuration(Baserequests): """Get the duration of the currently selected transition if supported. :Returns: *transition_duration* type: int Duration of the current transition (in milliseconds). """ def __init__(self): Baserequests.__init__(self) self.name = 'GetTransitionDuration' self.datain['transition-duration'] = None def getTransitionDuration(self): return self.datain['transition-duration'] class GetTransitionPosition(Baserequests): """Get the position of the current transition. :Returns: *position* type: double current transition position. This value will be between 0.0 and 1.0. Note: Transition returns 1.0 when not active. """ def __init__(self): Baserequests.__init__(self) self.name = 'GetTransitionPosition' self.datain['position'] = None def getPosition(self): return self.datain['position'] class GetTransitionSettings(Baserequests): """Get the current settings of a transition :Arguments: *transitionName* type: String Transition name :Returns: *transitionSettings* type: Object Current transition settings """ def __init__(self, transitionName): Baserequests.__init__(self) self.name = 'GetTransitionSettings' self.datain['transitionSettings'] = None self.dataout['transitionName'] = transitionName def getTransitionSettings(self): return self.datain['transitionSettings'] class SetTransitionSettings(Baserequests): """Change the current settings of a transition :Arguments: *transitionName* type: String Transition name *transitionSettings* type: Object Transition settings (they can be partial) :Returns: *transitionSettings* type: Object Updated transition settings """ def __init__(self, transitionName, transitionSettings): Baserequests.__init__(self) self.name = 'SetTransitionSettings' self.datain['transitionSettings'] = None self.dataout['transitionName'] = transitionName self.dataout['transitionSettings'] = transitionSettings def getTransitionSettings(self): return self.datain['transitionSettings'] class ReleaseTBar(Baserequests): """Release the T-Bar (like a user releasing their mouse button after moving it). *YOU MUST CALL THIS if you called `SetTBarPosition` with the `release` parameter set to `false`.* """ def __init__(self): Baserequests.__init__(self) self.name = 'ReleaseTBar' class SetTBarPosition(Baserequests): """ If your code needs to perform multiple successive T-Bar moves (e.g. : in an animation, or in response to a user moving a T-Bar control in your User Interface), set `release` to false and call `ReleaseTBar` later once the animation/interaction is over. :Arguments: *position* type: double T-Bar position. This value must be between 0.0 and 1.0. *release* type: boolean (optional) Whether or not the T-Bar gets released automatically after setting its new position (like a user releasing their mouse button after moving the T-Bar). Call `ReleaseTBar` manually if you set `release` to false. Defaults to true. """ def __init__(self, position, release=None): Baserequests.__init__(self) self.name = 'SetTBarPosition' self.dataout['position'] = position self.dataout['release'] = release
simple_history/tests/custom_user/admin.py
rdurica/django-simple-history
911
3321
from django.contrib import admin from django.contrib.auth.admin import UserAdmin from .models import CustomUser admin.site.register(CustomUser, UserAdmin)
omegaconf/_utils.py
sugatoray/omegaconf
1,091
3330
<reponame>sugatoray/omegaconf<gh_stars>1000+ import copy import os import re import string import sys import warnings from contextlib import contextmanager from enum import Enum from textwrap import dedent from typing import ( Any, Dict, Iterator, List, Optional, Tuple, Type, Union, get_type_hints, ) import yaml from .errors import ( ConfigIndexError, ConfigTypeError, ConfigValueError, GrammarParseError, OmegaConfBaseException, ValidationError, ) from .grammar_parser import SIMPLE_INTERPOLATION_PATTERN, parse try: import dataclasses except ImportError: # pragma: no cover dataclasses = None # type: ignore # pragma: no cover try: import attr except ImportError: # pragma: no cover attr = None # type: ignore # pragma: no cover # Regexprs to match key paths like: a.b, a[b], ..a[c].d, etc. # We begin by matching the head (in these examples: a, a, ..a). # This can be read as "dots followed by any character but `.` or `[`" # Note that a key starting with brackets, like [a], is purposedly *not* # matched here and will instead be handled in the next regex below (this # is to keep this regex simple). KEY_PATH_HEAD = re.compile(r"(\.)*[^.[]*") # Then we match other keys. The following expression matches one key and can # be read as a choice between two syntaxes: # - `.` followed by anything except `.` or `[` (ex: .b, .d) # - `[` followed by anything then `]` (ex: [b], [c]) KEY_PATH_OTHER = re.compile(r"\.([^.[]*)|\[(.*?)\]") # source: https://yaml.org/type/bool.html YAML_BOOL_TYPES = [ "y", "Y", "yes", "Yes", "YES", "n", "N", "no", "No", "NO", "true", "True", "TRUE", "false", "False", "FALSE", "on", "On", "ON", "off", "Off", "OFF", ] class Marker: def __init__(self, desc: str): self.desc = desc def __repr__(self) -> str: return self.desc # To be used as default value when `None` is not an option. _DEFAULT_MARKER_: Any = Marker("_DEFAULT_MARKER_") class OmegaConfDumper(yaml.Dumper): # type: ignore str_representer_added = False @staticmethod def str_representer(dumper: yaml.Dumper, data: str) -> yaml.ScalarNode: with_quotes = yaml_is_bool(data) or is_int(data) or is_float(data) return dumper.represent_scalar( yaml.resolver.BaseResolver.DEFAULT_SCALAR_TAG, data, style=("'" if with_quotes else None), ) def get_omega_conf_dumper() -> Type[OmegaConfDumper]: if not OmegaConfDumper.str_representer_added: OmegaConfDumper.add_representer(str, OmegaConfDumper.str_representer) OmegaConfDumper.str_representer_added = True return OmegaConfDumper def yaml_is_bool(b: str) -> bool: return b in YAML_BOOL_TYPES def get_yaml_loader() -> Any: class OmegaConfLoader(yaml.SafeLoader): # type: ignore def construct_mapping(self, node: yaml.Node, deep: bool = False) -> Any: keys = set() for key_node, value_node in node.value: if key_node.tag != yaml.resolver.BaseResolver.DEFAULT_SCALAR_TAG: continue if key_node.value in keys: raise yaml.constructor.ConstructorError( "while constructing a mapping", node.start_mark, f"found duplicate key {key_node.value}", key_node.start_mark, ) keys.add(key_node.value) return super().construct_mapping(node, deep=deep) loader = OmegaConfLoader loader.add_implicit_resolver( "tag:yaml.org,2002:float", re.compile( """^(?: [-+]?(?:[0-9][0-9_]*)\\.[0-9_]*(?:[eE][-+]?[0-9]+)? |[-+]?(?:[0-9][0-9_]*)(?:[eE][-+]?[0-9]+) |\\.[0-9_]+(?:[eE][-+][0-9]+)? |[-+]?[0-9][0-9_]*(?::[0-5]?[0-9])+\\.[0-9_]* |[-+]?\\.(?:inf|Inf|INF) |\\.(?:nan|NaN|NAN))$""", re.X, ), list("-+0123456789."), ) loader.yaml_implicit_resolvers = { key: [ (tag, regexp) for tag, regexp in resolvers if tag != "tag:yaml.org,2002:timestamp" ] for key, resolvers in loader.yaml_implicit_resolvers.items() } return loader def _get_class(path: str) -> type: from importlib import import_module module_path, _, class_name = path.rpartition(".") mod = import_module(module_path) try: klass: type = getattr(mod, class_name) except AttributeError: raise ImportError(f"Class {class_name} is not in module {module_path}") return klass def _is_union(type_: Any) -> bool: return getattr(type_, "__origin__", None) is Union def _resolve_optional(type_: Any) -> Tuple[bool, Any]: """Check whether `type_` is equivalent to `typing.Optional[T]` for some T.""" if getattr(type_, "__origin__", None) is Union: args = type_.__args__ if len(args) == 2 and args[1] == type(None): # noqa E721 return True, args[0] if type_ is Any: return True, Any return False, type_ def _is_optional(obj: Any, key: Optional[Union[int, str]] = None) -> bool: """Check `obj` metadata to see if the given node is optional.""" from .base import Container, Node if key is not None: assert isinstance(obj, Container) obj = obj._get_node(key) if isinstance(obj, Node): return obj._is_optional() else: # In case `obj` is not a Node, treat it as optional by default. # This is used in `ListConfig.append` and `ListConfig.insert` # where the appended/inserted value might or might not be a Node. return True def _resolve_forward(type_: Type[Any], module: str) -> Type[Any]: import typing # lgtm [py/import-and-import-from] forward = typing.ForwardRef if hasattr(typing, "ForwardRef") else typing._ForwardRef # type: ignore if type(type_) is forward: return _get_class(f"{module}.{type_.__forward_arg__}") else: if is_dict_annotation(type_): kt, vt = get_dict_key_value_types(type_) if kt is not None: kt = _resolve_forward(kt, module=module) if vt is not None: vt = _resolve_forward(vt, module=module) return Dict[kt, vt] # type: ignore if is_list_annotation(type_): et = get_list_element_type(type_) if et is not None: et = _resolve_forward(et, module=module) return List[et] # type: ignore return type_ def extract_dict_subclass_data(obj: Any, parent: Any) -> Optional[Dict[str, Any]]: """Check if obj is an instance of a subclass of Dict. If so, extract the Dict keys/values.""" from omegaconf.omegaconf import _maybe_wrap is_type = isinstance(obj, type) obj_type = obj if is_type else type(obj) subclasses_dict = is_dict_subclass(obj_type) if subclasses_dict: warnings.warn( f"Class `{obj_type.__name__}` subclasses `Dict`." + " Subclassing `Dict` in Structured Config classes is deprecated," + " see github.com/omry/omegaconf/issues/663", UserWarning, stacklevel=9, ) if is_type: return None elif subclasses_dict: dict_subclass_data = {} key_type, element_type = get_dict_key_value_types(obj_type) for name, value in obj.items(): is_optional, type_ = _resolve_optional(element_type) type_ = _resolve_forward(type_, obj.__module__) try: dict_subclass_data[name] = _maybe_wrap( ref_type=type_, is_optional=is_optional, key=name, value=value, parent=parent, ) except ValidationError as ex: format_and_raise( node=None, key=name, value=value, cause=ex, msg=str(ex) ) return dict_subclass_data else: return None def get_attr_class_field_names(obj: Any) -> List[str]: is_type = isinstance(obj, type) obj_type = obj if is_type else type(obj) return list(attr.fields_dict(obj_type)) def get_attr_data(obj: Any, allow_objects: Optional[bool] = None) -> Dict[str, Any]: from omegaconf.omegaconf import OmegaConf, _maybe_wrap flags = {"allow_objects": allow_objects} if allow_objects is not None else {} from omegaconf import MISSING d = {} is_type = isinstance(obj, type) obj_type = obj if is_type else type(obj) dummy_parent = OmegaConf.create({}, flags=flags) dummy_parent._metadata.object_type = obj_type for name, attrib in attr.fields_dict(obj_type).items(): is_optional, type_ = _resolve_optional(attrib.type) type_ = _resolve_forward(type_, obj.__module__) if not is_type: value = getattr(obj, name) else: value = attrib.default if value == attr.NOTHING: value = MISSING if _is_union(type_): e = ConfigValueError( f"Union types are not supported:\n{name}: {type_str(type_)}" ) format_and_raise(node=None, key=None, value=value, cause=e, msg=str(e)) try: d[name] = _maybe_wrap( ref_type=type_, is_optional=is_optional, key=name, value=value, parent=dummy_parent, ) except (ValidationError, GrammarParseError) as ex: format_and_raise( node=dummy_parent, key=name, value=value, cause=ex, msg=str(ex) ) d[name]._set_parent(None) dict_subclass_data = extract_dict_subclass_data(obj=obj, parent=dummy_parent) if dict_subclass_data is not None: d.update(dict_subclass_data) return d def get_dataclass_field_names(obj: Any) -> List[str]: return [field.name for field in dataclasses.fields(obj)] def get_dataclass_data( obj: Any, allow_objects: Optional[bool] = None ) -> Dict[str, Any]: from omegaconf.omegaconf import MISSING, OmegaConf, _maybe_wrap flags = {"allow_objects": allow_objects} if allow_objects is not None else {} d = {} obj_type = get_type_of(obj) dummy_parent = OmegaConf.create({}, flags=flags) dummy_parent._metadata.object_type = obj_type resolved_hints = get_type_hints(obj_type) for field in dataclasses.fields(obj): name = field.name is_optional, type_ = _resolve_optional(resolved_hints[field.name]) type_ = _resolve_forward(type_, obj.__module__) if hasattr(obj, name): value = getattr(obj, name) if value == dataclasses.MISSING: value = MISSING else: if field.default_factory == dataclasses.MISSING: # type: ignore value = MISSING else: value = field.default_factory() # type: ignore if _is_union(type_): e = ConfigValueError( f"Union types are not supported:\n{name}: {type_str(type_)}" ) format_and_raise(node=None, key=None, value=value, cause=e, msg=str(e)) try: d[name] = _maybe_wrap( ref_type=type_, is_optional=is_optional, key=name, value=value, parent=dummy_parent, ) except (ValidationError, GrammarParseError) as ex: format_and_raise( node=dummy_parent, key=name, value=value, cause=ex, msg=str(ex) ) d[name]._set_parent(None) dict_subclass_data = extract_dict_subclass_data(obj=obj, parent=dummy_parent) if dict_subclass_data is not None: d.update(dict_subclass_data) return d def is_dataclass(obj: Any) -> bool: from omegaconf.base import Node if dataclasses is None or isinstance(obj, Node): return False return dataclasses.is_dataclass(obj) def is_attr_class(obj: Any) -> bool: from omegaconf.base import Node if attr is None or isinstance(obj, Node): return False return attr.has(obj) def is_structured_config(obj: Any) -> bool: return is_attr_class(obj) or is_dataclass(obj) def is_dataclass_frozen(type_: Any) -> bool: return type_.__dataclass_params__.frozen # type: ignore def is_attr_frozen(type_: type) -> bool: # This is very hacky and probably fragile as well. # Unfortunately currently there isn't an official API in attr that can detect that. # noinspection PyProtectedMember return type_.__setattr__ == attr._make._frozen_setattrs # type: ignore def get_type_of(class_or_object: Any) -> Type[Any]: type_ = class_or_object if not isinstance(type_, type): type_ = type(class_or_object) assert isinstance(type_, type) return type_ def is_structured_config_frozen(obj: Any) -> bool: type_ = get_type_of(obj) if is_dataclass(type_): return is_dataclass_frozen(type_) if is_attr_class(type_): return is_attr_frozen(type_) return False def get_structured_config_field_names(obj: Any) -> List[str]: if is_dataclass(obj): return get_dataclass_field_names(obj) elif is_attr_class(obj): return get_attr_class_field_names(obj) else: raise ValueError(f"Unsupported type: {type(obj).__name__}") def get_structured_config_data( obj: Any, allow_objects: Optional[bool] = None ) -> Dict[str, Any]: if is_dataclass(obj): return get_dataclass_data(obj, allow_objects=allow_objects) elif is_attr_class(obj): return get_attr_data(obj, allow_objects=allow_objects) else: raise ValueError(f"Unsupported type: {type(obj).__name__}") class ValueKind(Enum): VALUE = 0 MANDATORY_MISSING = 1 INTERPOLATION = 2 def _is_missing_value(value: Any) -> bool: from omegaconf import Node if isinstance(value, Node): value = value._value() return _is_missing_literal(value) def _is_missing_literal(value: Any) -> bool: # Uses literal '???' instead of the MISSING const for performance reasons. return isinstance(value, str) and value == "???" def _is_none( value: Any, resolve: bool = False, throw_on_resolution_failure: bool = True ) -> bool: from omegaconf import Node if not isinstance(value, Node): return value is None if resolve: value = value._maybe_dereference_node( throw_on_resolution_failure=throw_on_resolution_failure ) if not throw_on_resolution_failure and value is None: # Resolution failure: consider that it is *not* None. return False assert isinstance(value, Node) return value._is_none() def get_value_kind( value: Any, strict_interpolation_validation: bool = False ) -> ValueKind: """ Determine the kind of a value Examples: VALUE: "10", "20", True MANDATORY_MISSING: "???" INTERPOLATION: "${foo.bar}", "${foo.${bar}}", "${foo:bar}", "[${foo}, ${bar}]", "ftp://${host}/path", "${foo:${bar}, [true], {'baz': ${baz}}}" :param value: Input to classify. :param strict_interpolation_validation: If `True`, then when `value` is a string containing "${", it is parsed to validate the interpolation syntax. If `False`, this parsing step is skipped: this is more efficient, but will not detect errors. """ if _is_missing_value(value): return ValueKind.MANDATORY_MISSING value = _get_value(value) # We identify potential interpolations by the presence of "${" in the string. # Note that escaped interpolations (ex: "esc: \${bar}") are identified as # interpolations: this is intended, since they must be processed as interpolations # for the string to be properly un-escaped. # Keep in mind that invalid interpolations will only be detected when # `strict_interpolation_validation` is True. if isinstance(value, str) and "${" in value: if strict_interpolation_validation: # First try the cheap regex matching that detects common interpolations. if SIMPLE_INTERPOLATION_PATTERN.match(value) is None: # If no match, do the more expensive grammar parsing to detect errors. parse(value) return ValueKind.INTERPOLATION else: return ValueKind.VALUE # DEPRECATED: remove in 2.2 def is_bool(st: str) -> bool: st = str.lower(st) return st == "true" or st == "false" def is_float(st: str) -> bool: try: float(st) return True except ValueError: return False def is_int(st: str) -> bool: try: int(st) return True except ValueError: return False # DEPRECATED: remove in 2.2 def decode_primitive(s: str) -> Any: if is_bool(s): return str.lower(s) == "true" if is_int(s): return int(s) if is_float(s): return float(s) return s def is_primitive_list(obj: Any) -> bool: from .base import Container return not isinstance(obj, Container) and isinstance(obj, (list, tuple)) def is_primitive_dict(obj: Any) -> bool: t = get_type_of(obj) return t is dict def is_dict_annotation(type_: Any) -> bool: origin = getattr(type_, "__origin__", None) if sys.version_info < (3, 7, 0): return origin is Dict or type_ is Dict # pragma: no cover else: # pragma: no cover # type_dict is a bit hard to detect. # this support is tentative, if it eventually causes issues in other areas it may be dropped. typed_dict = hasattr(type_, "__base__") and type_.__base__ == dict return origin is dict or typed_dict def is_list_annotation(type_: Any) -> bool: origin = getattr(type_, "__origin__", None) if sys.version_info < (3, 7, 0): return origin is List or type_ is List # pragma: no cover else: return origin is list # pragma: no cover def is_tuple_annotation(type_: Any) -> bool: origin = getattr(type_, "__origin__", None) if sys.version_info < (3, 7, 0): return origin is Tuple or type_ is Tuple # pragma: no cover else: return origin is tuple # pragma: no cover def is_dict_subclass(type_: Any) -> bool: return type_ is not None and isinstance(type_, type) and issubclass(type_, Dict) def is_dict(obj: Any) -> bool: return is_primitive_dict(obj) or is_dict_annotation(obj) or is_dict_subclass(obj) def is_primitive_container(obj: Any) -> bool: return is_primitive_list(obj) or is_primitive_dict(obj) def get_list_element_type(ref_type: Optional[Type[Any]]) -> Any: args = getattr(ref_type, "__args__", None) if ref_type is not List and args is not None and args[0]: element_type = args[0] else: element_type = Any return element_type def get_dict_key_value_types(ref_type: Any) -> Tuple[Any, Any]: args = getattr(ref_type, "__args__", None) if args is None: bases = getattr(ref_type, "__orig_bases__", None) if bases is not None and len(bases) > 0: args = getattr(bases[0], "__args__", None) key_type: Any element_type: Any if ref_type is None or ref_type == Dict: key_type = Any element_type = Any else: if args is not None: key_type = args[0] element_type = args[1] else: key_type = Any element_type = Any return key_type, element_type def valid_value_annotation_type(type_: Any) -> bool: return type_ is Any or is_primitive_type(type_) or is_structured_config(type_) def _valid_dict_key_annotation_type(type_: Any) -> bool: from omegaconf import DictKeyType return type_ is None or type_ is Any or issubclass(type_, DictKeyType.__args__) # type: ignore def is_primitive_type(type_: Any) -> bool: type_ = get_type_of(type_) return issubclass(type_, Enum) or type_ in (int, float, bool, str, type(None)) def _is_interpolation(v: Any, strict_interpolation_validation: bool = False) -> bool: if isinstance(v, str): ret = ( get_value_kind(v, strict_interpolation_validation) == ValueKind.INTERPOLATION ) assert isinstance(ret, bool) return ret return False def _get_value(value: Any) -> Any: from .base import Container from .nodes import ValueNode if isinstance(value, ValueNode): return value._value() elif isinstance(value, Container): boxed = value._value() if boxed is None or _is_missing_literal(boxed) or _is_interpolation(boxed): return boxed # return primitives and regular OmegaConf Containers as is return value def get_ref_type(obj: Any, key: Any = None) -> Optional[Type[Any]]: from omegaconf import Container, Node if isinstance(obj, Container): if key is not None: obj = obj._get_node(key) else: if key is not None: raise ValueError("Key must only be provided when obj is a container") if isinstance(obj, Node): ref_type = obj._metadata.ref_type if obj._is_optional() and ref_type is not Any: return Optional[ref_type] # type: ignore else: return ref_type else: return Any # type: ignore def _raise(ex: Exception, cause: Exception) -> None: # Set the environment variable OC_CAUSE=1 to get a stacktrace that includes the # causing exception. env_var = os.environ["OC_CAUSE"] if "OC_CAUSE" in os.environ else None debugging = sys.gettrace() is not None full_backtrace = (debugging and not env_var == "0") or (env_var == "1") if full_backtrace: ex.__cause__ = cause else: ex.__cause__ = None raise ex.with_traceback(sys.exc_info()[2]) # set end OC_CAUSE=1 for full backtrace def format_and_raise( node: Any, key: Any, value: Any, msg: str, cause: Exception, type_override: Any = None, ) -> None: from omegaconf import OmegaConf from omegaconf.base import Node if isinstance(cause, AssertionError): raise if isinstance(cause, OmegaConfBaseException) and cause._initialized: ex = cause if type_override is not None: ex = type_override(str(cause)) ex.__dict__ = copy.deepcopy(cause.__dict__) _raise(ex, cause) object_type: Optional[Type[Any]] object_type_str: Optional[str] = None ref_type: Optional[Type[Any]] ref_type_str: Optional[str] child_node: Optional[Node] = None if node is None: full_key = key if key is not None else "" object_type = None ref_type = None ref_type_str = None else: if key is not None and not node._is_none(): child_node = node._get_node(key, validate_access=False) try: full_key = node._get_full_key(key=key) except Exception as exc: # Since we are handling an exception, raising a different one here would # be misleading. Instead, we display it in the key. full_key = f"<unresolvable due to {type(exc).__name__}: {exc}>" object_type = OmegaConf.get_type(node) object_type_str = type_str(object_type) ref_type = get_ref_type(node) ref_type_str = type_str(ref_type) msg = string.Template(msg).safe_substitute( REF_TYPE=ref_type_str, OBJECT_TYPE=object_type_str, KEY=key, FULL_KEY=full_key, VALUE=value, VALUE_TYPE=type_str(type(value), include_module_name=True), KEY_TYPE=f"{type(key).__name__}", ) if ref_type not in (None, Any): template = dedent( """\ $MSG full_key: $FULL_KEY reference_type=$REF_TYPE object_type=$OBJECT_TYPE""" ) else: template = dedent( """\ $MSG full_key: $FULL_KEY object_type=$OBJECT_TYPE""" ) s = string.Template(template=template) message = s.substitute( REF_TYPE=ref_type_str, OBJECT_TYPE=object_type_str, MSG=msg, FULL_KEY=full_key ) exception_type = type(cause) if type_override is None else type_override if exception_type == TypeError: exception_type = ConfigTypeError elif exception_type == IndexError: exception_type = ConfigIndexError ex = exception_type(f"{message}") if issubclass(exception_type, OmegaConfBaseException): ex._initialized = True ex.msg = message ex.parent_node = node ex.child_node = child_node ex.key = key ex.full_key = full_key ex.value = value ex.object_type = object_type ex.object_type_str = object_type_str ex.ref_type = ref_type ex.ref_type_str = ref_type_str _raise(ex, cause) def type_str(t: Any, include_module_name: bool = False) -> str: is_optional, t = _resolve_optional(t) if t is None: return type(t).__name__ if t is Any: return "Any" if t is ...: return "..." if sys.version_info < (3, 7, 0): # pragma: no cover # Python 3.6 if hasattr(t, "__name__"): name = str(t.__name__) else: if t.__origin__ is not None: name = type_str(t.__origin__) else: name = str(t) if name.startswith("typing."): name = name[len("typing.") :] else: # pragma: no cover # Python >= 3.7 if hasattr(t, "__name__"): name = str(t.__name__) else: if t._name is None: if t.__origin__ is not None: name = type_str( t.__origin__, include_module_name=include_module_name ) else: name = str(t._name) args = getattr(t, "__args__", None) if args is not None: args = ", ".join( [type_str(t, include_module_name=include_module_name) for t in t.__args__] ) ret = f"{name}[{args}]" else: ret = name if include_module_name: if ( hasattr(t, "__module__") and t.__module__ != "builtins" and t.__module__ != "typing" and not t.__module__.startswith("omegaconf.") ): module_prefix = t.__module__ + "." else: module_prefix = "" ret = module_prefix + ret if is_optional: return f"Optional[{ret}]" else: return ret def _ensure_container(target: Any, flags: Optional[Dict[str, bool]] = None) -> Any: from omegaconf import OmegaConf if is_primitive_container(target): assert isinstance(target, (list, dict)) target = OmegaConf.create(target, flags=flags) elif is_structured_config(target): target = OmegaConf.structured(target, flags=flags) elif not OmegaConf.is_config(target): raise ValueError( "Invalid input. Supports one of " + "[dict,list,DictConfig,ListConfig,dataclass,dataclass instance,attr class,attr class instance]" ) return target def is_generic_list(type_: Any) -> bool: """ Checks if a type is a generic list, for example: list returns False typing.List returns False typing.List[T] returns True :param type_: variable type :return: bool """ return is_list_annotation(type_) and get_list_element_type(type_) is not None def is_generic_dict(type_: Any) -> bool: """ Checks if a type is a generic dict, for example: list returns False typing.List returns False typing.List[T] returns True :param type_: variable type :return: bool """ return is_dict_annotation(type_) and len(get_dict_key_value_types(type_)) > 0 def is_container_annotation(type_: Any) -> bool: return is_list_annotation(type_) or is_dict_annotation(type_) def split_key(key: str) -> List[str]: """ Split a full key path into its individual components. This is similar to `key.split(".")` but also works with the getitem syntax: "a.b" -> ["a", "b"] "a[b]" -> ["a, "b"] ".a.b[c].d" -> ["", "a", "b", "c", "d"] "[a].b" -> ["a", "b"] """ # Obtain the first part of the key (in docstring examples: a, a, .a, '') first = KEY_PATH_HEAD.match(key) assert first is not None first_stop = first.span()[1] # `tokens` will contain all elements composing the key. tokens = key[0:first_stop].split(".") # Optimization in case `key` has no other component: we are done. if first_stop == len(key): return tokens if key[first_stop] == "[" and not tokens[-1]: # This is a special case where the first key starts with brackets, e.g. # [a] or ..[a]. In that case there is an extra "" in `tokens` that we # need to get rid of: # [a] -> tokens = [""] but we would like [] # ..[a] -> tokens = ["", "", ""] but we would like ["", ""] tokens.pop() # Identify other key elements (in docstring examples: b, b, b/c/d, b) others = KEY_PATH_OTHER.findall(key[first_stop:]) # There are two groups in the `KEY_PATH_OTHER` regex: one for keys starting # with a dot (.b, .d) and one for keys starting with a bracket ([b], [c]). # Only one group can be non-empty. tokens += [dot_key if dot_key else bracket_key for dot_key, bracket_key in others] return tokens # Similar to Python 3.7+'s `contextlib.nullcontext` (which should be used instead, # once support for Python 3.6 is dropped). @contextmanager def nullcontext(enter_result: Any = None) -> Iterator[Any]: yield enter_result
site/tests/unittests/test/test_base64.py
martinphellwig/brython_wf
652
3366
<filename>site/tests/unittests/test/test_base64.py import unittest from test import support import base64 import binascii import os import sys import subprocess class LegacyBase64TestCase(unittest.TestCase): def test_encodebytes(self): eq = self.assertEqual eq(base64.encodebytes(b"www.python.org"), b"d3d3LnB5dGhvbi5vcmc=\n") eq(base64.encodebytes(b"a"), b"YQ==\n") eq(base64.encodebytes(b"ab"), b"YWI=\n") eq(base64.encodebytes(b"abc"), b"YWJj\n") eq(base64.encodebytes(b""), b"") eq(base64.encodebytes(b"abcdefghijklmnopqrstuvwxyz" b"ABCDEFGHIJKLMNOPQRSTUVWXYZ" b"0123456789!@#0^&*();:<>,. []{}"), b"YWJjZGVmZ2hpamtsbW5vcHFyc3R1dnd4eXpBQkNE" b"RUZHSElKS0xNTk9QUVJTVFVWV1hZWjAxMjM0\nNT" b"Y3ODkhQCMwXiYqKCk7Ojw+LC4gW117fQ==\n") # Non-bytes eq(base64.encodebytes(bytearray(b'abc')), b'YWJj\n') self.assertRaises(TypeError, base64.encodebytes, "") def test_decodebytes(self): eq = self.assertEqual eq(base64.decodebytes(b"d3d3LnB5dGhvbi5vcmc=\n"), b"www.python.org") eq(base64.decodebytes(b"YQ==\n"), b"a") eq(base64.decodebytes(b"YWI=\n"), b"ab") eq(base64.decodebytes(b"YWJj\n"), b"abc") eq(base64.decodebytes(b"YWJjZGVmZ2hpamtsbW5vcHFyc3R1dnd4eXpBQkNE" b"RUZHSElKS0xNTk9QUVJTVFVWV1hZWjAxMjM0\nNT" b"Y3ODkhQCMwXiYqKCk7Ojw+LC4gW117fQ==\n"), b"abcdefghijklmnopqrstuvwxyz" b"ABCDEFGHIJKLMNOPQRSTUVWXYZ" b"0123456789!@#0^&*();:<>,. []{}") eq(base64.decodebytes(b''), b'') # Non-bytes eq(base64.decodebytes(bytearray(b'YWJj\n')), b'abc') self.assertRaises(TypeError, base64.decodebytes, "") def test_encode(self): eq = self.assertEqual from io import BytesIO, StringIO infp = BytesIO(b'abcdefghijklmnopqrstuvwxyz' b'ABCDEFGHIJKLMNOPQRSTUVWXYZ' b'0123456789!@#0^&*();:<>,. []{}') outfp = BytesIO() base64.encode(infp, outfp) eq(outfp.getvalue(), b'YWJjZGVmZ2hpamtsbW5vcHFyc3R1dnd4eXpBQkNE' b'RUZHSElKS0xNTk9QUVJTVFVWV1hZWjAxMjM0\nNT' b'Y3ODkhQCMwXiYqKCk7Ojw+LC4gW117fQ==\n') # Non-binary files self.assertRaises(TypeError, base64.encode, StringIO('abc'), BytesIO()) self.assertRaises(TypeError, base64.encode, BytesIO(b'abc'), StringIO()) self.assertRaises(TypeError, base64.encode, StringIO('abc'), StringIO()) def test_decode(self): from io import BytesIO, StringIO infp = BytesIO(b'd3d3LnB5dGhvbi5vcmc=') outfp = BytesIO() base64.decode(infp, outfp) self.assertEqual(outfp.getvalue(), b'www.python.org') # Non-binary files self.assertRaises(TypeError, base64.encode, StringIO('YWJj\n'), BytesIO()) self.assertRaises(TypeError, base64.encode, BytesIO(b'YWJj\n'), StringIO()) self.assertRaises(TypeError, base64.encode, StringIO('YWJj\n'), StringIO()) class BaseXYTestCase(unittest.TestCase): def test_b64encode(self): eq = self.assertEqual # Test default alphabet eq(base64.b64encode(b"www.python.org"), b"d3d3LnB5dGhvbi5vcmc=") eq(base64.b64encode(b'\x00'), b'AA==') eq(base64.b64encode(b"a"), b"YQ==") eq(base64.b64encode(b"ab"), b"YWI=") eq(base64.b64encode(b"abc"), b"YWJj") eq(base64.b64encode(b""), b"") eq(base64.b64encode(b"abcdefghijklmnopqrstuvwxyz" b"ABCDEFGHIJKLMNOPQRSTUVWXYZ" b"0123456789!@#0^&*();:<>,. []{}"), b"YWJjZGVmZ2hpamtsbW5vcHFyc3R1dnd4eXpBQkNE" b"RUZHSElKS0xNTk9QUVJTVFVWV1hZWjAxMjM0NT" b"Y3ODkhQCMwXiYqKCk7Ojw+LC4gW117fQ==") # Test with arbitrary alternative characters eq(base64.b64encode(b'\xd3V\xbeo\xf7\x1d', altchars=b'*$'), b'01a*b$cd') # Non-bytes eq(base64.b64encode(bytearray(b'abcd')), b'YWJjZA==') eq(base64.b64encode(b'\xd3V\xbeo\xf7\x1d', altchars=bytearray(b'*$')), b'01a*b$cd') # Check if passing a str object raises an error self.assertRaises(TypeError, base64.b64encode, "") self.assertRaises(TypeError, base64.b64encode, b"", altchars="") # Test standard alphabet eq(base64.standard_b64encode(b"www.python.org"), b"d3d3LnB5dGhvbi5vcmc=") eq(base64.standard_b64encode(b"a"), b"YQ==") eq(base64.standard_b64encode(b"ab"), b"YWI=") eq(base64.standard_b64encode(b"abc"), b"YWJj") eq(base64.standard_b64encode(b""), b"") eq(base64.standard_b64encode(b"abcdefghijklmnopqrstuvwxyz" b"ABCDEFGHIJKLMNOPQRSTUVWXYZ" b"0123456789!@#0^&*();:<>,. []{}"), b"YWJjZGVmZ2hpamtsbW5vcHFyc3R1dnd4eXpBQkNE" b"RUZHSElKS0xNTk9QUVJTVFVWV1hZWjAxMjM0NT" b"Y3ODkhQCMwXiYqKCk7Ojw+LC4gW117fQ==") # Non-bytes eq(base64.standard_b64encode(bytearray(b'abcd')), b'YWJjZA==') # Check if passing a str object raises an error self.assertRaises(TypeError, base64.standard_b64encode, "") # Test with 'URL safe' alternative characters eq(base64.urlsafe_b64encode(b'\xd3V\xbeo\xf7\x1d'), b'01a-b_cd') # Non-bytes eq(base64.urlsafe_b64encode(bytearray(b'\xd3V\xbeo\xf7\x1d')), b'01a-b_cd') # Check if passing a str object raises an error self.assertRaises(TypeError, base64.urlsafe_b64encode, "") def test_b64decode(self): eq = self.assertEqual tests = {b"d3d3LnB5dGhvbi5vcmc=": b"www.python.org", b'AA==': b'\x00', b"YQ==": b"a", b"YWI=": b"ab", b"YWJj": b"abc", b"YWJjZGVmZ2hpamtsbW5vcHFyc3R1dnd4eXpBQkNE" b"RUZHSElKS0xNTk9QUVJTVFVWV1hZWjAxMjM0\nNT" b"Y3ODkhQCMwXiYqKCk7Ojw+LC4gW117fQ==": b"abcdefghijklmnopqrstuvwxyz" b"ABCDEFGHIJKLMNOPQRSTUVWXYZ" b"0123456789!@#0^&*();:<>,. []{}", b'': b'', } for data, res in tests.items(): eq(base64.b64decode(data), res) eq(base64.b64decode(data.decode('ascii')), res) # Non-bytes eq(base64.b64decode(bytearray(b"YWJj")), b"abc") # Test with arbitrary alternative characters tests_altchars = {(b'01a*b$cd', b'*$'): b'\xd3V\xbeo\xf7\x1d', } for (data, altchars), res in tests_altchars.items(): data_str = data.decode('ascii') altchars_str = altchars.decode('ascii') eq(base64.b64decode(data, altchars=altchars), res) eq(base64.b64decode(data_str, altchars=altchars), res) eq(base64.b64decode(data, altchars=altchars_str), res) eq(base64.b64decode(data_str, altchars=altchars_str), res) # Test standard alphabet for data, res in tests.items(): eq(base64.standard_b64decode(data), res) eq(base64.standard_b64decode(data.decode('ascii')), res) # Non-bytes eq(base64.standard_b64decode(bytearray(b"YWJj")), b"abc") # Test with 'URL safe' alternative characters tests_urlsafe = {b'01a-b_cd': b'\xd3V\xbeo\xf7\x1d', b'': b'', } for data, res in tests_urlsafe.items(): eq(base64.urlsafe_b64decode(data), res) eq(base64.urlsafe_b64decode(data.decode('ascii')), res) # Non-bytes eq(base64.urlsafe_b64decode(bytearray(b'01a-b_cd')), b'\xd3V\xbeo\xf7\x1d') def test_b64decode_padding_error(self): self.assertRaises(binascii.Error, base64.b64decode, b'abc') self.assertRaises(binascii.Error, base64.b64decode, 'abc') def test_b64decode_invalid_chars(self): # issue 1466065: Test some invalid characters. tests = ((b'%3d==', b'\xdd'), (b'$3d==', b'\xdd'), (b'[==', b''), (b'YW]3=', b'am'), (b'3{d==', b'\xdd'), (b'3d}==', b'\xdd'), (b'@@', b''), (b'!', b''), (b'YWJj\nYWI=', b'abcab')) for bstr, res in tests: self.assertEqual(base64.b64decode(bstr), res) self.assertEqual(base64.b64decode(bstr.decode('ascii')), res) with self.assertRaises(binascii.Error): base64.b64decode(bstr, validate=True) with self.assertRaises(binascii.Error): base64.b64decode(bstr.decode('ascii'), validate=True) def test_b32encode(self): eq = self.assertEqual eq(base64.b32encode(b''), b'') eq(base64.b32encode(b'\x00'), b'AA======') eq(base64.b32encode(b'a'), b'ME======') eq(base64.b32encode(b'ab'), b'MFRA====') eq(base64.b32encode(b'abc'), b'MFRGG===') eq(base64.b32encode(b'abcd'), b'MFRGGZA=') eq(base64.b32encode(b'abcde'), b'MFRGGZDF') # Non-bytes eq(base64.b32encode(bytearray(b'abcd')), b'MFRGGZA=') self.assertRaises(TypeError, base64.b32encode, "") def test_b32decode(self): eq = self.assertEqual tests = {b'': b'', b'AA======': b'\x00', b'ME======': b'a', b'MFRA====': b'ab', b'MFRGG===': b'abc', b'MFRGGZA=': b'abcd', b'MFRGGZDF': b'abcde', } for data, res in tests.items(): eq(base64.b32decode(data), res) eq(base64.b32decode(data.decode('ascii')), res) # Non-bytes eq(base64.b32decode(bytearray(b'MFRGG===')), b'abc') def test_b32decode_casefold(self): eq = self.assertEqual tests = {b'': b'', b'ME======': b'a', b'MFRA====': b'ab', b'MFRGG===': b'abc', b'MFRGGZA=': b'abcd', b'MFRGGZDF': b'abcde', # Lower cases b'me======': b'a', b'mfra====': b'ab', b'mfrgg===': b'abc', b'mfrggza=': b'abcd', b'mfrggzdf': b'abcde', } for data, res in tests.items(): eq(base64.b32decode(data, True), res) eq(base64.b32decode(data.decode('ascii'), True), res) self.assertRaises(binascii.Error, base64.b32decode, b'me======') self.assertRaises(binascii.Error, base64.b32decode, 'me======') # Mapping zero and one eq(base64.b32decode(b'MLO23456'), b'b\xdd\xad\xf3\xbe') eq(base64.b32decode('MLO23456'), b'b\xdd\xad\xf3\xbe') map_tests = {(b'M1023456', b'L'): b'b\xdd\xad\xf3\xbe', (b'M1023456', b'I'): b'b\x1d\xad\xf3\xbe', } for (data, map01), res in map_tests.items(): data_str = data.decode('ascii') map01_str = map01.decode('ascii') eq(base64.b32decode(data, map01=map01), res) eq(base64.b32decode(data_str, map01=map01), res) eq(base64.b32decode(data, map01=map01_str), res) eq(base64.b32decode(data_str, map01=map01_str), res) self.assertRaises(binascii.Error, base64.b32decode, data) self.assertRaises(binascii.Error, base64.b32decode, data_str) def test_b32decode_error(self): for data in [b'abc', b'ABCDEF==', b'==ABCDEF']: with self.assertRaises(binascii.Error): base64.b32decode(data) with self.assertRaises(binascii.Error): base64.b32decode(data.decode('ascii')) def test_b16encode(self): eq = self.assertEqual eq(base64.b16encode(b'\x01\x02\xab\xcd\xef'), b'0102ABCDEF') eq(base64.b16encode(b'\x00'), b'00') # Non-bytes eq(base64.b16encode(bytearray(b'\x01\x02\xab\xcd\xef')), b'0102ABCDEF') self.assertRaises(TypeError, base64.b16encode, "") def test_b16decode(self): eq = self.assertEqual eq(base64.b16decode(b'0102ABCDEF'), b'\x01\x02\xab\xcd\xef') eq(base64.b16decode('0102ABCDEF'), b'\x01\x02\xab\xcd\xef') eq(base64.b16decode(b'00'), b'\x00') eq(base64.b16decode('00'), b'\x00') # Lower case is not allowed without a flag self.assertRaises(binascii.Error, base64.b16decode, b'0102abcdef') self.assertRaises(binascii.Error, base64.b16decode, '0102abcdef') # Case fold eq(base64.b16decode(b'0102abcdef', True), b'\x01\x02\xab\xcd\xef') eq(base64.b16decode('0102abcdef', True), b'\x01\x02\xab\xcd\xef') # Non-bytes eq(base64.b16decode(bytearray(b"0102ABCDEF")), b'\x01\x02\xab\xcd\xef') def test_decode_nonascii_str(self): decode_funcs = (base64.b64decode, base64.standard_b64decode, base64.urlsafe_b64decode, base64.b32decode, base64.b16decode) for f in decode_funcs: self.assertRaises(ValueError, f, 'with non-ascii \xcb') def test_ErrorHeritage(self): self.assertTrue(issubclass(binascii.Error, ValueError)) class TestMain(unittest.TestCase): def tearDown(self): if os.path.exists(support.TESTFN): os.unlink(support.TESTFN) def get_output(self, *args, **options): args = (sys.executable, '-m', 'base64') + args return subprocess.check_output(args, **options) def test_encode_decode(self): output = self.get_output('-t') self.assertSequenceEqual(output.splitlines(), ( b"b'Aladdin:open sesame'", br"b'QWxhZGRpbjpvcGVuIHNlc2FtZQ==\n'", b"b'Aladdin:open sesame'", )) def test_encode_file(self): with open(support.TESTFN, 'wb') as fp: fp.write(b'a\xffb\n') output = self.get_output('-e', support.TESTFN) self.assertEqual(output.rstrip(), b'Yf9iCg==') with open(support.TESTFN, 'rb') as fp: output = self.get_output('-e', stdin=fp) self.assertEqual(output.rstrip(), b'Yf9iCg==') def test_decode(self): with open(support.TESTFN, 'wb') as fp: fp.write(b'Yf9iCg==') output = self.get_output('-d', support.TESTFN) self.assertEqual(output.rstrip(), b'a\xffb') def test_main(): support.run_unittest(__name__) if __name__ == '__main__': test_main()
tests/algorithms/memory/test_cmac.py
FrostByte266/neupy
801
3395
<gh_stars>100-1000 import numpy as np from sklearn import metrics from neupy import algorithms from base import BaseTestCase class CMACTestCase(BaseTestCase): def test_cmac(self): X_train = np.reshape(np.linspace(0, 2 * np.pi, 100), (100, 1)) X_train_before = X_train.copy() X_test = np.reshape(np.linspace(np.pi, 2 * np.pi, 50), (50, 1)) y_train = np.sin(X_train) y_train_before = y_train.copy() y_test = np.sin(X_test) cmac = algorithms.CMAC( quantization=100, associative_unit_size=32, step=0.2, verbose=False, ) cmac.train(X_train, y_train, epochs=100) predicted_test = cmac.predict(X_test) predicted_test = predicted_test.reshape((len(predicted_test), 1)) error = metrics.mean_absolute_error(y_test, predicted_test) self.assertAlmostEqual(error, 0.0024, places=4) # Test that algorithm didn't modify data samples np.testing.assert_array_equal(X_train, X_train_before) np.testing.assert_array_equal(X_train, X_train_before) np.testing.assert_array_equal(y_train, y_train_before) self.assertPickledNetwork(cmac, X_train) def test_train_different_inputs(self): self.assertInvalidVectorTrain( network=algorithms.CMAC(), input_vector=np.array([1, 2, 3]), target=np.array([1, 2, 3]) ) def test_predict_different_inputs(self): cmac = algorithms.CMAC() data = np.array([[1, 2, 3]]).T target = np.array([[1, 2, 3]]).T cmac.train(data, target, epochs=100) self.assertInvalidVectorPred( network=cmac, input_vector=np.array([1, 2, 3]), target=target, decimal=2 ) def test_cmac_multi_output(self): X_train = np.linspace(0, 2 * np.pi, 100) X_train = np.vstack([X_train, X_train]) X_test = np.linspace(0, 2 * np.pi, 100) X_test = np.vstack([X_test, X_test]) y_train = np.sin(X_train) y_test = np.sin(X_test) cmac = algorithms.CMAC( quantization=100, associative_unit_size=32, step=0.2, ) cmac.train(X_train, y_train, X_test, y_test, epochs=100) predicted_test = cmac.predict(X_test) error = metrics.mean_absolute_error(y_test, predicted_test) self.assertAlmostEqual(error, 0, places=6) def test_cmac_training_exceptions(self): cmac = algorithms.CMAC( quantization=100, associative_unit_size=32, step=0.2, ) with self.assertRaises(ValueError): cmac.train(X_train=True, y_train=True, X_test=None, y_test=True)
src/azure-cli/azure/cli/command_modules/policyinsights/_completers.py
YuanyuanNi/azure-cli
3,287
3408
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- from azure.cli.core.decorators import Completer from azure.cli.core.commands.client_factory import get_subscription_id from ._client_factory import cf_policy_insights @Completer def get_policy_remediation_completion_list(cmd, prefix, namespace, **kwargs): # pylint: disable=unused-argument client = cf_policy_insights(cmd.cli_ctx) sub = get_subscription_id(cmd.cli_ctx) rg = getattr(namespace, 'resource_group_name', None) management_group = getattr(namespace, 'management_group_name', None) if rg: result = client.remediations.list_for_resource_group(subscription_id=sub, resource_group_name=rg) elif management_group: result = client.remediations.list_for_management_group(management_group_id=management_group) else: result = client.remediations.list_for_subscription(subscription_id=sub) return [i.name for i in result] @Completer def get_policy_metadata_completion_list(cmd, prefix, namespace, **kwargs): # pylint: disable=unused-argument client = cf_policy_insights(cmd.cli_ctx).policy_metadata from azure.mgmt.policyinsights.models import QueryOptions query_options = QueryOptions(top=2000) return [metadata.name for metadata in client.list(query_options) if metadata.name.startswith(prefix)]
hordak/migrations/0011_auto_20170225_2222.py
CodeBrew-LTD/django-hordak
187
3409
<reponame>CodeBrew-LTD/django-hordak # -*- coding: utf-8 -*- # Generated by Django 1.10.4 on 2017-02-25 22:22 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion import django.utils.timezone import django_smalluuid.models class Migration(migrations.Migration): dependencies = [("hordak", "0010_auto_20161216_1202")] operations = [ migrations.CreateModel( name="TransactionImport", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID" ), ), ( "uuid", django_smalluuid.models.SmallUUIDField( default=django_smalluuid.models.UUIDDefault(), editable=False, unique=True ), ), ( "timestamp", models.DateTimeField(default=django.utils.timezone.now, editable=False), ), ( "has_headings", models.BooleanField( default=True, verbose_name="First line of file contains headings" ), ), ( "file", models.FileField( upload_to="transaction_imports", verbose_name="CSV file to import" ), ), ( "state", models.CharField( choices=[ ("pending", "Pending"), ("uploaded", "Uploaded, ready to import"), ("done", "Import complete"), ], default="pending", max_length=20, ), ), ( "date_format", models.CharField( choices=[ ("%d-%m-%Y", "dd-mm-yyyy"), ("%d/%m/%Y", "dd/mm/yyyy"), ("%d.%m.%Y", "dd.mm.yyyy"), ("%d-%Y-%m", "dd-yyyy-mm"), ("%d/%Y/%m", "dd/yyyy/mm"), ("%d.%Y.%m", "dd.yyyy.mm"), ("%m-%d-%Y", "mm-dd-yyyy"), ("%m/%d/%Y", "mm/dd/yyyy"), ("%m.%d.%Y", "mm.dd.yyyy"), ("%m-%Y-%d", "mm-yyyy-dd"), ("%m/%Y/%d", "mm/yyyy/dd"), ("%m.%Y.%d", "mm.yyyy.dd"), ("%Y-%d-%m", "yyyy-dd-mm"), ("%Y/%d/%m", "yyyy/dd/mm"), ("%Y.%d.%m", "yyyy.dd.mm"), ("%Y-%m-%d", "yyyy-mm-dd"), ("%Y/%m/%d", "yyyy/mm/dd"), ("%Y.%m.%d", "yyyy.mm.dd"), ("%d-%m-%y", "dd-mm-yy"), ("%d/%m/%y", "dd/mm/yy"), ("%d.%m.%y", "dd.mm.yy"), ("%d-%y-%m", "dd-yy-mm"), ("%d/%y/%m", "dd/yy/mm"), ("%d.%y.%m", "dd.yy.mm"), ("%m-%d-%y", "mm-dd-yy"), ("%m/%d/%y", "mm/dd/yy"), ("%m.%d.%y", "mm.dd.yy"), ("%m-%y-%d", "mm-yy-dd"), ("%m/%y/%d", "mm/yy/dd"), ("%m.%y.%d", "mm.yy.dd"), ("%y-%d-%m", "yy-dd-mm"), ("%y/%d/%m", "yy/dd/mm"), ("%y.%d.%m", "yy.dd.mm"), ("%y-%m-%d", "yy-mm-dd"), ("%y/%m/%d", "yy/mm/dd"), ("%y.%m.%d", "yy.mm.dd"), ], default="%d-%m-%Y", max_length=50, ), ), ( "hordak_import", models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, to="hordak.StatementImport" ), ), ], ), migrations.CreateModel( name="TransactionImportColumn", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID" ), ), ("column_number", models.PositiveSmallIntegerField()), ( "column_heading", models.CharField(blank=True, default="", max_length=100, verbose_name="Column"), ), ( "to_field", models.CharField( blank=True, choices=[ (None, "-- Do not import --"), ("date", "Date"), ("amount", "Amount"), ("amount_out", "Amount (money in only)"), ("amount_in", "Amount (money out only)"), ("description", "Description / Notes"), ], default=None, max_length=20, null=True, verbose_name="Is", ), ), ("example", models.CharField(blank=True, default="", max_length=200)), ( "transaction_import", models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, related_name="columns", to="hordak.TransactionImport", ), ), ], options={"ordering": ["transaction_import", "column_number"]}, ), migrations.AlterUniqueTogether( name="transactionimportcolumn", unique_together=set( [("transaction_import", "column_number"), ("transaction_import", "to_field")] ), ), ]
tests/test_channel.py
rwilhelm/aiormq
176
3426
import asyncio import uuid import pytest from aiomisc_pytest.pytest_plugin import TCPProxy import aiormq async def test_simple(amqp_channel: aiormq.Channel): await amqp_channel.basic_qos(prefetch_count=1) assert amqp_channel.number queue = asyncio.Queue() deaclare_ok = await amqp_channel.queue_declare(auto_delete=True) consume_ok = await amqp_channel.basic_consume(deaclare_ok.queue, queue.put) await amqp_channel.basic_publish( b"foo", routing_key=deaclare_ok.queue, properties=aiormq.spec.Basic.Properties(message_id="123"), ) message = await queue.get() # type: DeliveredMessage assert message.body == b"foo" cancel_ok = await amqp_channel.basic_cancel(consume_ok.consumer_tag) assert cancel_ok.consumer_tag == consume_ok.consumer_tag assert cancel_ok.consumer_tag not in amqp_channel.consumers await amqp_channel.queue_delete(deaclare_ok.queue) deaclare_ok = await amqp_channel.queue_declare(auto_delete=True) await amqp_channel.basic_publish(b"foo bar", routing_key=deaclare_ok.queue) message = await amqp_channel.basic_get(deaclare_ok.queue, no_ack=True) assert message.body == b"foo bar" async def test_blank_body(amqp_channel: aiormq.Channel): await amqp_channel.basic_qos(prefetch_count=1) assert amqp_channel.number queue = asyncio.Queue() deaclare_ok = await amqp_channel.queue_declare(auto_delete=True) consume_ok = await amqp_channel.basic_consume(deaclare_ok.queue, queue.put) await amqp_channel.basic_publish( b"", routing_key=deaclare_ok.queue, properties=aiormq.spec.Basic.Properties(message_id="123"), ) message = await queue.get() # type: DeliveredMessage assert message.body == b"" cancel_ok = await amqp_channel.basic_cancel(consume_ok.consumer_tag) assert cancel_ok.consumer_tag == consume_ok.consumer_tag assert cancel_ok.consumer_tag not in amqp_channel.consumers await amqp_channel.queue_delete(deaclare_ok.queue) deaclare_ok = await amqp_channel.queue_declare(auto_delete=True) await amqp_channel.basic_publish(b"foo bar", routing_key=deaclare_ok.queue) message = await amqp_channel.basic_get(deaclare_ok.queue, no_ack=True) assert message.body == b"foo bar" @pytest.mark.no_catch_loop_exceptions async def test_bad_consumer(amqp_channel: aiormq.Channel, loop): channel = amqp_channel # type: aiormq.Channel await channel.basic_qos(prefetch_count=1) declare_ok = await channel.queue_declare() future = loop.create_future() await channel.basic_publish(b"urgent", routing_key=declare_ok.queue) consumer_tag = loop.create_future() async def bad_consumer(message): await channel.basic_cancel(await consumer_tag) future.set_result(message) raise Exception consume_ok = await channel.basic_consume( declare_ok.queue, bad_consumer, no_ack=False, ) consumer_tag.set_result(consume_ok.consumer_tag) message = await future await channel.basic_reject(message.delivery.delivery_tag, requeue=True) assert message.body == b"urgent" future = loop.create_future() await channel.basic_consume( declare_ok.queue, future.set_result, no_ack=True, ) message = await future assert message.body == b"urgent" async def test_ack_nack_reject(amqp_channel: aiormq.Channel): channel = amqp_channel # type: aiormq.Channel await channel.basic_qos(prefetch_count=1) declare_ok = await channel.queue_declare(auto_delete=True) queue = asyncio.Queue() await channel.basic_consume(declare_ok.queue, queue.put, no_ack=False) await channel.basic_publish(b"rejected", routing_key=declare_ok.queue) message = await queue.get() assert message.body == b"rejected" await channel.basic_reject(message.delivery.delivery_tag, requeue=False) await channel.basic_publish(b"nacked", routing_key=declare_ok.queue) message = await queue.get() assert message.body == b"nacked" await channel.basic_nack(message.delivery.delivery_tag, requeue=False) await channel.basic_publish(b"acked", routing_key=declare_ok.queue) message = await queue.get() assert message.body == b"acked" await channel.basic_ack(message.delivery.delivery_tag) async def test_confirm_multiple(amqp_channel: aiormq.Channel): """ RabbitMQ has been observed to send confirmations in a strange pattern when publishing simultaneously where only some messages are delivered to a queue. It sends acks like this 1 2 4 5(multiple, confirming also 3). This test is probably inconsequential without publisher_confirms This is a regression for https://github.com/mosquito/aiormq/issues/10 """ channel = amqp_channel # type: aiormq.Channel exchange = uuid.uuid4().hex await channel.exchange_declare(exchange, exchange_type="topic") try: declare_ok = await channel.queue_declare(exclusive=True) await channel.queue_bind( declare_ok.queue, exchange, routing_key="test.5", ) for i in range(10): messages = [ asyncio.ensure_future(channel.basic_publish( b"test", exchange=exchange, routing_key="test.{}".format(i), )) for i in range(10) ] _, pending = await asyncio.wait(messages, timeout=0.2) assert not pending, "not all publishes were completed (confirmed)" await asyncio.sleep(0.05) finally: await channel.exchange_delete(exchange) async def test_exclusive_queue_locked(amqp_connection): channel0 = await amqp_connection.channel() channel1 = await amqp_connection.channel() qname = str(uuid.uuid4()) await channel0.queue_declare(qname, exclusive=True) try: await channel0.basic_consume(qname, print, exclusive=True) with pytest.raises(aiormq.exceptions.ChannelLockedResource): await channel1.queue_declare(qname) await channel1.basic_consume(qname, print, exclusive=True) finally: await channel0.queue_delete(qname) async def test_remove_writer_when_closed(amqp_channel: aiormq.Channel): with pytest.raises(aiormq.exceptions.ChannelClosed): await amqp_channel.queue_declare( "amq.forbidden_queue_name", auto_delete=True, ) with pytest.raises(aiormq.exceptions.ChannelInvalidStateError): await amqp_channel.queue_delete("amq.forbidden_queue_name") async def test_proxy_connection(proxy_connection, proxy: TCPProxy): channel = await proxy_connection.channel() # type: aiormq.Channel await channel.queue_declare(auto_delete=True) async def test_declare_queue_timeout(proxy_connection, proxy: TCPProxy): for _ in range(3): channel = await proxy_connection.channel() # type: aiormq.Channel qname = str(uuid.uuid4()) with proxy.slowdown(read_delay=5, write_delay=0): with pytest.raises(asyncio.TimeoutError): await channel.queue_declare( qname, auto_delete=True, timeout=0.5 )
plaso/parsers/winreg_plugins/ccleaner.py
pyllyukko/plaso
1,253
3429
# -*- coding: utf-8 -*- """Parser for the CCleaner Registry key.""" import re from dfdatetime import time_elements as dfdatetime_time_elements from plaso.containers import events from plaso.containers import time_events from plaso.lib import definitions from plaso.parsers import winreg_parser from plaso.parsers.winreg_plugins import interface class CCleanerConfigurationEventData(events.EventData): """CCleaner configuration event data. Attributes: configuration (str): CCleaner configuration. key_path (str): Windows Registry key path. """ DATA_TYPE = 'ccleaner:configuration' def __init__(self): """Initializes event data.""" super(CCleanerConfigurationEventData, self).__init__( data_type=self.DATA_TYPE) self.configuration = None self.key_path = None class CCleanerUpdateEventData(events.EventData): """CCleaner update event data. Attributes: key_path (str): Windows Registry key path. """ DATA_TYPE = 'ccleaner:update' def __init__(self): """Initializes event data.""" super(CCleanerUpdateEventData, self).__init__(data_type=self.DATA_TYPE) self.key_path = None class CCleanerPlugin(interface.WindowsRegistryPlugin): """Gathers the CCleaner Keys for NTUSER hive. Known Windows Registry values within the CCleaner key: * (App)Cookies [REG_SZ], contains "True" if the cookies should be cleaned; * (App)Delete Index.dat files [REG_SZ] * (App)History [REG_SZ] * (App)Last Download Location [REG_SZ] * (App)Other Explorer MRUs [REG_SZ] * (App)Recent Documents [REG_SZ] * (App)Recently Typed URLs [REG_SZ] * (App)Run (in Start Menu) [REG_SZ] * (App)Temporary Internet Files [REG_SZ] * (App)Thumbnail Cache [REG_SZ] * CookiesToSave [REG_SZ] * UpdateKey [REG_SZ], contains a date and time formatted as: "MM/DD/YYYY hh:mm:ss [A|P]M", for example "07/13/2013 10:03:14 AM"; * WINDOW_HEIGHT [REG_SZ], contains the windows height in number of pixels; * WINDOW_LEFT [REG_SZ] * WINDOW_MAX [REG_SZ] * WINDOW_TOP [REG_SZ] * WINDOW_WIDTH [REG_SZ], contains the windows width in number of pixels; Also see: http://cheeky4n6monkey.blogspot.com/2012/02/writing-ccleaner-regripper-plugin-part_05.html """ NAME = 'ccleaner' DATA_FORMAT = 'CCleaner Registry data' FILTERS = frozenset([ interface.WindowsRegistryKeyPathFilter( 'HKEY_CURRENT_USER\\Software\\Piriform\\CCleaner')]) # Date and time string formatted as: "MM/DD/YYYY hh:mm:ss [A|P]M" # for example "07/13/2013 10:03:14 AM" # TODO: determine if this is true for other locales. _UPDATE_DATE_TIME_RE = re.compile( r'([0-9][0-9])/([0-9][0-9])/([0-9][0-9][0-9][0-9]) ' r'([0-9][0-9]):([0-9][0-9]):([0-9][0-9]) ([A|P]M)') def _ParseUpdateKeyValue(self, parser_mediator, registry_value): """Parses the UpdateKey value. Args: parser_mediator (ParserMediator): mediates interactions between parsers and other components, such as storage and dfvfs. registry_value (dfwinreg.WinRegistryValue): Windows Registry value. Returns: dfdatetime_time_elements.TimeElements: date and time value or None if not available. """ if not registry_value.DataIsString(): parser_mediator.ProduceExtractionWarning( 'unsupported UpdateKey value data type: {0:s}'.format( registry_value.data_type_string)) return None date_time_string = registry_value.GetDataAsObject() if not date_time_string: parser_mediator.ProduceExtractionWarning('missing UpdateKey value data') return None re_match = self._UPDATE_DATE_TIME_RE.match(date_time_string) if not re_match: parser_mediator.ProduceExtractionWarning( 'unsupported UpdateKey value data: {0!s}'.format(date_time_string)) return None month, day_of_month, year, hours, minutes, seconds, part_of_day = ( re_match.groups()) try: year = int(year, 10) month = int(month, 10) day_of_month = int(day_of_month, 10) hours = int(hours, 10) minutes = int(minutes, 10) seconds = int(seconds, 10) except (TypeError, ValueError): parser_mediator.ProduceExtractionWarning( 'invalid UpdateKey date time value: {0!s}'.format(date_time_string)) return None if part_of_day == 'PM': hours += 12 time_elements_tuple = (year, month, day_of_month, hours, minutes, seconds) try: date_time = dfdatetime_time_elements.TimeElements( time_elements_tuple=time_elements_tuple) date_time.is_local_time = True except ValueError: parser_mediator.ProduceExtractionWarning( 'invalid UpdateKey date time value: {0!s}'.format( time_elements_tuple)) return None return date_time def ExtractEvents(self, parser_mediator, registry_key, **kwargs): """Extracts events from a Windows Registry key. Args: parser_mediator (ParserMediator): mediates interactions between parsers and other components, such as storage and dfvfs. registry_key (dfwinreg.WinRegistryKey): Windows Registry key. """ configuration = [] date_time = None for registry_value in registry_key.GetValues(): if not registry_value.name or not registry_value.data: continue if registry_value.name == 'UpdateKey': date_time = self._ParseUpdateKeyValue(parser_mediator, registry_value) else: value = registry_value.GetDataAsObject() configuration.append('{0:s}: {1!s}'.format(registry_value.name, value)) if date_time: event_data = CCleanerUpdateEventData() event_data.key_path = registry_key.path event = time_events.DateTimeValuesEvent( date_time, definitions.TIME_DESCRIPTION_UPDATE, time_zone=parser_mediator.timezone) parser_mediator.ProduceEventWithEventData(event, event_data) event_data = CCleanerConfigurationEventData() event_data.configuration = ' '.join(sorted(configuration)) or None event_data.key_path = registry_key.path event = time_events.DateTimeValuesEvent( registry_key.last_written_time, definitions.TIME_DESCRIPTION_WRITTEN) parser_mediator.ProduceEventWithEventData(event, event_data) winreg_parser.WinRegistryParser.RegisterPlugin(CCleanerPlugin)
language/labs/drkit/evaluate.py
Xtuden-com/language
1,199
3441
<gh_stars>1000+ # coding=utf-8 # Copyright 2018 The Google AI Language Team Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Evaluate lazy slot filling results.""" import codecs import collections import gzip import json import random import re import string import unicodedata from absl import app from absl import flags from bert import tokenization from language.labs.drkit import input_fns import numpy as np import tensorflow.compat.v1 as tf PUNCTUATION = frozenset(string.punctuation) FLAGS = flags.FLAGS ## Required parameters flags.DEFINE_string("ground_truth_file", None, "File with ground truth answers.") flags.DEFINE_string("predicted_answers_file", None, "File with predicted answers from model.") flags.DEFINE_string("relation_counts_file", None, "JSON file with relation counts.") class NumpyEncoder(json.JSONEncoder): """Special json encoder for numpy types.""" def default(self, obj): if isinstance(obj, (np.int_, np.intc, np.intp, np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64)): return int(obj) elif isinstance(obj, (np.float_, np.float16, np.float32, np.float64)): return float(obj) elif isinstance(obj, (np.ndarray,)): # This is the fix return obj.tolist() return json.JSONEncoder.default(self, obj) def wikimovie_eval_fn(dataset, results, name_map, output_prediction_file, **kwargs): """Compute evaluation metrics for OneHopDataset or TwoHopDataset. Args: dataset: An object of type OneHopDataset. results: A list of result dicts from running estimator.predict. name_map: A mapping from prediction indices to text strings. output_prediction_file: File to store predictions to. **kwargs: Variable keyword arguments. Returns: metrics: A dict mapping metric names to values. """ del kwargs # Collect ground truth answers. gt_answer = {ex.qas_id: ex.answer_entity for ex in dataset.examples} gt_ques = {ex.qas_id: ex.question_text for ex in dataset.examples} gt_entity = {ex.qas_id: ex.subject_entity[0] for ex in dataset.examples} inf_chain = {ex.qas_id: ex.inference_chain for ex in dataset.examples} # Compute basic metrics. num_correct = 0. all_predictions = {} chain2stats = {ch: [0., 0.] for ch in inf_chain.values()} incorrect_results, correct_results = [], [] for result in results: qas_id = result["qas_ids"] prediction = result["predictions"] if prediction in gt_answer[qas_id]: num_correct += 1 chain2stats[inf_chain[qas_id]][0] += 1 correct_results.append({ "qas_id": result["qas_ids"], "question": gt_ques[qas_id], "answers": gt_answer[qas_id], "subject": gt_entity[qas_id], "inf-chain": inf_chain[qas_id], "predictions": result["predictions"], }) for hop in range(3): if "sparse_%d" % hop in result: correct_results[-1].update({ "sparse_%d" % hop: result["sparse_%d" % hop], "dense_%d" % hop: result["dense_%d" % hop], "mention_%d" % hop: result["mention_%d" % hop], "entity_%d" % hop: result["entity_%d" % hop], "sparse_scores_%d" % hop: result["sparse_scores_%d" % hop], "dense_scores_%d" % hop: result["dense_scores_%d" % hop], "mention_scores_%d" % hop: result["mention_scores_%d" % hop], "entity_scores_%d" % hop: result["entity_scores_%d" % hop], }) else: incorrect_results.append({ "qas_id": result["qas_ids"], "question": gt_ques[qas_id], "answers": gt_answer[qas_id], "subject": gt_entity[qas_id], "inf-chain": inf_chain[qas_id], "predictions": result["predictions"], }) for hop in range(3): if "sparse_%d" % hop in result: incorrect_results[-1].update({ "sparse_%d" % hop: result["sparse_%d" % hop], "dense_%d" % hop: result["dense_%d" % hop], "mention_%d" % hop: result["mention_%d" % hop], "entity_%d" % hop: result["entity_%d" % hop], "sparse_scores_%d" % hop: result["sparse_scores_%d" % hop], "dense_scores_%d" % hop: result["dense_scores_%d" % hop], "mention_scores_%d" % hop: result["mention_scores_%d" % hop], "entity_scores_%d" % hop: result["entity_scores_%d" % hop], }) chain2stats[inf_chain[qas_id]][1] += 1 all_predictions[qas_id] = name_map[str(prediction)] accuracy = num_correct / len(all_predictions) json.dump(all_predictions, tf.gfile.Open(output_prediction_file, "w")) json.dump( random.sample(incorrect_results, 100), tf.gfile.Open(output_prediction_file + ".incorrect", "w"), cls=NumpyEncoder) json.dump( random.sample(correct_results, 100), tf.gfile.Open(output_prediction_file + ".correct", "w"), cls=NumpyEncoder) # Return metrics. metrics = { "accuracy": accuracy, } for ch, stats in chain2stats.items(): metrics["inference-chains-acc/" + ch] = stats[0] / stats[1] return metrics def multihop_eval_fn(dataset, results, name_map, output_prediction_file, supervision="mention", **kwargs): """Compute evaluation metrics for OneHopDataset or TwoHopDataset. Args: dataset: An object of type OneHopDataset. results: A list of result dicts from running estimator.predict. name_map: A mapping from prediction indices to text strings. output_prediction_file: File to store predictions to. supervision: Type of supervision used in the model. **kwargs: Variable keyword arguments. Returns: metrics: A dict mapping metric names to values. """ del kwargs # Collect ground truth answers. gt_mentions = {ex.qas_id: ex.answer_mention[0] for ex in dataset.examples} if supervision == "mention": gt_answer = gt_mentions else: gt_answer = {ex.qas_id: ex.answer_entity[0] for ex in dataset.examples} # Compute basic metrics. num_correct = 0. all_predictions = {} for result in results: qas_id = result["qas_ids"] prediction = result["predictions"] if prediction == gt_answer[qas_id]: num_correct += 1 all_predictions[qas_id] = name_map[str(prediction)] accuracy = num_correct / len(all_predictions) # Compute advanced metrics. json.dump(all_predictions, tf.gfile.Open(output_prediction_file, "w")) micro, macro, _, _ = compute_scores(dataset.gt_file, output_prediction_file) # Return metrics. metrics = { "accuracy": accuracy, "micro-p": micro[0], "micro-r": micro[1], "micro-f": micro[2], "macro-p": macro[0], "macro-r": macro[1], "macro-f": macro[2], } return metrics def hotpot_eval_fn(dataset, results, name_map, output_prediction_file, **kwargs): """Compute evaluation metrics for HotpotQADataset. Args: dataset: An object of type HotpotQADataset. results: A list of result dicts from running estimator.predict. name_map: A mapping from prediction indices to text strings. output_prediction_file: File to store predictions to. **kwargs: Variable keyword arguments. Returns: metrics: A dict mapping metric names to values. """ del kwargs # Collect ground truth answers. gt_answer = {ex.qas_id: ex.answer_entity for ex in dataset.examples} gt_types = {ex.qas_id: ex.inference_chain for ex in dataset.examples} # Compute basic metrics. num_correct = {2: 0., 5: 0., 10: 0., 20: 0.} aps = [] no_answer = 0. all_predictions = {} bridge_acc, comp_acc = 0., 0. bridge_tot, comp_tot = 0, 0 single_acc = 0. layer_weights = np.zeros_like(results[0]["layer_probs"]) num_layer_entities = {i: 0. for i in range(layer_weights.shape[0])} num_new_entities = {i: 0. for i in range(layer_weights.shape[0])} for result in results: qas_id = result["qas_ids"].decode("utf-8") preds = result["top_idx"] scores = result["top_vals"] ans = gt_answer[qas_id] my_type = gt_types[qas_id] if my_type == "bridge": bridge_tot += 1 else: comp_tot += 1 ranks = np.where(np.in1d(preds, ans))[0] ranks = np.sort(ranks) ap = 0. cnt = 0. if any(rr < 10 for rr in ranks): single_acc += 1 if ranks.shape[0] == 0: no_answer += 1 for rr in ranks: cnt += 1 ap += cnt / (rr + 1) if ans: aps.append(ap / len(ans)) else: aps.append(0.) found = False for key in [2, 5, 10, 20]: if found or np.in1d(ans, preds[:key]).all(): num_correct[key] += 1 found = True if key == 10: if my_type == "bridge": bridge_acc += 1 else: comp_acc += 1 # Non-accuracy stats layer_weights += result["layer_probs"] layer_entities = {i: set() for i in range(layer_weights.shape[0])} all_predictions[qas_id] = {} for i in range(layer_weights.shape[0]): layer_entities[i] = set( [ee for ee in result["layer_%d_ent" % i] if ee != -1]) num_layer_entities[i] += len(layer_entities[i]) num_new_entities[i] += len(layer_entities[i] - layer_entities[0]) # all_predictions[qas_id]["layer_%d" % i] = [ # name_map[str(ee)] for ee in layer_entities[i]] all_predictions[qas_id]["predictions"] = [ (name_map[str(pred)], str(scores[i])) for i, pred in enumerate(preds) ] tf.logging.info("Evaluated %d items", len(all_predictions)) accuracy = { key: (num_correct[key] / len(all_predictions)) for key in num_correct } # Compute advanced metrics. json.dump(all_predictions, tf.gfile.Open(output_prediction_file, "w")) # Return metrics. metrics = {"eval/@%d" % key: accuracy[key] for key in accuracy} metrics["accuracy"] = accuracy[10] metrics["eval/map"] = sum(aps) / len(all_predictions) metrics["eval/bridge_accuracy"] = bridge_acc / bridge_tot metrics["eval/comparison_accuracy"] = comp_acc / comp_tot metrics["analysis/single_accuracy"] = single_acc / len(all_predictions) metrics["analysis/no_answers"] = no_answer / len(all_predictions) for i in range(layer_weights.shape[0]): metrics["analysis/layer_weight_%d" % i] = layer_weights[i] / len(all_predictions) metrics["analysis/num_entities_%d" % i] = num_layer_entities[i] / len(all_predictions) metrics["analysis/num_new_entities_%d" % i] = num_new_entities[i] / len(all_predictions) return metrics def normalize_answer(s): """Lower text and remove punctuation, articles and extra whitespace.""" def remove_articles(text): return re.sub(r"\b(a|an|the)\b", " ", text) def white_space_fix(text): return " ".join(text.split()) def remove_punc(text): exclude = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(text): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(s)))) def f1_score(prediction, ground_truth): """Compute F1 score.""" prediction_tokens = normalize_answer(prediction).split() ground_truth_tokens = normalize_answer(ground_truth).split() common = collections.Counter(prediction_tokens) & collections.Counter( ground_truth_tokens) num_same = sum(common.values()) if num_same == 0: return 0 precision = 1.0 * num_same / len(prediction_tokens) recall = 1.0 * num_same / len(ground_truth_tokens) f1 = (2 * precision * recall) / (precision + recall) return f1 def exact_match_score(prediction, ground_truth): """Compute EM score.""" return normalize_answer(prediction) == normalize_answer(ground_truth) def metric_max_over_ground_truths(metric_fn, prediction, ground_truths): scores_for_ground_truths = [] for ground_truth in ground_truths: my_score = metric_fn(prediction, ground_truth) scores_for_ground_truths.append(my_score) return max(scores_for_ground_truths) def read_predictions(prediction_file): with tf.gfile.Open(prediction_file) as f: predictions = json.load(f) return predictions def read_answers(gold_file): """Read ground truth answers.""" answers = {} f = tf.gfile.Open(gold_file) if gold_file.endswith(".gz"): f = gzip.GzipFile(fileobj=f) for i, line in enumerate(f): example = json.loads(line) if i == 0 and "header" in example: continue for qa in example["qas"]: answers[qa["qid"]] = qa["answers"] f.close() return answers def evaluate(answers, predictions, skip_no_answer=False): """Compute F1 and EM scores.""" f1 = exact_match = total = 0 for qid, ground_truths in answers.items(): if qid not in predictions: if not skip_no_answer: message = "Unanswered question %s will receive score 0." % qid print(message) total += 1 continue total += 1 prediction = predictions[qid] exact_match += metric_max_over_ground_truths(exact_match_score, prediction, ground_truths) f1 += metric_max_over_ground_truths(f1_score, prediction, ground_truths) exact_match = 100.0 * exact_match / total f1 = 100.0 * f1 / total return {"exact_match": exact_match, "f1": f1} def mrqa_eval_fn(dataset_file, predictions_file, skip_no_answer=True): answers = read_answers(dataset_file) predictions = read_predictions(predictions_file) return evaluate(answers, predictions, skip_no_answer) def compute_scores(ground_truth_file, predicted_answers_file): """Read predictions and ground truth and return P, R, F.""" telemetry, incorrect = read_results(ground_truth_file, predicted_answers_file) micro = aprf(telemetry) relationwise = aprf_relationwise(telemetry) macro = sum([val[0] for _, val in relationwise.items()]) macro = macro / len(relationwise) return micro, macro, relationwise, incorrect def read_results(ground_truth_file, predicted_answers_file): """Read results and ground truth and return data structure with stats.""" with codecs.getreader("utf-8")(tf.gfile.GFile(ground_truth_file, "r")) as read: data_ = {} for line in read: item = json.loads(line.strip()) if isinstance(item["relation"], dict): relation = item["relation"]["wikidata_id"] elif isinstance(item["relation"], list): relation = ( item["relation"][0]["wikidata_id"] + "_" + item["relation"][1]["wikidata_id"]) data_[item["id"]] = [relation, item["subject"]["wikidata_id"]] if "is_impossible" in item and item["is_impossible"]: continue if item["object"] is None: continue if isinstance(item["object"]["mention"], dict): data_[item["id"]] += [item["object"]["mention"]["text"]] if "name" in item["object"]: data_[item["id"]] += [item["object"]["name"]] if "aliases" in item["object"]: data_[item["id"]] += item["object"]["aliases"].keys() with codecs.getreader("utf-8")(tf.gfile.GFile(predicted_answers_file, "r")) as fin: predictions = json.load(fin) telemetry, incorrect = [], [] n = 0 for key in data_: if key not in predictions: continue g = data_[key][2:] a = predictions[key] m = data_[key][:2] stats = score(g, a) telemetry.append([m[0], m[1], g, a, stats]) if stats[0] == 0. and stats[3] > 0.: incorrect.append(key) n += 1 return telemetry, incorrect def aprf_relationwise(g): """Returns precision, recall and F score for each relation.""" rel_to_stats = collections.defaultdict(list) for item in g: rel_to_stats[item[0]].append(item) rel_to_scores = {} for rel, stats in rel_to_stats.items(): rel_to_scores[rel] = [aprf(stats), len(stats)] return rel_to_scores def aprf(g): """Returns precision, recall and F of the given statistics.""" tp, _, sys_pos, real_pos = sum([x[-1] for x in g]) if tp == 0: p = r = f = 0.0 else: p = tp / float(sys_pos) if sys_pos > 0 else 0. r = tp / float(real_pos) if real_pos > 0 else 0. f = 2 * p * r / (p + r) return np.asarray([p, r, f]) def score(gold, answer): """Compares answer to ground truth to return TP / FP stats.""" if gold: gold = set([simplify(g) for g in gold]) answer = simplify(answer) result = np.zeros(4) if gold: result[3] += 1 if answer in gold: result[0] += 1 else: if not answer: result[1] += 1 if answer: result[2] += 1 return result def strip_accents_and_punct(text): """Strips accents from a piece of text.""" text = unicodedata.normalize("NFD", text) output = [] for char in text: if char in PUNCTUATION: continue cat = unicodedata.category(char) if cat == "Mn": continue output.append(char) return "".join(output) def simplify(answer): """Pre-process answer string.""" toks = [] articles = {"the", "a", "an", "and", ""} for t in answer.strip().lower().split(): tok = strip_accents_and_punct(t) if tok not in articles: toks.append(tok) return "".join(toks) def rare_relation_scores(relationwise, relation2counts): """Print statistics of rare relations for different thresholds.""" for thresh in [5, 100, 500, 1000]: freq_stats, freq_total = np.array([0., 0., 0.]), 0 rare_stats, rare_total = np.array([0., 0., 0.]), 0 for relation, (stats, _) in relationwise.items(): if relation2counts.get(relation, 0) < thresh: rare_stats += stats rare_total += 1 else: freq_stats += stats freq_total += 1 rare_stats /= rare_total freq_stats /= freq_total print( "Threshold =", thresh, "rare", rare_total, "Micro-P %.3f Micro-R %.3f Micro-F %.3f" % (rare_stats[0], rare_stats[1], rare_stats[2]), "freq", freq_total, "Micro-P %.3f Micro-R %.3f Micro-F %.3f" % (freq_stats[0], freq_stats[1], freq_stats[2])) def main(_): eval_type = "hotpot" if eval_type == "hotpot": test_hotpot_eval() else: micro, macro, rwise, _ = compute_scores(FLAGS.ground_truth_file, FLAGS.predicted_answers_file) print("Micro", micro) print("Macro", macro) if FLAGS.relation_counts_file is not None: r2c = json.load(tf.gfile.Open(FLAGS.relation_counts_file)) rare_relation_scores(rwise, r2c) if __name__ == "__main__": app.run(main)
test/library/draft/DataFrames/psahabu/AddSeries.py
jhh67/chapel
1,602
3447
<gh_stars>1000+ import pandas as pd I = ["A", "B", "C", "D", "E"] oneDigit = pd.Series([1, 2, 3, 4, 5], pd.Index(I)) twoDigit = pd.Series([10, 20, 30, 40, 50], pd.Index(I)) print "addends:" print oneDigit print twoDigit print print "sum:" print oneDigit + twoDigit print I2 = ["A", "B", "C"] I3 = ["B", "C", "D", "E"] X = pd.Series([0, 1, 2], pd.Index(I2)) Y = pd.Series([10, 20, 0, 0], pd.Index(I3)) print "addends:" print X print Y print print "sum:" print X + Y print A = pd.Series(["hello ", "my ", "name", "is", "brad"]) B = pd.Series(["world", "real"]) print "addends:" print A print B print print "sum: " print A + B
tests/test_provider_Mongey_kafka_connect.py
mjuenema/python-terrascript
507
3451
# tests/test_provider_Mongey_kafka-connect.py # Automatically generated by tools/makecode.py (24-Sep-2021 15:20:11 UTC) def test_provider_import(): import terrascript.provider.Mongey.kafka_connect def test_resource_import(): from terrascript.resource.Mongey.kafka_connect import kafka_connect_connector # TODO: Shortcut imports without namespace for official and supported providers. # TODO: This has to be moved into a required_providers block. # def test_version_source(): # # import terrascript.provider.Mongey.kafka_connect # # t = terrascript.provider.Mongey.kafka_connect.kafka_connect() # s = str(t) # # assert 'https://github.com/Mongey/terraform-provider-kafka-connect' in s # assert '0.2.3' in s
tests/test_config_parser.py
KevinMFong/pyhocon
424
3457
# -*- encoding: utf-8 -*- import json import os import shutil import tempfile from collections import OrderedDict from datetime import timedelta from pyparsing import ParseBaseException, ParseException, ParseSyntaxException import mock import pytest from pyhocon import (ConfigFactory, ConfigParser, ConfigSubstitutionException, ConfigTree) from pyhocon.exceptions import (ConfigException, ConfigMissingException, ConfigWrongTypeException) try: from dateutil.relativedelta import relativedelta as period except Exception: from datetime import timedelta as period class TestConfigParser(object): def test_parse_simple_value(self): config = ConfigFactory.parse_string( """t = { c = 5 "d" = true e.y = { f: 7 g: "hey dude!" h: hey man i = \"\"\" "first line" "second" line \"\"\" } j = [1, 2, 3] u = 192.168.1.3/32 g = null } """ ) assert config.get_string('t.c') == '5' assert config.get_int('t.c') == 5 assert config.get_float('t.c') == 5.0 assert config.get('t.e.y.f') == 7 assert config.get('t.e.y.g') == 'hey dude!' assert config.get('t.e.y.h') == 'hey man' assert [v.strip() for v in config.get('t.e.y.i').split('\n')] == ['', '"first line"', '"second" line', ''] assert config.get_bool('t.d') is True assert config.get_int('t.e.y.f') == 7 assert config.get('t.j') == [1, 2, 3] assert config.get('t.u') == '192.168.1.3/32' assert config.get_int('t.g') is None assert config.get_float('t.g') is None assert config.get_string('t.g') is None assert config.get_bool('t.g') is None assert config.get_list('t.g') is None assert config.get_config('t.g') is None @pytest.mark.parametrize('forbidden_char', ['+', '`', '^', '?', '!', '@', '*', '&']) def test_fail_parse_forbidden_characters(self, forbidden_char): with pytest.raises(ParseBaseException): ConfigFactory.parse_string('a: hey man{}'.format(forbidden_char)) @pytest.mark.parametrize('forbidden_char', ['$', '"']) def test_fail_parse_forbidden_characters_in_context(self, forbidden_char): with pytest.raises(ParseException): ConfigFactory.parse_string('a: hey man{}'.format(forbidden_char)) @pytest.mark.parametrize('forbidden_char', ['+', '`', '^', '?', '!', '@', '*', '&']) def test_parse_forbidden_characters_quoted(self, forbidden_char): value = "hey man{}".format(forbidden_char) config = ConfigFactory.parse_string('a: "{}"'.format(value)) assert config.get_string("a") == value def test_parse_with_enclosing_brace(self): config = ConfigFactory.parse_string( """ { a: { b: 5 } } """ ) assert config.get_string('a.b') == '5' @pytest.mark.parametrize('data_set', [ ('a: 1 minutes', period(minutes=1)), ('a: 1minutes', period(minutes=1)), ('a: 2 minute', period(minutes=2)), ('a: 3 m', period(minutes=3)), ('a: 3m', period(minutes=3)), ('a: 3 min', '3 min'), ('a: 4 seconds', period(seconds=4)), ('a: 5 second', period(seconds=5)), ('a: 6 s', period(seconds=6)), ('a: 6 sec', '6 sec'), ('a: 7 hours', period(hours=7)), ('a: 8 hour', period(hours=8)), ('a: 9 h', period(hours=9)), ('a: 10 weeks', period(weeks=10)), ('a: 11 week', period(weeks=11)), ('a: 12 w', period(weeks=12)), ('a: 10 days', period(days=10)), ('a: 11 day', period(days=11)), ('a: 12 d', period(days=12)), ('a: 110 microseconds', period(microseconds=110)), ('a: 111 microsecond', period(microseconds=111)), ('a: 112 micros', period(microseconds=112)), ('a: 113 micro', period(microseconds=113)), ('a: 114 us', period(microseconds=114)), ('a: 110 milliseconds', timedelta(milliseconds=110)), ('a: 111 millisecond', timedelta(milliseconds=111)), ('a: 112 millis', timedelta(milliseconds=112)), ('a: 113 milli', timedelta(milliseconds=113)), ('a: 114 ms', timedelta(milliseconds=114)), ('a: 110 nanoseconds', period(microseconds=0)), ('a: 11000 nanoseconds', period(microseconds=11)), ('a: 1110000 nanosecond', period(microseconds=1110)), ('a: 1120000 nanos', period(microseconds=1120)), ('a: 1130000 nano', period(microseconds=1130)), ('a: 1140000 ns', period(microseconds=1140)), ]) def test_parse_string_with_duration(self, data_set): config = ConfigFactory.parse_string(data_set[0]) assert config['a'] == data_set[1] def test_parse_string_with_duration_with_long_unit_name(self): config = ConfigFactory.parse_string( """ a: foo b: 10 weeks c: bar """ ) assert config['b'] == period(weeks=10) def test_parse_with_list_mixed_types_with_durations_and_trailing_comma(self): config = ConfigFactory.parse_string( """ a: foo b: [a, 1, 10 weeks, 5 minutes,] c: bar """ ) assert config['b'] == ['a', 1, period(weeks=10), period(minutes=5)] def test_parse_with_enclosing_square_bracket(self): config = ConfigFactory.parse_string("[1, 2, 3]") assert config == [1, 2, 3] def test_quoted_key_with_dots(self): config = ConfigFactory.parse_string( """ "a.b.c.d": 3 t { "d": { "c": 5 } } k { "b.f.d": 7 } """ ) assert config['"a.b.c.d"'] == 3 assert config['t.d.c'] == 5 assert config['k."b.f.d"'] == 7 def test_dotted_notation_merge(self): config = ConfigFactory.parse_string( """ a { b = foo c = bar } a.c = ${a.b}" "${a.b} a.d = baz """ ) assert config['a.b'] == "foo" assert config['a.c'] == "foo foo" assert config['a.d'] == "baz" def test_comma_to_separate_expr(self): config = ConfigFactory.parse_string( """ a=1, b="abc", c=the man, d=woof, a-b-c-d=test, a b c d=test2, "a b c d e"=test3 """ ) assert config.get('a') == 1 assert config.get('b') == 'abc' assert config.get('c') == 'the man' assert config.get('d') == 'woof' assert config.get('a-b-c-d') == 'test' assert config.get('a b c d') == 'test2' assert config.get('a b c d e') == 'test3' def test_dict_merge(self): config = ConfigFactory.parse_string( """ a { d { g.h.j.u: 5 g { h.d: 4 } g.h.k: f d } h.i.m = 7 h.i { d: 5 } h.i { e:65 } } """) expected_result = { "a": { "d": { "g": { "h": { "j": { "u": 5 }, "d": 4, "k": "f d" } } }, "h": { "i": { "m": 7, "d": 5, "e": 65 } } } } assert expected_result == config def test_parse_with_comments(self): config = ConfigFactory.parse_string( """ // comment 1 # comment 2 { c = test // comment 0 g = 6 test # comment 0 # comment 3 a: { # comment 4 b: test, # comment 5 } # comment 6 t = [1, # comment 7 2, # comment 8 3, # comment 9 ] } # comment 10 // comment 11 // comment 12 """ ) assert config.get('c') == 'test' assert config.get('g') == '6 test' assert config.get('a.b') == 'test' assert config.get_string('a.b') == 'test' assert config.get('t') == [1, 2, 3] def test_missing_config(self): config = ConfigFactory.parse_string( """ a = 5 """ ) # b is not set so show raise an exception with pytest.raises(ConfigMissingException): config.get('b') def test_parse_null(self): config = ConfigFactory.parse_string( """ a = null b = [null] """ ) assert config.get('a') is None assert config.get('b')[0] is None def test_parse_override(self): config = ConfigFactory.parse_string( """ { a: { b: { c = 5 } } a.b { c = 7 d = 8 } } """ ) assert config.get('a.b.c') == 7 assert config.get('a.b.d') == 8 def test_concat_dict(self): config = ConfigFactory.parse_string( """ a: {b: 1} a: {c: 2} b: {c: 3} {d: 4} { c: 5 } """ ) assert config.get('a.b') == 1 assert config.get('a.c') == 2 assert config.get('b.c') == 5 assert config.get('b.d') == 4 def test_concat_string(self): config = ConfigFactory.parse_string( """ a = a b c b = 5 b c = b 7 """ ) assert config.get('a') == 'a b c' assert config.get('b') == '5 b' assert config.get('c') == 'b 7' def test_concat_list(self): config = ConfigFactory.parse_string( """ a = [1, 2] [3, 4] [ 5, 6 ] """ ) assert config.get('a') == [1, 2, 3, 4, 5, 6] assert config.get_list('a') == [1, 2, 3, 4, 5, 6] def test_bad_concat(self): ConfigFactory.parse_string('a = 45\n') with pytest.raises(ConfigWrongTypeException): ConfigFactory.parse_string('a = [4] "4"') with pytest.raises(ConfigWrongTypeException): ConfigFactory.parse_string('a = "4" [5]') with pytest.raises(ConfigWrongTypeException): ConfigFactory.parse_string('a = {b: 5} "4"') def test_string_substitutions(self): config1 = ConfigFactory.parse_string( """ { a: { b: { c = str e = "str " } } d = ${a.b.c} f = ${a.b.e} } """ ) assert config1.get('a.b.c') == 'str' assert config1.get('d') == 'str' assert config1.get('f') == 'str ' config2 = ConfigFactory.parse_string( """ { a: { b: { c = str e = "str " } } d = test ${a.b.c} f = test ${a.b.e} } """ ) assert config2.get('a.b.c') == 'str' assert config2.get('d') == 'test str' assert config2.get('f') == 'test str ' config3 = ConfigFactory.parse_string( u""" { a: { b: { c = str e = "str " } } d = test ${a.b.c} me f = test ${a.b.e} me } """ ) assert config3.get('a.b.c') == 'str' assert config3.get('d') == 'test str me' assert config3.get('f') == 'test str me' def test_string_substitutions_with_no_space(self): config = ConfigFactory.parse_string( """ app.heap_size = 128 app.java_opts = [ -Xms${app.heap_size}m -Xmx${app.heap_size}m ] """ ) assert config.get('app.java_opts') == [ '-Xms128m', '-Xmx128m' ] def test_int_substitutions(self): config1 = ConfigFactory.parse_string( """ { a: { b: { c = 5 } } d = ${a.b.c} } """ ) assert config1.get('a.b.c') == 5 assert config1.get('d') == 5 config2 = ConfigFactory.parse_string( """ { a: { b: { c = 5 } } d = test ${a.b.c} } """ ) assert config2.get('a.b.c') == 5 assert config2.get('d') == 'test 5' config3 = ConfigFactory.parse_string( """ { a: { b: { c = 5 } } d = test ${a.b.c} me } """ ) assert config3.get('a.b.c') == 5 assert config3.get('d') == 'test 5 me' def test_cascade_string_substitutions(self): config = ConfigFactory.parse_string( """ { a: { b: { c = ${e} } } d = test ${a.b.c} me e = 7 } """ ) assert config.get('a.b.c') == 7 assert config.get('d') == 'test 7 me' def test_multiple_substitutions(self): config = ConfigFactory.parse_string( """ a = 5 b=${a}${a} c=${a} ${a} """ ) assert config == { 'a': 5, 'b': '55', 'c': '5 5' } def test_dict_substitutions(self): config = ConfigFactory.parse_string( """ data-center-generic = { cluster-size = 6 } data-center-east = ${data-center-generic} {name = "east"} """ ) assert config.get('data-center-east.cluster-size') == 6 assert config.get('data-center-east.name') == 'east' config2 = ConfigFactory.parse_string( """ data-center-generic = { cluster-size = 6 } data-center-east = {name = "east"} ${data-center-generic} """ ) assert config2.get('data-center-east.cluster-size') == 6 assert config2.get('data-center-east.name') == 'east' config3 = ConfigFactory.parse_string( """ data-center-generic = { cluster-size = 6 } data-center-east = {name = "east"} ${data-center-generic} { cluster-size = 9, opts = "-Xmx4g" } """ ) assert config3.get('data-center-east.cluster-size') == 9 assert config3.get('data-center-east.name') == 'east' assert config3.get('data-center-east.opts') == '-Xmx4g' config4 = ConfigFactory.parse_string( """ data-center-generic = { cluster-size = 6 } data-center-east = {name = "east"} ${data-center-generic} data-center-east-prod = ${data-center-east} {tmpDir=/tmp} """ ) assert config4.get('data-center-east.cluster-size') == 6 assert config4.get('data-center-east.name') == 'east' assert config4.get('data-center-east-prod.cluster-size') == 6 assert config4.get('data-center-east-prod.tmpDir') == '/tmp' config5 = ConfigFactory.parse_string( """ data-center-generic = { cluster-size = 6 } data-center-east = ${data-center-generic} data-center-east = { name = "east" } """ ) assert config5['data-center-east'] == { 'name': 'east', 'cluster-size': 6 } config6 = ConfigFactory.parse_string( """ data-center-generic = { cluster-size = 6 } data-center-east = { name = "east" } data-center-east = ${data-center-generic} """ ) assert config6['data-center-east'] == { 'name': 'east', 'cluster-size': 6 } def test_dos_chars_with_unquoted_string_noeol(self): config = ConfigFactory.parse_string("foo = bar") assert config['foo'] == 'bar' def test_dos_chars_with_quoted_string_noeol(self): config = ConfigFactory.parse_string('foo = "5"') assert config['foo'] == '5' def test_dos_chars_with_triple_quoted_string_noeol(self): config = ConfigFactory.parse_string('foo = """5"""') assert config['foo'] == '5' def test_dos_chars_with_int_noeol(self): config = ConfigFactory.parse_string("foo = 5") assert config['foo'] == 5 def test_dos_chars_with_float_noeol(self): config = ConfigFactory.parse_string("foo = 5.0") assert config['foo'] == 5.0 def test_list_substitutions(self): config = ConfigFactory.parse_string( """ common_modules = [php, python] host_modules = ${common_modules} [java] """ ) assert config.get('host_modules') == ['php', 'python', 'java'] config2 = ConfigFactory.parse_string( """ common_modules = [php, python] host_modules = [java] ${common_modules} """ ) assert config2.get('host_modules') == ['java', 'php', 'python'] config3 = ConfigFactory.parse_string( """ common_modules = [php, python] host_modules = [java] ${common_modules} [perl] """ ) assert config3.get('common_modules') == ['php', 'python'] assert config3.get('host_modules') == ['java', 'php', 'python', 'perl'] config4 = ConfigFactory.parse_string( """ common_modules = [php, python] host_modules = [java] ${common_modules} [perl] full_modules = ${host_modules} [c, go] """ ) assert config4.get('common_modules') == ['php', 'python'] assert config4.get('host_modules') == ['java', 'php', 'python', 'perl'] assert config4.get('full_modules') == ['java', 'php', 'python', 'perl', 'c', 'go'] def test_list_element_substitution(self): config = ConfigFactory.parse_string( """ main_language = php languages = [java, ${main_language}] """ ) assert config.get('languages') == ['java', 'php'] def test_substitution_list_with_append(self): config = ConfigFactory.parse_string( """ application.foo = 128mm application.large-jvm-opts = ["-XX:+UseParNewGC"] [-Xm16g, ${application.foo}] application.large-jvm-opts2 = [-Xm16g, ${application.foo}] ["-XX:+UseParNewGC"] """) assert config["application.large-jvm-opts"] == [ '-XX:+UseParNewGC', '-Xm16g', '128mm' ] assert config["application.large-jvm-opts2"] == [ '-Xm16g', '128mm', '-XX:+UseParNewGC', ] def test_substitution_list_with_append_substitution(self): config = ConfigFactory.parse_string( """ application.foo = 128mm application.default-jvm-opts = ["-XX:+UseParNewGC"] application.large-jvm-opts = ${application.default-jvm-opts} [-Xm16g, ${application.foo}] application.large-jvm-opts2 = [-Xm16g, ${application.foo}] ${application.default-jvm-opts} """) assert config["application.large-jvm-opts"] == [ '-XX:+UseParNewGC', '-Xm16g', '128mm' ] assert config["application.large-jvm-opts2"] == [ '-Xm16g', '128mm', '-XX:+UseParNewGC' ] def test_non_existent_substitution(self): with pytest.raises(ConfigSubstitutionException): ConfigFactory.parse_string( """ common_modules = ${non_existent} """ ) with pytest.raises(ConfigSubstitutionException): ConfigFactory.parse_string( """ common_modules = abc ${non_existent} """ ) with pytest.raises(ConfigSubstitutionException): ConfigFactory.parse_string( """ common_modules = ${non_existent} abc """ ) with pytest.raises(ConfigSubstitutionException): ConfigFactory.parse_string( """ common_modules = abc ${non_existent} def """ ) def test_non_compatible_substitution(self): with pytest.raises(ConfigWrongTypeException): ConfigFactory.parse_string( """ common_modules = [perl] host_modules = 55 ${common_modules} """ ) with pytest.raises(ConfigWrongTypeException): ConfigFactory.parse_string( """ common_modules = [perl] host_modules = ${common_modules} 55 """ ) with pytest.raises(ConfigWrongTypeException): ConfigFactory.parse_string( """ common_modules = [perl] host_modules = aa ${common_modules} bb """ ) with pytest.raises(ConfigWrongTypeException): ConfigFactory.parse_string( """ common_modules = [perl] host_modules = aa ${common_modules} """ ) with pytest.raises(ConfigWrongTypeException): ConfigFactory.parse_string( """ common_modules = [perl] host_modules = ${common_modules} aa """ ) with pytest.raises(ConfigWrongTypeException): ConfigFactory.parse_string( """ common_modules = [perl] host_modules = aa ${common_modules} bb """ ) def test_self_ref_substitution_array(self): config = ConfigFactory.parse_string( """ x = [1,2] x = ${x} [3,4] x = [-1, 0] ${x} [5, 6] x = [-3, -2] ${x} """ ) assert config.get("x") == [-3, -2, -1, 0, 1, 2, 3, 4, 5, 6] def test_self_append_array(self): config = ConfigFactory.parse_string( """ x = [1,2] x += [3,4] """ ) assert config.get("x") == [1, 2, 3, 4] def test_self_append_string(self): ''' Should be equivalent to x = abc x = ${?x} def ''' config = ConfigFactory.parse_string( """ x = abc x += def """ ) assert config.get("x") == "abc def" def test_self_append_non_existent_string(self): ''' Should be equivalent to x = ${?x} def ''' config = ConfigFactory.parse_string( """ x += def """ ) assert config.get("x") == " def" def test_self_append_nonexistent_array(self): config = ConfigFactory.parse_string( """ x += [1,2] """ ) assert config.get("x") == [1, 2] def test_self_append_object(self): config = ConfigFactory.parse_string( """ x = {a: 1} x += {b: 2} """ ) assert config.get("x") == {'a': 1, 'b': 2} def test_self_append_nonexistent_object(self): config = ConfigFactory.parse_string( """ x += {a: 1} """ ) assert config.get("x") == {'a': 1} def test_self_ref_substitution_array_to_dict(self): config = ConfigFactory.parse_string( """ x = [1,2] x = {x: [3,4]} x = {y: [5,6]} x = {z: ${x}} """ ) assert config.get("x.x") == [3, 4] assert config.get("x.y") == [5, 6] assert config.get("x.z") == {'x': [3, 4], 'y': [5, 6]} def test_self_ref_substitiotion_dict_in_array(self): config = ConfigFactory.parse_string( """ x = {x: [3,4]} x = [${x}, 2, 3] """ ) (one, two, three) = config.get("x") assert one == {'x': [3, 4]} assert two == 2 assert three == 3 def test_self_ref_substitution_dict_path(self): config = ConfigFactory.parse_string( """ x = {y: {z: 1}} x = ${x.y} """ ) assert config.get("x.y") == {'z': 1} assert config.get("x.z") == 1 assert set(config.get("x").keys()) == set(['y', 'z']) def test_self_ref_substitution_dict_path_hide(self): config = ConfigFactory.parse_string( """ x = {y: {y: 1}} x = ${x.y} """ ) assert config.get("x.y") == 1 assert set(config.get("x").keys()) == set(['y']) def test_self_ref_substitution_dict_recurse(self): with pytest.raises(ConfigSubstitutionException): ConfigFactory.parse_string( """ x = ${x} """ ) def test_self_ref_substitution_dict_recurse2(self): with pytest.raises(ConfigSubstitutionException): ConfigFactory.parse_string( """ x = ${x} x = ${x} """ ) def test_self_ref_substitution_dict_merge(self): ''' Example from HOCON spec ''' config = ConfigFactory.parse_string( """ foo : { a : { c : 1 } } foo : ${foo.a} foo : { a : 2 } """ ) assert config.get('foo') == {'a': 2, 'c': 1} assert set(config.keys()) == set(['foo']) def test_self_ref_substitution_dict_otherfield(self): ''' Example from HOCON spec ''' config = ConfigFactory.parse_string( """ bar : { foo : 42, baz : ${bar.foo} } """ ) assert config.get("bar") == {'foo': 42, 'baz': 42} assert set(config.keys()) == set(['bar']) def test_self_ref_substitution_dict_otherfield_merged_in(self): ''' Example from HOCON spec ''' config = ConfigFactory.parse_string( """ bar : { foo : 42, baz : ${bar.foo} } bar : { foo : 43 } """ ) assert config.get("bar") == {'foo': 43, 'baz': 43} assert set(config.keys()) == set(['bar']) def test_self_ref_substitution_dict_otherfield_merged_in_mutual(self): ''' Example from HOCON spec ''' config = ConfigFactory.parse_string( """ // bar.a should end up as 4 bar : { a : ${foo.d}, b : 1 } bar.b = 3 // foo.c should end up as 3 foo : { c : ${bar.b}, d : 2 } foo.d = 4 """ ) assert config.get("bar") == {'a': 4, 'b': 3} assert config.get("foo") == {'c': 3, 'd': 4} assert set(config.keys()) == set(['bar', 'foo']) def test_self_ref_substitution_string_opt_concat(self): ''' Example from HOCON spec ''' config = ConfigFactory.parse_string( """ a = ${?a}foo """ ) assert config.get("a") == 'foo' assert set(config.keys()) == set(['a']) def test_self_ref_substitution_dict_recurse_part(self): with pytest.raises(ConfigSubstitutionException): ConfigFactory.parse_string( """ x = ${x} {y: 1} x = ${x.y} """ ) def test_self_ref_substitution_object(self): config = ConfigFactory.parse_string( """ x = {a: 1, b: 2} x = ${x} {c: 3} x = {z: 0} ${x} x = {y: -1} ${x} {d: 4} """ ) assert config.get("x") == {'a': 1, 'b': 2, 'c': 3, 'z': 0, 'y': -1, 'd': 4} def test_self_ref_child(self): config = ConfigFactory.parse_string( """ a.b = 3 a.b = ${a.b} a.b = ${a.b} a.c = [1,2] a.c = ${a.c} a.d = {foo: bar} a.d = ${a.d} """ ) assert config.get("a") == {'b': 3, 'c': [1, 2], 'd': {'foo': 'bar'}} def test_concat_multi_line_string(self): config = ConfigFactory.parse_string( """ common_modules = perl \ java \ python """ ) assert [x.strip() for x in config['common_modules'].split() if x.strip(' ') != ''] == ['perl', 'java', 'python'] def test_concat_multi_line_list(self): config = ConfigFactory.parse_string( """ common_modules = [perl] \ [java] \ [python] """ ) assert config['common_modules'] == ['perl', 'java', 'python'] def test_concat_multi_line_dict(self): config = ConfigFactory.parse_string( """ common_modules = {a:perl} \ {b:java} \ {c:python} """ ) assert config['common_modules'] == {'a': 'perl', 'b': 'java', 'c': 'python'} def test_parse_URL_from_samples(self): config = ConfigFactory.parse_URL("file:samples/aws.conf") assert config.get('data-center-generic.cluster-size') == 6 assert config.get('large-jvm-opts') == ['-XX:+UseParNewGC', '-Xm16g'] def test_parse_URL_from_invalid(self): config = ConfigFactory.parse_URL("https://nosuchurl") assert config == [] def test_include_dict_from_samples(self): config = ConfigFactory.parse_file("samples/animals.conf") assert config.get('cat.garfield.say') == 'meow' assert config.get('dog.mutt.hates.garfield.say') == 'meow' def test_include_glob_dict_from_samples(self): config = ConfigFactory.parse_file("samples/all_animals.conf") assert config.get('animals.garfield.say') == 'meow' assert config.get('animals.mutt.hates.garfield.say') == 'meow' def test_include_glob_list_from_samples(self): config = ConfigFactory.parse_file("samples/all_bars.conf") bars = config.get_list('bars') assert len(bars) == 10 names = {bar['name'] for bar in bars} types = {bar['type'] for bar in bars if 'type' in bar} print(types, '(((((') assert '<NAME>' in names assert 'Homer\'s favorite coffee' in names assert 'milk' in types def test_list_of_dicts(self): config = ConfigFactory.parse_string( """ a: [ {a: 1, b: 2}, {a: 3, c: 4}, ] """ ) assert config['a'] == [ {'a': 1, 'b': 2}, {'a': 3, 'c': 4} ] def test_list_of_lists(self): config = ConfigFactory.parse_string( """ a: [ [1, 2] [3, 4] ] """ ) assert config['a'] == [ [1, 2], [3, 4] ] def test_list_of_dicts_with_merge(self): config = ConfigFactory.parse_string( """ b = {f: 4} a: [ ${b} {a: 1, b: 2}, {a: 3, c: 4} ${b}, {a: 3} ${b} {c: 6}, ] """ ) assert config['a'] == [ {'a': 1, 'b': 2, 'f': 4}, {'a': 3, 'c': 4, 'f': 4}, {'a': 3, 'c': 6, 'f': 4} ] def test_list_of_lists_with_merge(self): config = ConfigFactory.parse_string( """ b = [5, 6] a: [ ${b} [1, 2] [3, 4] ${b} [1, 2] ${b} [7, 8] ] """ ) assert config['a'] == [ [5, 6, 1, 2], [3, 4, 5, 6], [1, 2, 5, 6, 7, 8] ] def test_invalid_assignment(self): with pytest.raises(ParseSyntaxException): ConfigFactory.parse_string('common_modules [perl]') with pytest.raises(ParseException): ConfigFactory.parse_string('common_modules {} {perl: 1}') with pytest.raises(ParseSyntaxException): ConfigFactory.parse_string( """ a = {f: 5} common_modules ${a} {perl: 1} """) def test_invalid_dict(self): with pytest.raises(ParseSyntaxException): ConfigFactory.parse_string( """ a = { f: 5 g } """) with pytest.raises(ParseSyntaxException): ConfigFactory.parse_string('a = {g}') def test_include_file(self): with tempfile.NamedTemporaryFile('w') as fdin: fdin.write('[1, 2]') fdin.flush() config1 = ConfigFactory.parse_string( """ a: [ include "{tmp_file}" ] """.format(tmp_file=fdin.name) ) assert config1['a'] == [1, 2] config2 = ConfigFactory.parse_string( """ a: [ include file("{tmp_file}") ] """.format(tmp_file=fdin.name) ) assert config2['a'] == [1, 2] config3 = ConfigFactory.parse_string( """ a: [ include url("file://{tmp_file}") ] """.format(tmp_file=fdin.name) ) assert config3['a'] == [1, 2] def test_include_missing_file(self): config1 = ConfigFactory.parse_string( """ a: [ include "dummy.txt" 3 4 ] """ ) assert config1['a'] == [3, 4] def test_include_required_file(self): config = ConfigFactory.parse_string( """ a { include required("samples/animals.d/cat.conf") t = 2 } """ ) expected = { 'a': { 'garfield': { 'say': 'meow' }, 't': 2 } } assert expected == config config2 = ConfigFactory.parse_string( """ a { include required(file("samples/animals.d/cat.conf")) t = 2 } """ ) assert expected == config2 def test_include_missing_required_file(self): with pytest.raises(IOError): ConfigFactory.parse_string( """ a: [ include required("dummy.txt") 3 4 ] """ ) def test_resolve_package_path(self): path = ConfigParser.resolve_package_path("pyhocon:config_parser.py") assert os.path.exists(path) def test_resolve_package_path_format(self): with pytest.raises(ValueError): ConfigParser.resolve_package_path("pyhocon/config_parser.py") def test_resolve_package_path_missing(self): with pytest.raises(ImportError): ConfigParser.resolve_package_path("non_existent_module:foo.py") def test_include_package_file(self, monkeypatch): temp_dir = tempfile.mkdtemp() try: module_dir = os.path.join(temp_dir, 'my_module') module_conf = os.path.join(module_dir, 'my.conf') # create the module folder and necessary files (__init__ and config) os.mkdir(module_dir) open(os.path.join(module_dir, '__init__.py'), 'a').close() with open(module_conf, 'w') as fdin: fdin.write("{c: 3}") # add the temp dir to sys.path so that 'my_module' can be discovered monkeypatch.syspath_prepend(temp_dir) # load the config and include the other config file from 'my_module' config = ConfigFactory.parse_string( """ a: 1 b: 2 include package("my_module:my.conf") """ ) # check that the contents of both config files are available assert dict(config.as_plain_ordered_dict()) == {'a': 1, 'b': 2, 'c': 3} finally: shutil.rmtree(temp_dir, ignore_errors=True) def test_include_dict(self): expected_res = { 'a': 1, 'b': 2, 'c': 3, 'd': 4 } with tempfile.NamedTemporaryFile('w') as fdin: fdin.write('{a: 1, b: 2}') fdin.flush() config1 = ConfigFactory.parse_string( """ a: {{ include "{tmp_file}" c: 3 d: 4 }} """.format(tmp_file=fdin.name) ) assert config1['a'] == expected_res config2 = ConfigFactory.parse_string( """ a: {{ c: 3 d: 4 include "{tmp_file}" }} """.format(tmp_file=fdin.name) ) assert config2['a'] == expected_res config3 = ConfigFactory.parse_string( """ a: {{ c: 3 include "{tmp_file}" d: 4 }} """.format(tmp_file=fdin.name) ) assert config3['a'] == expected_res def test_include_substitution(self): with tempfile.NamedTemporaryFile('w') as fdin: fdin.write('y = ${x}') fdin.flush() config = ConfigFactory.parse_string( """ include "{tmp_file}" x = 42 """.format(tmp_file=fdin.name) ) assert config['x'] == 42 assert config['y'] == 42 @pytest.mark.xfail def test_include_substitution2(self): with tempfile.NamedTemporaryFile('w') as fdin: fdin.write('{ x : 10, y : ${x} }') fdin.flush() config = ConfigFactory.parse_string( """ { a : { include """ + '"' + fdin.name + """" } a : { x : 42 } } """ ) assert config['a']['x'] == 42 assert config['a']['y'] == 42 def test_var_with_include_keyword(self): config = ConfigFactory.parse_string( """ include-database=true """) assert config == { 'include-database': True } def test_substitution_override(self): config = ConfigFactory.parse_string( """ database { host = localhost port = 5432 user = people name = peopledb pass = <PASSWORD> } user=test_user pass=<PASSWORD> database { user = ${user} pass = ${pass} } """) assert config['database.user'] == 'test_user' assert config['database.pass'] == '<PASSWORD>' def test_substitution_flat_override(self): config = ConfigFactory.parse_string( """ database { name = peopledb pass = <PASSWORD> name = ${?NOT_EXISTS} pass = ${?NOT_EXISTS} } """) assert config['database.name'] == 'peopledb' assert config['database.pass'] == '<PASSWORD>' def test_substitution_multiple_override(self): config = ConfigFactory.parse_string( """ a: 1 b: foo c: ${a} ${b} c: ${b} ${a} d: ${a} ${b} d: ${a} bar """) assert config['c'] == 'foo 1' assert config['d'] == '1 bar' def test_substitution_nested_override(self): config = ConfigFactory.parse_string( """ database { name = peopledb pass = <PASSWORD> } database { name = ${?user} pass = ${?pass} } """) assert config['database.name'] == 'peopledb' assert config['database.pass'] == '<PASSWORD>' def test_optional_with_merge(self): unresolved = ConfigFactory.parse_string( """ foo: 42 foo: ${?a} """, resolve=False) source = ConfigFactory.parse_string( """ b: 14 """) config = unresolved.with_fallback(source) assert config['foo'] == 42 config = source.with_fallback(unresolved) assert config['foo'] == 42 def test_fallback_with_resolve(self): config3 = ConfigFactory.parse_string("c=5") config2 = ConfigFactory.parse_string("b=${c}", resolve=False) config1 = ConfigFactory.parse_string("a=${b}", resolve=False) \ .with_fallback(config2, resolve=False) \ .with_fallback(config3) assert {'a': 5, 'b': 5, 'c': 5} == config1 def test_optional_substitution(self): config = ConfigFactory.parse_string( """ a = 45 b = ${?c} d = ${?c} 4 e = ${?a} g = ${?c1} ${?c2} h = ${?c1} ${?c2} 1 """) assert 'b' not in config assert config['d'] == 4 assert config['e'] == 45 assert 'g' not in config assert config['h'] == 1 def test_cascade_optional_substitution(self): config = ConfigFactory.parse_string( """ num = 3 retries_msg = You have ${num} retries retries_msg = ${?CUSTOM_MSG} """) assert config == { 'num': 3, 'retries_msg': 'You have 3 retries' } def test_substitution_cycle(self): with pytest.raises(ConfigSubstitutionException): ConfigFactory.parse_string( """ a = ${b} b = ${c} c = ${a} """) def test_assign_number_with_eol(self): config = ConfigFactory.parse_string( """ a = 4 b = # test # test2 5 c = 6 """ ) assert config['a'] == 4 assert config['b'] == 5 assert config['c'] == 6 def test_assign_int(self): config = ConfigFactory.parse_string( """ short = 12 long = 12321321837612378126213217321 negative = -15 """ ) # on python 3 long will be an int but on python 2 long with be a long assert config['short'] == 12 assert isinstance(config['short'], int) assert config['long'] == 12321321837612378126213217321 assert isinstance(config['negative'], int) assert config['negative'] == -15 def test_assign_float(self): config = ConfigFactory.parse_string( """ a = 121.22 b = -121.22 c = .54 d = -.54 """ ) # on python 3 long will be an int but on python 2 long with be a long assert config['a'] == 121.22 assert config['b'] == -121.22 assert config['c'] == .54 assert config['d'] == -.54 def test_sci_real(self): """ Test scientific expression of number """ config = ConfigFactory.parse_string( """ short = 12.12321 long1 = 121.22E3423432 neg_long1 = 121.22E-1 long2 = 121.22e3423432 neg_long2 = 121.22e-3 """ ) # on python 3 long will be an int but on python 2 long with be a long assert config['short'] == 12.12321 assert config['long1'] == 121.22E3423432 assert config['neg_long1'] == 121.22E-1 assert config['long2'] == 121.22E3423432 assert config['neg_long2'] == 121.22E-3 def test_assign_strings_with_eol(self): config = ConfigFactory.parse_string( """ a = "a" b = # test # test2 "b" c = "c" """ ) assert config['a'] == 'a' assert config['b'] == 'b' assert config['c'] == 'c' def test_assign_list_numbers_with_eol(self): config = ConfigFactory.parse_string( """ a = [ 1, 2, ] b = # test # test2 [ 3, 4,] c = [ 5, 6 ] """ ) assert config['a'] == [1, 2] assert config['b'] == [3, 4] assert config['c'] == [5, 6] def test_assign_list_strings_with_eol(self): config = ConfigFactory.parse_string( """ a = [ "a", "b", ] b = # test # test2 [ "c", "d",] c = [ "e", "f" ] """ ) assert config['a'] == ['a', 'b'] assert config['b'] == ['c', 'd'] assert config['c'] == ['e', 'f'] def test_assign_dict_strings_with_equal_sign_with_eol(self): config = ConfigFactory.parse_string( """ a = { a: 1, b: 2, } b = # test # test2 { c: 3, d: 4,} c = { e: 5, f: 6 } """ ) assert config['a'] == {'a': 1, 'b': 2} assert config['b'] == {'c': 3, 'd': 4} assert config['c'] == {'e': 5, 'f': 6} def test_assign_dict_strings_no_equal_sign_with_eol(self): config = ConfigFactory.parse_string( """ a { a: 1, b: 2, } b # test # test2 { c: 3, d: 4,} c { e: 5, f: 6 } """ ) assert config['a'] == {'a': 1, 'b': 2} assert config['b'] == {'c': 3, 'd': 4} assert config['c'] == {'e': 5, 'f': 6} def test_substitutions_overwrite(self): config1 = ConfigFactory.parse_string( """ a = 123 a = ${?test} a = 5 """ ) assert config1['a'] == 5 config2 = ConfigFactory.parse_string( """ { database { host = "localhost" port = 8000 url = ${database.host}":"${database.port} } database { host = ${?DB_HOST} } database { host = "other.host.net" port = 433 } } """ ) assert config2['database']['host'] == 'other.host.net' assert config2['database']['port'] == 433 assert config2['database']['url'] == 'other.host.net:433' def test_fallback_substitutions_overwrite(self): config1 = ConfigFactory.parse_string( """ a = { b: 1 c: 2 } """ ) config2 = ConfigFactory.parse_string( """ a.b = 4 a.d = 3 """ ) config3 = config1.with_fallback(config2) assert config3['a'] == { 'b': 1, 'c': 2, 'd': 3 } config4 = ConfigFactory.parse_string( """ name: foo """ ) config5 = ConfigFactory.parse_string( u""" longName: "long "${?name} """, resolve=False ) config6 = config4.with_fallback(config5) assert config6 == { 'longName': 'long foo', 'name': 'foo' } def test_fallback_substitutions_overwrite_file(self): config1 = ConfigFactory.parse_string( """ { data-center-generic = { cluster-size: 8 } misc = "mist" } """ ) # use unicode path here for regression testing https://github.com/chimpler/pyhocon/issues/44 config2 = config1.with_fallback(u'samples/aws.conf') assert config2 == { 'data-center-generic': {'cluster-size': 8}, 'data-center-east': {'cluster-size': 8, 'name': 'east'}, 'misc': 'mist', 'default-jvm-opts': ['-XX:+UseParNewGC'], 'large-jvm-opts': ['-XX:+UseParNewGC', '-Xm16g'] } def test_fallback_self_ref_substitutions_append(self): config1 = ConfigFactory.parse_string( """ list = [ 1, 2, 3 ] """ ) config2 = ConfigFactory.parse_string( """ list = ${list} [ 4, 5, 6 ] """, resolve=False ) config2 = config2.with_fallback(config1) assert config2.get("list") == [1, 2, 3, 4, 5, 6] def test_fallback_self_ref_substitutions_append_plus_equals(self): config1 = ConfigFactory.parse_string( """ list = [ 1, 2, 3 ] """ ) config2 = ConfigFactory.parse_string( """ list += [ 4, 5, 6 ] """, resolve=False ) config2 = config2.with_fallback(config1) assert config2.get("list") == [1, 2, 3, 4, 5, 6] def test_self_merge_ref_substitutions_object(self): config1 = ConfigFactory.parse_string( """ a : { } b : 1 c : ${a} { d : [ ${b} ] } """, resolve=False ) config2 = ConfigFactory.parse_string( """ e : ${a} { } """, resolve=False ) merged = ConfigTree.merge_configs(config1, config2) ConfigParser.resolve_substitutions(merged) assert merged.get("c.d") == [1] def test_self_merge_ref_substitutions_object2(self): config1 = ConfigFactory.parse_string( """ x : { v1: 1 } b1 : {v2: 2 } b = [${b1}] """, resolve=False ) config2 = ConfigFactory.parse_string( """ b2 : ${x} {v2: 3} b += [${b2}] """, resolve=False ) merged = ConfigTree.merge_configs(config1, config2) ConfigParser.resolve_substitutions(merged) b = merged.get("b") assert len(b) == 2 assert b[0] == {'v2': 2} assert b[1] == {'v1': 1, 'v2': 3} def test_self_merge_ref_substitutions_object3(self): config1 = ConfigFactory.parse_string( """ b1 : { v1: 1 } b = [${b1}] """, resolve=False ) config2 = ConfigFactory.parse_string( """ b1 : { v1: 2, v2: 3 } """, resolve=False ) merged = ConfigTree.merge_configs(config1, config2) ConfigParser.resolve_substitutions(merged) assert merged.get("b1") == {"v1": 2, "v2": 3} b = merged.get("b") assert len(b) == 1 assert b[0] == {"v1": 2, "v2": 3} def test_fallback_self_ref_substitutions_merge(self): config1 = ConfigFactory.parse_string( """ dict = { x: 1 } """ ) config2 = ConfigFactory.parse_string( """ dict = ${dict} { y: 2 } """, resolve=False ) config2 = config2.with_fallback(config1) assert config2.get("dict") == {'x': 1, 'y': 2} def test_fallback_self_ref_substitutions_concat_string(self): config1 = ConfigFactory.parse_string( """ string = abc """ ) config2 = ConfigFactory.parse_string( """ string = ${string}def """, resolve=False ) result = config2.with_fallback(config1) assert result.get("string") == 'abcdef' # test no mutation on config1 assert result is not config1 # test no mutation on config2 assert "abc" not in str(config2) def test_fallback_non_root(self): root = ConfigFactory.parse_string( """ a = 1 mid.b = 1 """ ) config = root.get_config("mid").with_fallback(root) assert config['a'] == 1 and config['b'] == 1 def test_object_field_substitution(self): config = ConfigFactory.parse_string( """ A = ${Test} Test { field1 = 1 field2 = ${Test.field1}"2" field3 = ${Test.field2}"3" } """ ) assert config.get_string("A.field1") == "1" assert config.get_string("A.field2") == "12" assert config.get_string("A.field3") == "123" assert config.get_string("Test.field1") == "1" assert config.get_string("Test.field2") == "12" assert config.get_string("Test.field3") == "123" def test_one_line_quote_escape(self): config = ConfigFactory.parse_string( """ test_no_quotes: abc\\n\\n test_quotes: "abc\\n\\n" """ ) assert config == { 'test_no_quotes': 'abc\n\n', 'test_quotes': 'abc\n\n' } def test_multi_line_escape(self): config = ConfigFactory.parse_string( """ with-escaped-backslash: \"\"\" \\\\ \"\"\" with-newline-escape-sequence: \"\"\" \\n \"\"\" with-escaped-newline-escape-sequence: \"\"\" \\\\n \"\"\" """ ) assert config['with-escaped-backslash'] == '\n\\\\\n' assert config['with-newline-escape-sequence'] == '\n\\n\n' assert config['with-escaped-newline-escape-sequence'] == '\n\\\\n\n' def test_multiline_with_backslash(self): config = ConfigFactory.parse_string( """ test = line1 \ line2 test2 = test """) assert config == { 'test': 'line1 line2', 'test2': 'test' } def test_from_dict_with_dict(self): d = { 'banana': 3, 'apple': 4, 'pear': 1, 'orange': 2, } config = ConfigFactory.from_dict(d) assert config == d def test_from_dict_with_ordered_dict(self): d = OrderedDict() d['banana'] = 3 d['apple'] = 4 d['pear'] = 1 d['orange'] = 2 config = ConfigFactory.from_dict(d) assert config == d def test_from_dict_with_nested_dict(self): d = OrderedDict() d['banana'] = 3 d['apple'] = 4 d['pear'] = 1 d['tree'] = { 'a': 'abc\ntest\n', 'b': [1, 2, 3] } config = ConfigFactory.from_dict(d) assert config == d def test_object_concat(self): config = ConfigFactory.parse_string( """o1 = { foo : { a : 1 b : 2 } } o2 = { foo : { b : 3 c : 4 } } o3 = ${o1} ${o2} """ ) assert config.get_int('o1.foo.b') == 2 assert config.get_int('o2.foo.b') == 3 assert config.get_int('o3.foo.b') == 3 assert config.get_int('o1.foo.c', default=42) == 42 assert config.get_int('o3.foo.a') == 1 assert config.get_int('o3.foo.c') == 4 def test_issue_75(self): config = ConfigFactory.parse_string( """base : { bar: ["a"] } sub : ${base} { baz: ${base.bar} ["b"] } sub2: ${sub} """ ) assert config.get_list('base.bar') == ["a"] assert config.get_list('sub.baz') == ["a", "b"] assert config.get_list('sub2.baz') == ["a", "b"] def test_plain_ordered_dict(self): config = ConfigFactory.parse_string( """ e : ${a} { } """, resolve=False ) with pytest.raises(ConfigException): config.as_plain_ordered_dict() def test_quoted_strings_with_ws(self): config = ConfigFactory.parse_string( """ no_trailing_ws = "foo" "bar " trailing_ws = "foo" "bar "{ws} trailing_ws_with_comment = "foo" "bar "{ws}// comment """.format(ws=' ')) assert config == { 'no_trailing_ws': "foo bar ", 'trailing_ws': "foo bar ", 'trailing_ws_with_comment': "foo bar " } def test_unquoted_strings_with_ws(self): config = ConfigFactory.parse_string( """ a = foo bar """) assert config == { 'a': 'foo bar' } def test_quoted_unquoted_strings_with_ws(self): config = ConfigFactory.parse_string( """ a = foo "bar" dummy """) assert config == { 'a': 'foo bar dummy' } def test_quoted_unquoted_strings_with_ws_substitutions(self): config = ConfigFactory.parse_string( """ x = 5 b = test a = foo "bar" ${b} dummy c = foo ${x} bv d = foo ${x} 43 """) assert config == { 'x': 5, 'b': 'test', 'a': 'foo bar test dummy', 'c': 'foo 5 bv', 'd': 'foo 5 43' } def test_complex_substitutions(self): config = ConfigFactory.parse_string( """ a: 1 b: ${c} { pa: [${a}] pb: ${b.pa} } c: { } d: { pc: ${b.pa} } e: ${b} """, resolve=True) assert config == { 'a': 1, 'b': {'pa': [1], 'pb': [1]}, 'c': {}, 'd': {'pc': [1]}, 'e': {'pa': [1], 'pb': [1]} } def test_assign_next_line(self): config = ConfigFactory.parse_string( """ a = // abc abc c = 5 """) assert config == { 'a': 'abc', 'c': 5 } @mock.patch.dict(os.environ, STRING_VAR='value_from_environment') def test_string_from_environment(self): config = ConfigFactory.parse_string( """ string_from_env = ${STRING_VAR} """) assert config == { 'string_from_env': 'value_from_environment' } @mock.patch.dict(os.environ, STRING_VAR='value_from_environment') def test_string_from_environment_self_ref(self): config = ConfigFactory.parse_string( """ STRING_VAR = ${STRING_VAR} """) assert config == { 'STRING_VAR': 'value_from_environment' } @mock.patch.dict(os.environ, STRING_VAR='value_from_environment') def test_string_from_environment_self_ref_optional(self): config = ConfigFactory.parse_string( """ STRING_VAR = ${?STRING_VAR} """) assert config == { 'STRING_VAR': 'value_from_environment' } @mock.patch.dict(os.environ, TRUE_OR_FALSE='false') def test_bool_from_environment(self): config = ConfigFactory.parse_string( """ bool_from_env = ${TRUE_OR_FALSE} """) assert config == { 'bool_from_env': 'false' } assert config.get_bool('bool_from_env') is False @mock.patch.dict(os.environ, INT_VAR='5') def test_int_from_environment(self): config = ConfigFactory.parse_string( """ int_from_env = ${INT_VAR} """) assert config == { 'int_from_env': '5' } assert config.get_int('int_from_env') == 5 def test_unicode_dict_key(self): input_string = u""" www.sample.com { us { name = "first domain" } } www.example-ö.com { us { name = "second domain" } } """ config = ConfigFactory.parse_string(input_string) assert config.get_string(u'www.sample.com.us.name') == 'first domain' assert config.get_string(u'www.example-ö.com.us.name') == 'second domain' with pytest.raises(ConfigWrongTypeException): config.put(u'www.example-ö', 'append_failure', append=True) with pytest.raises(ConfigMissingException): config.get_string(u'missing_unicode_key_ö') with pytest.raises(ConfigException): config.get_bool(u'www.example-ö.com.us.name') with pytest.raises(ConfigException): config.get_list(u'www.example-ö.com.us.name') with pytest.raises(ConfigException): config.get_config(u'www.example-ö.com.us.name') with pytest.raises(ConfigWrongTypeException): config.get_string(u'www.example-ö.com.us.name.missing') def test_with_comment_on_last_line(self): # Adress issue #102 config_tree = ConfigFactory.parse_string(""" foo: "1" bar: "2" # DO NOT CHANGE ANY OF THE ABOVE SETTINGS!""") assert config_tree == { 'foo': '1', 'bar': '2' } def test_triple_quotes_same_line(self): config_tree = ConfigFactory.parse_string('a:["""foo"""", "bar"]') assert config_tree == { 'a': ['foo"', "bar"] } def test_pop(self): config_tree = ConfigFactory.parse_string('a:{b: 3, d: 6}') assert 3 == config_tree.pop('a.b', 5) assert 5 == config_tree.pop('a.c', 5) expected = { 'a': {'d': 6} } assert expected == config_tree def test_merge_overriden(self): # Adress issue #110 # ConfigValues must merge with its .overriden_value # if both are ConfigTree config_tree = ConfigFactory.parse_string(""" foo: ${bar} foo: ${baz} bar: {r: 1, s: 2} baz: {s: 3, t: 4} """) assert 'r' in config_tree['foo'] and 't' in config_tree['foo'] and config_tree['foo']['s'] == 3 def test_attr_syntax(self): config = ConfigFactory.parse_string( """ a: 1 b: { pb: 5 } """) assert 5 == config.b.pb def test_escape_quote(self): config = ConfigFactory.parse_string( """ quoted: "abc\\"test" unquoted: abc\\"test """) assert 'abc"test' == config['quoted'] assert 'abc"test' == config['unquoted'] def test_escape_quote_complex(self): config = ConfigFactory.parse_string( """ value: "{\\"critical\\":\\"0.00\\",\\"warning\\":\\"99.99\\"}" """ ) assert '{"critical":"0.00","warning":"99.99"}' == config['value'] def test_keys_with_slash(self): config = ConfigFactory.parse_string( """ /abc/cde1: abc "/abc/cde2": "cde" /abc/cde3: "fgh" """) assert 'abc' == config['/abc/cde1'] assert 'cde' == config['/abc/cde2'] assert 'fgh' == config['/abc/cde3'] def test_mutation_values(self): config = ConfigFactory.parse_string( """ common : { } b1 = [] var = "wrong" compilerCommon : ${common} { VAR : ${var} } substrate-suite: { VAR : "right" } b1 = [ ${compilerCommon} ${substrate-suite} ${compilerCommon} ${substrate-suite} ] b2 = [ ${compilerCommon} ${substrate-suite} ${compilerCommon} ${substrate-suite} ] """) assert config.get("b1")[1]['VAR'] == 'right' assert config.get("b2")[1]['VAR'] == 'right' def test_escape_sequences_json_equivalence(self): """ Quoted strings are in the same format as JSON strings, See: https://github.com/lightbend/config/blob/master/HOCON.md#unchanged-from-json """ source = r""" { "plain-backslash": "\\", "tab": "\t", "no-tab": "\\t", "newline": "\n", "no-newline": "\\n", "cr": "\r", "no-cr": "\\r", "windows": "c:\\temp" } """ expected = { 'plain-backslash': '\\', 'tab': '\t', 'no-tab': '\\t', 'newline': '\n', 'no-newline': '\\n', 'cr': '\r', 'no-cr': '\\r', 'windows': 'c:\\temp', } config = ConfigFactory.parse_string(source) assert config == expected assert config == json.loads(source) try: from dateutil.relativedelta import relativedelta @pytest.mark.parametrize('data_set', [ ('a: 1 months', relativedelta(months=1)), ('a: 1months', relativedelta(months=1)), ('a: 2 month', relativedelta(months=2)), ('a: 3 mo', relativedelta(months=3)), ('a: 3mo', relativedelta(months=3)), ('a: 3 mon', '3 mon'), ('a: 1 years', relativedelta(years=1)), ('a: 1years', relativedelta(years=1)), ('a: 2 year', relativedelta(years=2)), ('a: 3 y', relativedelta(years=3)), ('a: 3y', relativedelta(years=3)), ]) def test_parse_string_with_duration_optional_units(data_set): config = ConfigFactory.parse_string(data_set[0]) assert config['a'] == data_set[1] except Exception: pass
scenario_runner/srunner/scenariomanager/scenario_manager.py
cgeller/WorldOnRails
447
3458
<reponame>cgeller/WorldOnRails<gh_stars>100-1000 #!/usr/bin/env python # Copyright (c) 2018-2020 Intel Corporation # # This work is licensed under the terms of the MIT license. # For a copy, see <https://opensource.org/licenses/MIT>. """ This module provides the ScenarioManager implementation. It must not be modified and is for reference only! """ from __future__ import print_function import sys import time import py_trees from srunner.autoagents.agent_wrapper import AgentWrapper from srunner.scenariomanager.carla_data_provider import CarlaDataProvider from srunner.scenariomanager.result_writer import ResultOutputProvider from srunner.scenariomanager.timer import GameTime from srunner.scenariomanager.watchdog import Watchdog class ScenarioManager(object): """ Basic scenario manager class. This class holds all functionality required to start, and analyze a scenario. The user must not modify this class. To use the ScenarioManager: 1. Create an object via manager = ScenarioManager() 2. Load a scenario via manager.load_scenario() 3. Trigger the execution of the scenario manager.run_scenario() This function is designed to explicitly control start and end of the scenario execution 4. Trigger a result evaluation with manager.analyze_scenario() 5. If needed, cleanup with manager.stop_scenario() """ def __init__(self, debug_mode=False, sync_mode=False, timeout=2.0): """ Setups up the parameters, which will be filled at load_scenario() """ self.scenario = None self.scenario_tree = None self.scenario_class = None self.ego_vehicles = None self.other_actors = None self._debug_mode = debug_mode self._agent = None self._sync_mode = sync_mode self._running = False self._timestamp_last_run = 0.0 self._timeout = timeout self._watchdog = Watchdog(float(self._timeout)) self.scenario_duration_system = 0.0 self.scenario_duration_game = 0.0 self.start_system_time = None self.end_system_time = None def _reset(self): """ Reset all parameters """ self._running = False self._timestamp_last_run = 0.0 self.scenario_duration_system = 0.0 self.scenario_duration_game = 0.0 self.start_system_time = None self.end_system_time = None GameTime.restart() def cleanup(self): """ This function triggers a proper termination of a scenario """ if self.scenario is not None: self.scenario.terminate() if self._agent is not None: self._agent.cleanup() self._agent = None CarlaDataProvider.cleanup() def load_scenario(self, scenario, agent=None): """ Load a new scenario """ self._reset() self._agent = AgentWrapper(agent) if agent else None if self._agent is not None: self._sync_mode = True self.scenario_class = scenario self.scenario = scenario.scenario self.scenario_tree = self.scenario.scenario_tree self.ego_vehicles = scenario.ego_vehicles self.other_actors = scenario.other_actors # To print the scenario tree uncomment the next line # py_trees.display.render_dot_tree(self.scenario_tree) if self._agent is not None: self._agent.setup_sensors(self.ego_vehicles[0], self._debug_mode) def run_scenario(self): """ Trigger the start of the scenario and wait for it to finish/fail """ print("ScenarioManager: Running scenario {}".format(self.scenario_tree.name)) self.start_system_time = time.time() start_game_time = GameTime.get_time() self._watchdog.start() self._running = True while self._running: timestamp = None world = CarlaDataProvider.get_world() if world: snapshot = world.get_snapshot() if snapshot: timestamp = snapshot.timestamp if timestamp: self._tick_scenario(timestamp) self._watchdog.stop() self.cleanup() self.end_system_time = time.time() end_game_time = GameTime.get_time() self.scenario_duration_system = self.end_system_time - \ self.start_system_time self.scenario_duration_game = end_game_time - start_game_time if self.scenario_tree.status == py_trees.common.Status.FAILURE: print("ScenarioManager: Terminated due to failure") def _tick_scenario(self, timestamp): """ Run next tick of scenario and the agent. If running synchornously, it also handles the ticking of the world. """ if self._timestamp_last_run < timestamp.elapsed_seconds and self._running: self._timestamp_last_run = timestamp.elapsed_seconds self._watchdog.update() if self._debug_mode: print("\n--------- Tick ---------\n") # Update game time and actor information GameTime.on_carla_tick(timestamp) CarlaDataProvider.on_carla_tick() if self._agent is not None: ego_action = self._agent() # Tick scenario self.scenario_tree.tick_once() if self._debug_mode: print("\n") py_trees.display.print_ascii_tree(self.scenario_tree, show_status=True) sys.stdout.flush() if self.scenario_tree.status != py_trees.common.Status.RUNNING: self._running = False if self._agent is not None: self.ego_vehicles[0].apply_control(ego_action) if self._sync_mode and self._running and self._watchdog.get_status(): CarlaDataProvider.get_world().tick() def get_running_status(self): """ returns: bool: False if watchdog exception occured, True otherwise """ return self._watchdog.get_status() def stop_scenario(self): """ This function is used by the overall signal handler to terminate the scenario execution """ self._running = False def analyze_scenario(self, stdout, filename, junit): """ This function is intended to be called from outside and provide the final statistics about the scenario (human-readable, in form of a junit report, etc.) """ failure = False timeout = False result = "SUCCESS" if self.scenario.test_criteria is None: print("Nothing to analyze, this scenario has no criteria") return True for criterion in self.scenario.get_criteria(): if (not criterion.optional and criterion.test_status != "SUCCESS" and criterion.test_status != "ACCEPTABLE"): failure = True result = "FAILURE" elif criterion.test_status == "ACCEPTABLE": result = "ACCEPTABLE" if self.scenario.timeout_node.timeout and not failure: timeout = True result = "TIMEOUT" output = ResultOutputProvider(self, result, stdout, filename, junit) output.write() return failure or timeout
ikalog/ui/options.py
fetus-hina/IkaLog
285
3485
<reponame>fetus-hina/IkaLog #!/usr/bin/env python3 # -*- coding: utf-8 -*- # # IkaLog # ====== # Copyright (C) 2015 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import gettext import wx import wx.lib.scrolledpanel import ikalog.outputs from ikalog.ui.events import * from ikalog.ui.panel import * from ikalog.ui import VideoCapture from ikalog.utils import * _ = Localization.gettext_translation('IkaUI', fallback=True).gettext class OptionsGUI(object): def __init__(self, ikalog_gui): self.ikalog_gui = ikalog_gui self.frame = None self._init_frame() def _init_frame(self): if self.frame: return self.frame = wx.Frame( self.ikalog_gui.frame, wx.ID_ANY, _("Options"), size=(640, 500)) self.notebook = wx.Notebook(self.frame, wx.ID_ANY) # Apply button button_apply = wx.Button(self.frame, wx.ID_ANY, _(u'Apply')) # Use a bold font. apply_font = button_apply.GetFont() apply_font.SetWeight(wx.FONTWEIGHT_BOLD) button_apply.SetFont(apply_font) button_cancel = wx.Button(self.frame, wx.ID_ANY, _(u'Cancel')) button_load_default = wx.Button( self.frame, wx.ID_ANY, _(u'Load default')) buttons_sizer = wx.BoxSizer(wx.HORIZONTAL) buttons_sizer.Add(button_apply) buttons_sizer.Add(button_cancel) buttons_sizer.Add(button_load_default) top_sizer = wx.BoxSizer(wx.VERTICAL) top_sizer.Add(self.notebook) top_sizer.Add(buttons_sizer) self.frame.SetSizer(top_sizer) # Set event handlers for buttons. button_apply.Bind(wx.EVT_BUTTON, self.on_button_apply) button_cancel.Bind(wx.EVT_BUTTON, self.on_button_cancel) button_load_default.Bind(wx.EVT_BUTTON, self.on_button_load_default) outputs = [self.ikalog_gui.capture] + self.ikalog_gui.outputs self._init_outputs(outputs) # self.capture.panel is a part of self.frame. This Bind propagates # capture's source change to the preview. self.ikalog_gui.capture.panel.Bind( EVT_INPUT_INITIALIZED, self.ikalog_gui.on_input_initialized) # Refresh UI of each plugin. self.ikalog_gui.engine.call_plugins( 'on_config_load_from_context', debug=True) def show(self): if not self.frame: self._init_frame() self.frame.Show() self.frame.Raise() def on_button_apply(self, event): self.ikalog_gui.on_options_apply(event) def on_button_cancel(self, event): self.ikalog_gui.on_options_cancel(event) def on_button_load_default(self, event): self.ikalog_gui.on_options_load_default(event) def _init_outputs(self, outputs): output_dict = {} for output in outputs: output_dict[output.__class__] = output # Keys for outputs in the main page. keys = [ ikalog.ui.VideoCapture, ikalog.outputs.OBS, ikalog.outputs.StatInk, ikalog.outputs.Twitter ] # Keys for outputs combined into the misc tab. misc_keys = [ ikalog.outputs.CSV, ikalog.outputs.JSON, ikalog.outputs.Screenshot, ikalog.outputs.Boyomi, ikalog.outputs.Slack, ikalog.outputs.WebSocketServer, ] for key in output_dict.keys(): if key in misc_keys: continue if key not in keys: keys.append(key) # Main tabs index = 0 for key in keys: output = output_dict.get(key) if not output: continue output.on_option_tab_create(self.notebook) self.notebook.InsertPage(index, output.panel, output.panel_name) index += 1 # Misc tab self.misc_panel = wx.lib.scrolledpanel.ScrolledPanel( self.notebook, wx.ID_ANY, size=(640, 360)) self.misc_panel_sizer = wx.BoxSizer(wx.VERTICAL) default_font = self.misc_panel.GetFont() title_font = wx.Font(default_font.GetPointSize(), wx.FONTFAMILY_DEFAULT, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_BOLD) for key in misc_keys: output = output_dict.get(key) if not output: continue output.on_option_tab_create(self.misc_panel) title = wx.StaticText(self.misc_panel, wx.ID_ANY, output.panel_name) title.SetFont(title_font) self.misc_panel_sizer.Add(title) self.misc_panel_sizer.Add( output.panel, flag=wx.EXPAND | wx.ALL, border=10) self.misc_panel_sizer.Add((-1, 25)) self.misc_panel.SetSizer(self.misc_panel_sizer) self.misc_panel.SetupScrolling() self.notebook.InsertPage(index, self.misc_panel, _('Misc.'))
tests/stack_test.py
arthurlogilab/py_zipkin
225
3494
import mock import pytest import py_zipkin.storage @pytest.fixture(autouse=True, scope="module") def create_zipkin_attrs(): # The following tests all expect _thread_local.zipkin_attrs to exist: if it # doesn't, mock.patch will fail. py_zipkin.storage.ThreadLocalStack().get() def test_get_zipkin_attrs_returns_none_if_no_zipkin_attrs(): tracer = py_zipkin.storage.get_default_tracer() with mock.patch.object(tracer._context_stack, "_storage", []): assert not py_zipkin.storage.ThreadLocalStack().get() assert not py_zipkin.storage.ThreadLocalStack().get() def test_get_zipkin_attrs_with_context_returns_none_if_no_zipkin_attrs(): with mock.patch.object(py_zipkin.storage.log, "warning", autospec=True) as log: assert not py_zipkin.storage.Stack([]).get() assert log.call_count == 1 def test_storage_stack_still_works_if_you_dont_pass_in_storage(): # Let's make sure this still works if we don't pass in a custom storage. assert not py_zipkin.storage.Stack().get() def test_get_zipkin_attrs_returns_the_last_of_the_list(): tracer = py_zipkin.storage.get_default_tracer() with mock.patch.object(tracer._context_stack, "_storage", ["foo"]): assert "foo" == py_zipkin.storage.ThreadLocalStack().get() def test_get_zipkin_attrs_with_context_returns_the_last_of_the_list(): assert "foo" == py_zipkin.storage.Stack(["bar", "foo"]).get() def test_pop_zipkin_attrs_does_nothing_if_no_requests(): tracer = py_zipkin.storage.get_default_tracer() with mock.patch.object(tracer._context_stack, "_storage", []): assert not py_zipkin.storage.ThreadLocalStack().pop() def test_pop_zipkin_attrs_with_context_does_nothing_if_no_requests(): assert not py_zipkin.storage.Stack([]).pop() def test_pop_zipkin_attrs_removes_the_last_zipkin_attrs(): tracer = py_zipkin.storage.get_default_tracer() with mock.patch.object(tracer._context_stack, "_storage", ["foo", "bar"]): assert "bar" == py_zipkin.storage.ThreadLocalStack().pop() assert "foo" == py_zipkin.storage.ThreadLocalStack().get() def test_pop_zipkin_attrs_with_context_removes_the_last_zipkin_attrs(): context_stack = py_zipkin.storage.Stack(["foo", "bar"]) assert "bar" == context_stack.pop() assert "foo" == context_stack.get() def test_push_zipkin_attrs_adds_new_zipkin_attrs_to_list(): tracer = py_zipkin.storage.get_default_tracer() with mock.patch.object(tracer._context_stack, "_storage", ["foo"]): assert "foo" == py_zipkin.storage.ThreadLocalStack().get() py_zipkin.storage.ThreadLocalStack().push("bar") assert "bar" == py_zipkin.storage.ThreadLocalStack().get() def test_push_zipkin_attrs_with_context_adds_new_zipkin_attrs_to_list(): stack = py_zipkin.storage.Stack(["foo"]) assert "foo" == stack.get() stack.push("bar") assert "bar" == stack.get() def test_stack_copy(): stack = py_zipkin.storage.Stack() stack.push("a") stack.push("b") the_copy = stack.copy() the_copy.push("c") stack.push("d") assert ["a", "b", "c"] == the_copy._storage assert ["a", "b", "d"] == stack._storage
desktop_local_tests/windows/test_windows_packet_capture_disrupt_force_public_dns_servers.py
UAEKondaya1/expressvpn_leak_testing
219
3510
<reponame>UAEKondaya1/expressvpn_leak_testing from desktop_local_tests.local_packet_capture_test_case_with_disrupter import LocalPacketCaptureTestCaseWithDisrupter from desktop_local_tests.windows.windows_dns_force_public_dns_servers_disrupter import WindowsDNSForcePublicDNSServersDisrupter class TestWindowsPacketCaptureDisruptForcePublicDNSServers(LocalPacketCaptureTestCaseWithDisrupter): # TODO: Make the packet capture here DNS specific? def __init__(self, devices, parameters): super().__init__(WindowsDNSForcePublicDNSServersDisrupter, devices, parameters)
homeassistant/components/zha/core/channels/lighting.py
liangleslie/core
30,023
3530
"""Lighting channels module for Zigbee Home Automation.""" from __future__ import annotations from contextlib import suppress from zigpy.zcl.clusters import lighting from .. import registries from ..const import REPORT_CONFIG_DEFAULT from .base import ClientChannel, ZigbeeChannel @registries.ZIGBEE_CHANNEL_REGISTRY.register(lighting.Ballast.cluster_id) class Ballast(ZigbeeChannel): """Ballast channel.""" @registries.CLIENT_CHANNELS_REGISTRY.register(lighting.Color.cluster_id) class ColorClientChannel(ClientChannel): """Color client channel.""" @registries.BINDABLE_CLUSTERS.register(lighting.Color.cluster_id) @registries.ZIGBEE_CHANNEL_REGISTRY.register(lighting.Color.cluster_id) class ColorChannel(ZigbeeChannel): """Color channel.""" CAPABILITIES_COLOR_XY = 0x08 CAPABILITIES_COLOR_TEMP = 0x10 UNSUPPORTED_ATTRIBUTE = 0x86 REPORT_CONFIG = ( {"attr": "current_x", "config": REPORT_CONFIG_DEFAULT}, {"attr": "current_y", "config": REPORT_CONFIG_DEFAULT}, {"attr": "color_temperature", "config": REPORT_CONFIG_DEFAULT}, ) MAX_MIREDS: int = 500 MIN_MIREDS: int = 153 ZCL_INIT_ATTRS = { "color_mode": False, "color_temp_physical_min": True, "color_temp_physical_max": True, "color_capabilities": True, "color_loop_active": False, } @property def color_capabilities(self) -> int: """Return color capabilities of the light.""" with suppress(KeyError): return self.cluster["color_capabilities"] if self.cluster.get("color_temperature") is not None: return self.CAPABILITIES_COLOR_XY | self.CAPABILITIES_COLOR_TEMP return self.CAPABILITIES_COLOR_XY @property def color_mode(self) -> int | None: """Return cached value of the color_mode attribute.""" return self.cluster.get("color_mode") @property def color_loop_active(self) -> int | None: """Return cached value of the color_loop_active attribute.""" return self.cluster.get("color_loop_active") @property def color_temperature(self) -> int | None: """Return cached value of color temperature.""" return self.cluster.get("color_temperature") @property def current_x(self) -> int | None: """Return cached value of the current_x attribute.""" return self.cluster.get("current_x") @property def current_y(self) -> int | None: """Return cached value of the current_y attribute.""" return self.cluster.get("current_y") @property def min_mireds(self) -> int: """Return the coldest color_temp that this channel supports.""" return self.cluster.get("color_temp_physical_min", self.MIN_MIREDS) @property def max_mireds(self) -> int: """Return the warmest color_temp that this channel supports.""" return self.cluster.get("color_temp_physical_max", self.MAX_MIREDS)
querybuilder/tests/window_tests.py
wesokes/django-query-builder
110
3535
<reponame>wesokes/django-query-builder<filename>querybuilder/tests/window_tests.py<gh_stars>100-1000 from querybuilder.fields import ( RankField, RowNumberField, DenseRankField, PercentRankField, CumeDistField, NTileField, LagField, LeadField, FirstValueField, LastValueField, NthValueField, NumStdDevField ) from querybuilder.query import QueryWindow, Query from querybuilder.tests.models import Order from querybuilder.tests.query_tests import QueryTestCase, get_comparison_str class QueryWindowTest(QueryTestCase): def test_query_window(self): query_window = QueryWindow() query_str = query_window.get_sql() expected_query = 'OVER ()' self.assertEqual(query_str, expected_query, get_comparison_str(query_str, expected_query)) def test_query_window_partition(self): query_window = QueryWindow().partition_by('field_one') query_str = query_window.get_sql() expected_query = 'OVER (PARTITION BY field_one)' self.assertEqual(query_str, expected_query, get_comparison_str(query_str, expected_query)) def test_query_window_order(self): query_window = QueryWindow().order_by('field_one') query_str = query_window.get_sql() expected_query = 'OVER (ORDER BY field_one ASC)' self.assertEqual(query_str, expected_query, get_comparison_str(query_str, expected_query)) def test_query_window_partition_order(self): query_window = QueryWindow().partition_by( 'field_one' ).order_by( 'field_one' ) query_str = query_window.get_sql() expected_query = 'OVER (PARTITION BY field_one ORDER BY field_one ASC)' self.assertEqual(query_str, expected_query, get_comparison_str(query_str, expected_query)) def test_query_window_partition_order_many(self): query_window = QueryWindow().partition_by( 'field_one' ).partition_by( 'field_two' ).order_by( 'field_one' ).order_by( '-field_two' ) query_str = query_window.get_sql() expected_query = 'OVER (PARTITION BY field_one, field_two ORDER BY field_one ASC, field_two DESC)' self.assertEqual(query_str, expected_query, get_comparison_str(query_str, expected_query)) class WindowFunctionTest(QueryTestCase): def test_rank_no_over(self): query = Query().from_table( table=Order, fields=[ RankField() ] ) query_str = query.get_sql() expected_query = 'SELECT RANK() AS "rank" FROM querybuilder_tests_order' self.assertEqual(query_str, expected_query, get_comparison_str(query_str, expected_query)) def test_rank_over(self): query = Query().from_table( table=Order, fields=[ RankField( over=QueryWindow() ) ] ) query_str = query.get_sql() expected_query = 'SELECT RANK() OVER () AS "rank" FROM querybuilder_tests_order' self.assertEqual(query_str, expected_query, get_comparison_str(query_str, expected_query)) def test_rank_over_order(self): query = Query().from_table( table=Order, fields=[ 'id', RankField( over=QueryWindow().order_by( 'id' ) ) ] ) query_str = query.get_sql() expected_query = ( 'SELECT querybuilder_tests_order.id, RANK() OVER (ORDER BY id ASC) AS "rank" FROM querybuilder_tests_order' ) self.assertEqual(query_str, expected_query, get_comparison_str(query_str, expected_query)) def test_rank_over_partition(self): query = Query().from_table( table=Order, fields=[ 'id', RankField( over=QueryWindow().partition_by( 'account_id' ) ) ] ) query_str = query.get_sql() expected_query = ( 'SELECT querybuilder_tests_order.id, RANK() OVER (PARTITION BY account_id) AS "rank" FROM ' 'querybuilder_tests_order' ) self.assertEqual(query_str, expected_query, get_comparison_str(query_str, expected_query)) def test_row_number(self): query = Query().from_table( table=Order, fields=[ '*', RowNumberField( over=QueryWindow().order_by( '-margin' ) ) ] ).order_by( 'row_number' ) query_str = query.get_sql() expected_query = ( 'SELECT querybuilder_tests_order.*, ' 'ROW_NUMBER() OVER (ORDER BY margin DESC) AS "row_number" ' 'FROM querybuilder_tests_order ' 'ORDER BY row_number ' 'ASC' ) self.assertEqual(query_str, expected_query, get_comparison_str(query_str, expected_query)) def test_rank(self): query = Query().from_table( table=Order, fields=[ 'id', RankField( over=QueryWindow().partition_by( 'account_id' ).order_by( 'id' ) ) ] ).order_by( '-rank' ) query_str = query.get_sql() expected_query = ( 'SELECT querybuilder_tests_order.id, ' 'RANK() OVER (PARTITION BY account_id ORDER BY id ASC) AS "rank" ' 'FROM querybuilder_tests_order ' 'ORDER BY rank ' 'DESC' ) self.assertEqual(query_str, expected_query, get_comparison_str(query_str, expected_query)) def test_dense_rank(self): query = Query().from_table( table=Order, fields=[ '*', DenseRankField( over=QueryWindow().order_by( '-margin' ) ) ] ).order_by( 'dense_rank' ) query_str = query.get_sql() expected_query = ( 'SELECT querybuilder_tests_order.*, ' 'DENSE_RANK() OVER (ORDER BY margin DESC) AS "dense_rank" ' 'FROM querybuilder_tests_order ' 'ORDER BY dense_rank ' 'ASC' ) self.assertEqual(query_str, expected_query, get_comparison_str(query_str, expected_query)) def test_rank_percent(self): query = Query().from_table( table=Order, fields=[ '*', PercentRankField( over=QueryWindow().order_by( '-margin' ) ) ] ).order_by( 'percent_rank' ) query_str = query.get_sql() expected_query = ( 'SELECT querybuilder_tests_order.*, ' 'PERCENT_RANK() OVER (ORDER BY margin DESC) AS "percent_rank" ' 'FROM querybuilder_tests_order ' 'ORDER BY percent_rank ' 'ASC' ) self.assertEqual(query_str, expected_query, get_comparison_str(query_str, expected_query)) def test_cume_dist(self): query = Query().from_table( table=Order, fields=[ '*', CumeDistField( over=QueryWindow().order_by( '-margin' ) ) ] ).order_by( 'cume_dist' ) query_str = query.get_sql() expected_query = ( 'SELECT querybuilder_tests_order.*, ' 'CUME_DIST() OVER (ORDER BY margin DESC) AS "cume_dist" ' 'FROM querybuilder_tests_order ' 'ORDER BY cume_dist ' 'ASC' ) self.assertEqual(query_str, expected_query, get_comparison_str(query_str, expected_query)) def test_ntile(self): query = Query().from_table( table=Order, fields=[ '*', NTileField( num_buckets=2, over=QueryWindow().order_by( '-margin' ) ) ] ).order_by( 'ntile' ) query_str = query.get_sql() expected_query = ( 'SELECT querybuilder_tests_order.*, ' 'NTILE(2) OVER (ORDER BY margin DESC) AS "ntile" ' 'FROM querybuilder_tests_order ' 'ORDER BY ntile ' 'ASC' ) self.assertEqual(query_str, expected_query, get_comparison_str(query_str, expected_query)) def test_lag(self): query = Query().from_table( table=Order, fields=[ '*', LagField( 'margin', over=QueryWindow().order_by( '-margin' ) ) ] ) query_str = query.get_sql() expected_query = ( 'SELECT querybuilder_tests_order.*, ' 'LAG(querybuilder_tests_order.margin, 1) OVER (ORDER BY margin DESC) AS "margin_lag" ' 'FROM querybuilder_tests_order' ) self.assertEqual(query_str, expected_query, get_comparison_str(query_str, expected_query)) def test_lag_default(self): query = Query().from_table( table=Order, fields=[ '*', LagField( 'margin', default=0, over=QueryWindow().order_by( '-margin' ) ) ] ) query_str = query.get_sql() expected_query = ( 'SELECT querybuilder_tests_order.*, ' 'LAG(querybuilder_tests_order.margin, 1, \'0\') OVER (ORDER BY margin DESC) AS "margin_lag" ' 'FROM querybuilder_tests_order' ) self.assertEqual(query_str, expected_query, get_comparison_str(query_str, expected_query)) def test_lead(self): query = Query().from_table( table=Order, fields=[ '*', LeadField( 'margin', over=QueryWindow().order_by( '-margin' ) ) ] ) query_str = query.get_sql() expected_query = ( 'SELECT querybuilder_tests_order.*, ' 'LEAD(querybuilder_tests_order.margin, 1) OVER (ORDER BY margin DESC) AS "margin_lead" ' 'FROM querybuilder_tests_order' ) self.assertEqual(query_str, expected_query, get_comparison_str(query_str, expected_query)) def test_first_value(self): query = Query().from_table( table=Order, fields=[ '*', FirstValueField( 'margin', over=QueryWindow().order_by( '-margin' ) ) ] ) query_str = query.get_sql() expected_query = ( 'SELECT querybuilder_tests_order.*, ' 'FIRST_VALUE(querybuilder_tests_order.margin) OVER (ORDER BY margin DESC) AS "margin_first_value" ' 'FROM querybuilder_tests_order' ) self.assertEqual(query_str, expected_query, get_comparison_str(query_str, expected_query)) def test_last_value(self): query = Query().from_table( table=Order, fields=[ '*', LastValueField( 'margin', over=QueryWindow().order_by( 'margin' ) ) ] ) query_str = query.get_sql() expected_query = ( 'SELECT querybuilder_tests_order.*, ' 'LAST_VALUE(querybuilder_tests_order.margin) OVER (ORDER BY margin ASC) AS "margin_last_value" ' 'FROM querybuilder_tests_order' ) self.assertEqual(query_str, expected_query, get_comparison_str(query_str, expected_query)) def test_nth_value(self): query = Query().from_table( table=Order, fields=[ '*', NthValueField( 'margin', n=2, over=QueryWindow().order_by( '-margin' ) ) ] ) query_str = query.get_sql() expected_query = ( 'SELECT querybuilder_tests_order.*, ' 'NTH_VALUE(querybuilder_tests_order.margin, 2) OVER (ORDER BY margin DESC) AS "margin_nth_value" ' 'FROM querybuilder_tests_order' ) self.assertEqual(query_str, expected_query, get_comparison_str(query_str, expected_query)) def test_num_stddev(self): query = Query().from_table( table=Order, fields=[ '*', NumStdDevField( 'margin', over=QueryWindow() ) ] ).order_by( '-margin_num_stddev' ) query_str = query.get_sql() expected_query = ( 'SELECT querybuilder_tests_order.*, ' '(CASE WHEN (STDDEV(querybuilder_tests_order.margin) OVER ()) <> 0 ' 'THEN ((querybuilder_tests_order.margin - (' 'AVG(querybuilder_tests_order.margin) OVER ())) / (STDDEV(querybuilder_tests_order.margin) OVER ())) ' 'ELSE 0 ' 'END) ' 'AS "margin_num_stddev" ' 'FROM querybuilder_tests_order ' 'ORDER BY margin_num_stddev ' 'DESC' ) self.assertEqual(query_str, expected_query, get_comparison_str(query_str, expected_query))
request/management/commands/purgerequests.py
hramezani/django-request
373
3564
from datetime import timedelta from dateutil.relativedelta import relativedelta from django.core.management.base import BaseCommand, CommandError from django.utils import timezone from ...models import Request DURATION_OPTIONS = { 'hours': lambda amount: timezone.now() - timedelta(hours=amount), 'days': lambda amount: timezone.now() - timedelta(days=amount), 'weeks': lambda amount: timezone.now() - timedelta(weeks=amount), 'months': lambda amount: timezone.now() + relativedelta(months=-amount), 'years': lambda amount: timezone.now() + relativedelta(years=-amount), } try: # to keep backward Python 2 compatibility input = raw_input except NameError: pass class Command(BaseCommand): help = 'Purge old requests.' def add_arguments(self, parser): parser.add_argument( 'amount', type=int, ) parser.add_argument('duration') parser.add_argument( '--noinput', action='store_false', dest='interactive', default=True, help='Tells Django to NOT prompt the user for input of any kind.' ) def handle(self, *args, **options): amount = options['amount'] duration = options['duration'] # Check we have the correct values if duration[-1] != 's': # If its not plural, make it plural duration_plural = '{0}s'.format(duration) else: duration_plural = duration if duration_plural not in DURATION_OPTIONS: raise CommandError('Amount must be {0}'.format(', '.join(DURATION_OPTIONS))) qs = Request.objects.filter(time__lte=DURATION_OPTIONS[duration_plural](amount)) count = qs.count() if count == 0: print('There are no requests to delete.') return if options.get('interactive'): confirm = input(''' You have requested a database reset. This will IRREVERSIBLY DESTROY any requests created before {0} {1} ago. That is a total of {2} requests. Are you sure you want to do this? Type 'yes' to continue, or 'no' to cancel:'''.format(amount, duration, count)) else: confirm = 'yes' if confirm == 'yes': qs.delete() else: print('Purge cancelled')
compiler-rt/test/asan/TestCases/Windows/lit.local.cfg.py
medismailben/llvm-project
2,338
3569
def getRoot(config): if not config.parent: return config return getRoot(config.parent) root = getRoot(config) # We only run a small set of tests on Windows for now. # Override the parent directory's "unsupported" decision until we can handle # all of its tests. if root.host_os in ['Windows']: config.unsupported = False else: config.unsupported = True
lib/python/test/__init__.py
woozhijun/cat
17,318
3587
#!/usr/bin/env python # encoding: utf-8 import sys reload(sys) sys.setdefaultencoding("utf-8")
platformio/commands/home/run.py
Granjow/platformio-core
4,744
3601
# Copyright (c) 2014-present PlatformIO <<EMAIL>> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from urllib.parse import urlparse import click import uvicorn from starlette.applications import Starlette from starlette.middleware import Middleware from starlette.responses import PlainTextResponse from starlette.routing import Mount, Route, WebSocketRoute from starlette.staticfiles import StaticFiles from starlette.status import HTTP_403_FORBIDDEN from platformio.commands.home.rpc.handlers.account import AccountRPC from platformio.commands.home.rpc.handlers.app import AppRPC from platformio.commands.home.rpc.handlers.ide import IDERPC from platformio.commands.home.rpc.handlers.misc import MiscRPC from platformio.commands.home.rpc.handlers.os import OSRPC from platformio.commands.home.rpc.handlers.piocore import PIOCoreRPC from platformio.commands.home.rpc.handlers.project import ProjectRPC from platformio.commands.home.rpc.server import WebSocketJSONRPCServerFactory from platformio.compat import aio_get_running_loop from platformio.exception import PlatformioException from platformio.package.manager.core import get_core_package_dir from platformio.proc import force_exit class ShutdownMiddleware: def __init__(self, app): self.app = app async def __call__(self, scope, receive, send): if scope["type"] == "http" and b"__shutdown__" in scope.get("query_string", {}): await shutdown_server() await self.app(scope, receive, send) async def shutdown_server(_=None): aio_get_running_loop().call_later(0.5, force_exit) return PlainTextResponse("Server has been shutdown!") async def protected_page(_): return PlainTextResponse( "Protected PlatformIO Home session", status_code=HTTP_403_FORBIDDEN ) def run_server(host, port, no_open, shutdown_timeout, home_url): contrib_dir = get_core_package_dir("contrib-piohome") if not os.path.isdir(contrib_dir): raise PlatformioException("Invalid path to PIO Home Contrib") ws_rpc_factory = WebSocketJSONRPCServerFactory(shutdown_timeout) ws_rpc_factory.addObjectHandler(AccountRPC(), namespace="account") ws_rpc_factory.addObjectHandler(AppRPC(), namespace="app") ws_rpc_factory.addObjectHandler(IDERPC(), namespace="ide") ws_rpc_factory.addObjectHandler(MiscRPC(), namespace="misc") ws_rpc_factory.addObjectHandler(OSRPC(), namespace="os") ws_rpc_factory.addObjectHandler(PIOCoreRPC(), namespace="core") ws_rpc_factory.addObjectHandler(ProjectRPC(), namespace="project") path = urlparse(home_url).path routes = [ WebSocketRoute(path + "wsrpc", ws_rpc_factory, name="wsrpc"), Route(path + "__shutdown__", shutdown_server, methods=["POST"]), Mount(path, StaticFiles(directory=contrib_dir, html=True), name="static"), ] if path != "/": routes.append(Route("/", protected_page)) uvicorn.run( Starlette( middleware=[Middleware(ShutdownMiddleware)], routes=routes, on_startup=[ lambda: click.echo( "PIO Home has been started. Press Ctrl+C to shutdown." ), lambda: None if no_open else click.launch(home_url), ], ), host=host, port=port, log_level="warning", )
tests/test_serialize.py
aferrall/redner
1,146
3607
import pyredner import numpy as np import torch cam = pyredner.Camera(position = torch.tensor([0.0, 0.0, -5.0]), look_at = torch.tensor([0.0, 0.0, 0.0]), up = torch.tensor([0.0, 1.0, 0.0]), fov = torch.tensor([45.0]), # in degree clip_near = 1e-2, # needs to > 0 resolution = (256, 256), fisheye = False) mat_grey = pyredner.Material(\ diffuse_reflectance = \ torch.tensor([0.5, 0.5, 0.5], device = pyredner.get_device())) materials = [mat_grey] shape_triangle = pyredner.Shape(\ vertices = torch.tensor([[-1.7, 1.0, 0.0], [1.0, 1.0, 0.0], [-0.5, -1.0, 0.0]], device = pyredner.get_device()), indices = torch.tensor([[0, 1, 2]], dtype = torch.int32, device = pyredner.get_device()), uvs = None, normals = None, material_id = 0) shape_light = pyredner.Shape(\ vertices = torch.tensor([[-1.0, -1.0, -7.0], [ 1.0, -1.0, -7.0], [-1.0, 1.0, -7.0], [ 1.0, 1.0, -7.0]], device = pyredner.get_device()), indices = torch.tensor([[0, 1, 2],[1, 3, 2]], dtype = torch.int32, device = pyredner.get_device()), uvs = None, normals = None, material_id = 0) shapes = [shape_triangle, shape_light] light = pyredner.AreaLight(shape_id = 1, intensity = torch.tensor([20.0,20.0,20.0])) area_lights = [light] scene = pyredner.Scene(cam, shapes, materials, area_lights) scene_state_dict = scene.state_dict() scene = pyredner.Scene.load_state_dict(scene_state_dict) scene_args = pyredner.RenderFunction.serialize_scene(\ scene = scene, num_samples = 16, max_bounces = 1) render = pyredner.RenderFunction.apply img = render(0, *scene_args) pyredner.imwrite(img.cpu(), 'results/test_serialize/img.exr')
test/IECoreMaya/ImageConverterTest.py
bradleyhenke/cortex
386
3623
<reponame>bradleyhenke/cortex ########################################################################## # # Copyright (c) 2011, Image Engine Design Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # * Neither the name of Image Engine Design nor the names of any # other contributors to this software may be used to endorse or # promote products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ########################################################################## import maya.cmds import IECore import IECoreImage import IECoreMaya class ImageConverterTest( IECoreMaya.TestCase ) : def test( self ) : imageA = IECore.Reader.create( "test/IECoreImage/data/exr/colorBarsWithAlpha.exr" ).read() toMaya = IECoreMaya.ToMayaImageConverter( imageA ) mImage = maya.OpenMaya.MImage() toMaya.convert( mImage ) fromMaya = IECoreMaya.FromMayaImageConverter( mImage ) imageB = fromMaya.convert() self.assertFalse( IECoreImage.ImageDiffOp()( imageA=imageA, imageB=imageB, maxError=1.0/256 ).value ) if __name__ == "__main__": IECoreMaya.TestProgram()
homeassistant/components/todoist/types.py
MrDelik/core
30,023
3637
<gh_stars>1000+ """Types for the Todoist component.""" from __future__ import annotations from typing import TypedDict class DueDate(TypedDict): """Dict representing a due date in a todoist api response.""" date: str is_recurring: bool lang: str string: str timezone: str | None
test/unit/data/model/mapping/common.py
quacksawbones/galaxy-1
1,085
3639
from abc import ABC, abstractmethod from contextlib import contextmanager from uuid import uuid4 import pytest from sqlalchemy import ( delete, select, UniqueConstraint, ) class AbstractBaseTest(ABC): @pytest.fixture def cls_(self): """ Return class under test. Assumptions: if the class under test is Foo, then the class grouping the tests should be a subclass of BaseTest, named TestFoo. """ prefix = len("Test") class_name = self.__class__.__name__[prefix:] return getattr(self.get_model(), class_name) @abstractmethod def get_model(self): pass def dbcleanup_wrapper(session, obj, where_clause=None): with dbcleanup(session, obj, where_clause): yield obj @contextmanager def dbcleanup(session, obj, where_clause=None): """ Use the session to store obj in database; delete from database on exit, bypassing the session. If obj does not have an id field, a SQLAlchemy WHERE clause should be provided to construct a custom select statement. """ return_id = where_clause is None try: obj_id = persist(session, obj, return_id) yield obj_id finally: table = obj.__table__ if where_clause is None: where_clause = _get_default_where_clause(type(obj), obj_id) stmt = delete(table).where(where_clause) session.execute(stmt) def persist(session, obj, return_id=True): """ Use the session to store obj in database, then remove obj from session, so that on a subsequent load from the database we get a clean instance. """ session.add(obj) session.flush() obj_id = obj.id if return_id else None # save this before obj is expunged session.expunge(obj) return obj_id def delete_from_database(session, objects): """ Delete each object in objects from database. May be called at the end of a test if use of a context manager is impractical. (Assume all objects have the id field as their primary key.) """ # Ensure we have a list of objects (check for list explicitly: a model can be iterable) if not isinstance(objects, list): objects = [objects] for obj in objects: table = obj.__table__ stmt = delete(table).where(table.c.id == obj.id) session.execute(stmt) def get_stored_obj(session, cls, obj_id=None, where_clause=None, unique=False): # Either obj_id or where_clause must be provided, but not both assert bool(obj_id) ^ (where_clause is not None) if where_clause is None: where_clause = _get_default_where_clause(cls, obj_id) stmt = select(cls).where(where_clause) result = session.execute(stmt) # unique() is required if result contains joint eager loads against collections # https://gerrit.sqlalchemy.org/c/sqlalchemy/sqlalchemy/+/2253 if unique: result = result.unique() return result.scalar_one() def has_unique_constraint(table, fields): for constraint in table.constraints: if isinstance(constraint, UniqueConstraint): col_names = {c.name for c in constraint.columns} if set(fields) == col_names: return True def has_index(table, fields): for index in table.indexes: col_names = {c.name for c in index.columns} if set(fields) == col_names: return True def collection_consists_of_objects(collection, *objects): """ Returns True iff list(collection) == list(objects), where object equality is determined by primary key equality: object1.id == object2.id. """ if len(collection) != len(objects): # False if lengths are different return False if not collection: # True if both are empty return True # Sort, then compare each member by its 'id' attribute, which must be its primary key. collection.sort(key=lambda item: item.id) objects_l = list(objects) objects_l.sort(key=lambda item: item.id) for item1, item2 in zip(collection, objects_l): if item1.id is None or item2.id is None or item1.id != item2.id: return False return True def get_unique_value(): """Generate unique values to accommodate unique constraints.""" return uuid4().hex def _get_default_where_clause(cls, obj_id): where_clause = cls.__table__.c.id == obj_id return where_clause
src/front-door/azext_front_door/_validators.py
Mannan2812/azure-cli-extensions
207
3673
<reponame>Mannan2812/azure-cli-extensions<gh_stars>100-1000 # -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- import argparse def get_name_or_id_validator(dest, child_type=None, resource_type='Frontdoors', resource_namespace='Microsoft.Network', resource_name_dest='front_door_name'): def _validate_name_or_id(cmd, namespace): from azure.cli.core.commands.client_factory import get_subscription_id from msrestazure.tools import is_valid_resource_id, resource_id subscription_id = get_subscription_id(cmd.cli_ctx) resource_group = namespace.resource_group_name names_or_ids = getattr(namespace, dest) is_list = True # treat single values as a list, but convert back in the end if not isinstance(names_or_ids, list): is_list = False names_or_ids = [names_or_ids] if names_or_ids == [None] or not names_or_ids: return ids = [] for val in names_or_ids: id_params = { 'subscription': subscription_id, 'resource_group': resource_group, 'namespace': resource_namespace, 'type': resource_type, 'name': getattr(namespace, resource_name_dest) if child_type else val, 'child_type_1': child_type, 'child_name_1': val if child_type else None } if not is_valid_resource_id(val): val = resource_id(**id_params) ids.append(val) setattr(namespace, dest, ids if is_list else ids[0]) return _validate_name_or_id def validate_waf_policy(cmd, namespace): get_name_or_id_validator( dest='waf_policy', resource_type='WebApplicationFirewallPolicy' )(cmd, namespace) def validate_keyvault(cmd, namespace): get_name_or_id_validator( dest='vault', resource_type='vaults', resource_namespace='Microsoft.Keyvault' )(cmd, namespace) def validate_load_balancing_settings(cmd, namespace): get_name_or_id_validator('load_balancing_settings', 'loadBalancingSettings')(cmd, namespace) def validate_probe_settings(cmd, namespace): get_name_or_id_validator('probe_settings', 'healthProbeSettings')(cmd, namespace) def validate_frontend_endpoints(cmd, namespace): get_name_or_id_validator('frontend_endpoints', 'frontendEndpoints')(cmd, namespace) def validate_backend_pool(cmd, namespace): get_name_or_id_validator('backend_pool', 'backendPools')(cmd, namespace) def validate_rules_engine(cmd, namespace): get_name_or_id_validator('rules_engine', 'rulesEngines')(cmd, namespace) # pylint: disable=protected-access class MatchConditionAction(argparse._AppendAction): # pylint: disable=no-self-use def parse_match_condition(self, values): from azext_front_door.vendored_sdks.models import MatchCondition if not isinstance(values, list): values = values.split(' ') try: return MatchCondition( match_variable=values[0], operator=values[1], match_value=values[2:] ) except IndexError: from knack.util import CLIError raise CLIError('usage error: --match-condition VARIABLE OPERATOR [VALUE [VALUE ...]]') def __call__(self, parser, namespace, values, option_string=None): match_condition = self.parse_match_condition(values) super(MatchConditionAction, self).__call__(parser, namespace, match_condition, option_string)
mermaid/utils.py
HastingsGreer/mermaid
120
3691
<gh_stars>100-1000 """Various utility functions. .. todo:: Reorganize this package in a more meaningful way. """ from __future__ import print_function from __future__ import absolute_import # from builtins import str # from builtins import range import torch from torch.nn.parameter import Parameter from torch.autograd import Variable from .libraries.modules.stn_nd import STN_ND_BCXYZ from .data_wrapper import AdaptVal from .data_wrapper import MyTensor from . import smoother_factory as sf from .data_wrapper import USE_CUDA import numpy as np from . import finite_differences as fd import torch.nn as nn import torch.nn.init as init from . import module_parameters as pars from .spline_interpolation import SplineInterpolation_ND_BCXYZ import os try: from .libraries.functions.nn_interpolation import get_nn_interpolation except ImportError: print('WARNING: nn_interpolation could not be imported (only supported in CUDA at the moment). ' 'Some functionality may not be available.') def my_hasnan(x): """Check if any input elements are NaNs. :param x: numpy array :return: True if NaNs are present, False else """ return (x != x).any() def create_symlink_with_correct_ext(sf, tf): abs_s = os.path.abspath(sf) ext_s = os.path.splitext(abs_s)[1] abs_t = os.path.abspath(tf) root_t,ext_t = os.path.splitext(abs_t) abs_t_with_right_ext = root_t + ext_s if os.path.isfile(abs_t_with_right_ext): if os.path.samefile(abs_s,abs_t_with_right_ext): # nothing to do here, these are already the same file return else: os.remove(abs_t_with_right_ext) # now we can do the symlink os.symlink(abs_s,abs_t_with_right_ext) def combine_dict(d1,d2): """Creates a dictionary which has entries from both of them. :param d1: dictionary 1 :param d2: dictionary 2 :return: resulting dictionary """ d = d1.copy() d.update(d2) return d def get_parameter_list_from_parameter_dict(pd): """Takes a dictionary which contains key value pairs for model parameters and converts it into a list of parameters that can be used as an input to an optimizer. :param pd: parameter dictionary :return: list of parameters """ pl = [] for key in pd: pl.append(pd[key]) return pl def get_parameter_list_and_par_to_name_dict_from_parameter_dict(pd): """Same as get_parameter_list_from_parameter_dict; but also returns a dictionary which keeps track of the keys based on memory id. :param pd: parameter dictionary :return: tuple of (parameter_list, name_dictionary) """ par_to_name_dict = dict() pl = [] for key in pd: pl.append(pd[key]) par_to_name_dict[pd[key]] = key return pl, par_to_name_dict def remove_infs_from_variable(v): # 32 - bit floating point: torch.FloatTensor, torch.cuda.FloatTensor # 64 - bit floating point: torch.DoubleTensor, torch.cuda.DoubleTensor # 16 - bit floating point: torch.HalfTensor, torch.cuda.HalfTensor # todo: maybe find a cleaner way of handling this # this is to make sure that subsequent sums work (hence will be smaller than it could be, # but values of this size should not occur in practice anyway sz = v.size() reduction_factor = np.prod(np.array(sz)) condition = True if type(v.data) == torch.cuda.FloatTensor or v.data.dtype==torch.float32: return torch.clamp(v, min=(np.asscalar(np.finfo('float32').min))/reduction_factor, max=(np.asscalar(np.finfo('float32').max))/reduction_factor) elif v.data.dtype == torch.DoubleTensor or type(v.data) == torch.cuda.DoubleTensor: return torch.clamp(v, min=(np.asscalar(np.finfo('float64').min))/reduction_factor, max=(np.asscalar(np.finfo('float64').max))/reduction_factor) elif v.data.dtype == torch.HalfTensor or type(v.data) == torch.cuda.HalfTensor: return torch.clamp(v, min=(np.asscalar(np.finfo('float16').min))/reduction_factor, max=(np.asscalar(np.finfo('float16').max))/reduction_factor) else: raise ValueError('Unknown data type: ' + str( type(v.data))) def lift_to_dimension(A, dim): """Creates a view of A of dimension dim (by adding dummy dimensions if necessary). :param A: numpy array :param dim: desired dimension of view :return: returns view of A of appropriate dimension """ current_dim = len(A.shape) if current_dim > dim: raise ValueError('Can only add dimensions, but not remove them') if current_dim == dim: return A else: return A.reshape([1]*(dim-current_dim)+list(A.shape)) def get_dim_of_affine_transform(Ab): """Returns the number of dimensions corresponding to an affine transformation of the form y=Ax+b stored in a column vector. For A =[a1,a2,a3], the parameter vector is simply [a1;a2;a3;b], i.e., all columns stacked on top of each other. :param Ab: parameter vector :return: dimensionality of transform (1,2,or 3) """ nr = len(Ab) if nr==2: return 1 elif nr==6: return 2 elif nr==12: return 3 else: raise ValueError('Only supports dimensions 1, 2, and 3.') def set_affine_transform_to_identity(Ab): """Sets the affine transformation as given by the column vector Ab to the identity transform. :param Ab: Affine parameter vector (will be overwritten with the identity transform) :return: """ dim = get_dim_of_affine_transform(Ab) if dim==1: Ab.zero_() Ab[0]=1. elif dim==2: Ab.zero_() Ab[0]=1. Ab[3]=1. elif dim==3: Ab.zero_() Ab[0]=1. Ab[4]=1. Ab[8]=1. else: raise ValueError('Only supports dimensions 1, 2, and 3.') def set_affine_transform_to_identity_multiN(Ab): """Set the affine transforms to the identity (in the case of arbitrary batch size). :param Ab: Parameter vectors B x pars (batch size x param. vector); will be overwritten with identity trans. :return: """ sz = Ab.size() nr_of_images = sz[0] for nrI in range(nr_of_images): set_affine_transform_to_identity(Ab[nrI, :]) def get_inverse_affine_param(Ab): """Computes inverse of affine transformation. Formally: C(Ax+b)+d = CAx+Cb+d = x; C = inv(A), d = -Cb :param Ab: B x pars (batch size x param. vector) :return: Inverse of affine parameters """ dim =0 if Ab.shape[1] == 2: dim = 1 elif Ab.shape[1] == 6: dim = 2 elif Ab.shape[1] == 12: dim = 3 if dim not in [1, 2, 3]: raise ValueError('Only supports dimensions 1, 2, and 3.') Ab = Ab.view(Ab.shape[0], dim+1, dim).transpose(1,2) Ab_inv = torch.zeros_like(Ab) for n in range(Ab.shape[0]): tm_inv = torch.inverse(Ab[n, :, :dim]) Ab_inv[n, :, :dim] = tm_inv Ab_inv[n, :, dim] = - torch.matmul(tm_inv, Ab[n,:,dim]) inv_affine_param = Ab_inv.transpose(1, 2).contiguous().view(Ab.shape[0], -1) return inv_affine_param def update_affine_param(Ab, Cd): """Update affine parameters. Formally: C(Ax+b)+d = CAx+Cb+d :param Ab: B x pars (batch size x param. vector) :return: Updated affine parameters """ dim = 0 if Ab.shape[1]==2: dim = 1 elif Ab.shape[1]==6: dim = 2 elif Ab.shape[1]==12: dim = 3 if dim not in [1, 2, 3]: raise ValueError('Only supports dimensions 1, 2, and 3.') Ab = Ab.view(Ab.shape[0], dim+1, dim).transpose(1, 2) Cd = Cd.view(Cd.shape[0], dim+1, dim).transpose(1, 2) updated_param = torch.zeros_like(Ab) for n in range(Ab.shape[0]): tm_param = torch.matmul(Cd[n,:,:dim],Ab[n,:,:dim]) updated_param[n,:,:dim] = tm_param updated_param[n,:,dim] = torch.matmul(Cd[n,:,:dim], Ab[n,:,dim]) +Cd[n,:,dim] updated_param = updated_param.transpose(1,2).contiguous().view(Ab.shape[0],-1) return updated_param def apply_affine_transform_to_map(Ab,phi): """Applies an affine transform to a map. :param Ab: affine transform parameter column vector :param phi: map; format nrCxXxYxZ (nrC corresponds to dimension) :return: returns transformed map """ sz = phi.size() dim = len(sz) - 1 if dim not in [1,2,3]: raise ValueError('Only supports dimensions 1, 2, and 3.') phiR = MyTensor(sz).zero_().type_as(phi) if dim == 1: phiR = phi * Ab[0] + Ab[1] elif dim == 2: phiR[0, ...] = Ab[0] * phi[0, ...] + Ab[2] * phi[1, ...] + Ab[4] # a_11x+a_21y+b1 phiR[1, ...] = Ab[1] * phi[0, ...] + Ab[3] * phi[1, ...] + Ab[5] # a_12x+a_22y+b2 elif dim == 3: phiR[0, ...] = Ab[0] * phi[0, ...] + Ab[3] * phi[1, ...] + Ab[6] * phi[2, ...] + Ab[9] phiR[1, ...] = Ab[1] * phi[0, ...] + Ab[4] * phi[1, ...] + Ab[7] * phi[2, ...] + Ab[10] phiR[2, ...] = Ab[2] * phi[0, ...] + Ab[5] * phi[1, ...] + Ab[8] * phi[2, ...] + Ab[11] else: raise ValueError('Only supports dimensions 1, 2, and 3.') return phiR def apply_affine_transform_to_map_multiNC(Ab,phi): """Applies an affine transform to maps (for arbitrary batch size). :param Ab: affine transform parameter column vectors (batch size x param. vector) :param phi: maps; format batchxnrCxXxYxZ (nrC corresponds to dimension) :return: returns transformed maps """ sz = phi.size() dim = get_dim_of_affine_transform(Ab[0,:]) nr_of_images = Ab.size()[0] if nr_of_images != sz[0]: raise ValueError('Incompatible number of affine transforms') if dim != len(sz)-2: raise ValueError('Incompatible number of affine transforms') phiR = MyTensor(sz).zero_().type_as(phi) for nrI in range(nr_of_images): phiR[nrI, ...] = apply_affine_transform_to_map(Ab[nrI, :], phi[nrI, ...]) return phiR def compute_normalized_gaussian(X, mu, sig): """Computes a normalized Gaussian. :param X: map with coordinates at which to evaluate :param mu: array indicating the mean :param sig: array indicating the standard deviations for the different dimensions :return: Normalized Gaussian evaluated at coordinates in X Example:: >>> mu, sig = [1,1], [1,1] >>> X = [0,0] >>> print(compute_normalized_gaussian(X, mu, sig) """ dim = len(mu) if dim == 1: g = np.exp(-np.power(X[0, :] - mu[0], 2.)/(2*np.power(sig[0], 2.))) g = g/g.sum() return g elif dim == 2: g = np.exp(-np.power(X[0,:,:]-mu[0],2.)/(2*np.power(sig[0],2.)) - np.power(X[1,:, :] - mu[1], 2.) / (2 * np.power(sig[1], 2.))) g = g/g.sum() return g elif dim == 3: g = np.exp(-np.power(X[0,:, :, :] - mu[0], 2.) / (2 * np.power(sig[0], 2.)) -np.power(X[1,:, :, :] - mu[1], 2.) / (2 * np.power(sig[1], 2.)) -np.power(X[2,:, :, :] - mu[2], 2.) / (2 * np.power(sig[2], 2.))) g = g / g.sum() return g else: raise ValueError('Can only compute Gaussians in dimensions 1-3') def _compute_warped_image_multiNC_1d(I0, phi, spacing, spline_order, zero_boundary=False, use_01_input=True): if spline_order not in [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]: raise ValueError('Currently only orders 0 to 9 are supported') if spline_order == 0: stn = STN_ND_BCXYZ(spacing, zero_boundary, use_bilinear=False, use_01_input=use_01_input) elif spline_order == 1: stn = STN_ND_BCXYZ(spacing, zero_boundary, use_bilinear=True, use_01_input=use_01_input) else: stn = SplineInterpolation_ND_BCXYZ(spacing, spline_order) I1_warped = stn(I0, phi) return I1_warped def _compute_warped_image_multiNC_2d(I0, phi, spacing, spline_order,zero_boundary=False,use_01_input=True): if spline_order not in [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]: raise ValueError('Currently only orders 0 to 9 are supported') if spline_order == 0: stn = STN_ND_BCXYZ(spacing, zero_boundary, use_bilinear=False, use_01_input=use_01_input) elif spline_order == 1: stn = STN_ND_BCXYZ(spacing, zero_boundary, use_bilinear=True, use_01_input=use_01_input) else: stn = SplineInterpolation_ND_BCXYZ(spacing, spline_order) I1_warped = stn(I0, phi) return I1_warped def _compute_warped_image_multiNC_3d(I0, phi, spacing, spline_order,zero_boundary=False,use_01_input=True): if spline_order not in [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]: raise ValueError('Currently only orders 0 to 9 are supported') if spline_order == 0: # return get_warped_label_map(I0,phi,spacing) stn = STN_ND_BCXYZ(spacing, zero_boundary, use_bilinear=False, use_01_input=use_01_input) elif spline_order == 1: stn = STN_ND_BCXYZ(spacing,zero_boundary, use_bilinear=True, use_01_input=use_01_input) else: stn = SplineInterpolation_ND_BCXYZ(spacing, spline_order) I1_warped = stn(I0, phi) return I1_warped def compute_warped_image(I0, phi, spacing, spline_order, zero_boundary=False, use_01_input=True): """Warps image. :param I0: image to warp, image size XxYxZ :param phi: map for the warping, size dimxXxYxZ :param spacing: image spacing [dx,dy,dz] :return: returns the warped image of size XxYxZ """ # implements this by creating a different view (effectively adding dimensions) Iw = compute_warped_image_multiNC(I0.view(torch.Size([1, 1] + list(I0.size()))), phi.view(torch.Size([1] + list(phi.size()))), spacing, spline_order, zero_boundary, use_01_input) return Iw.view(I0.size()) def compute_warped_image_multiNC(I0, phi, spacing, spline_order, zero_boundary=False, use_01_input=True): """Warps image. :param I0: image to warp, image size BxCxXxYxZ :param phi: map for the warping, size BxdimxXxYxZ :param spacing: image spacing [dx,dy,dz] :return: returns the warped image of size BxCxXxYxZ """ dim = I0.dim()-2 if dim == 1: return _compute_warped_image_multiNC_1d(I0, phi, spacing, spline_order,zero_boundary,use_01_input=use_01_input) elif dim == 2: return _compute_warped_image_multiNC_2d(I0, phi, spacing, spline_order,zero_boundary,use_01_input=use_01_input) elif dim == 3: return _compute_warped_image_multiNC_3d(I0, phi, spacing, spline_order,zero_boundary,use_01_input=use_01_input) else: raise ValueError('Images can only be warped in dimensions 1 to 3') def _get_low_res_spacing_from_spacing(spacing, sz, lowResSize): """Computes spacing for the low-res parametrization from image spacing. :param spacing: image spacing :param sz: size of image :param lowResSize: size of low re parameterization :return: returns spacing of low res parameterization """ #todo: check that this is the correct way of doing it return spacing * (np.array(sz[2::])-1) / (np.array(lowResSize[2::])-1) def _get_low_res_size_from_size(sz, factor): """Returns the corresponding low-res size from a (high-res) sz. :param sz: size (high-res) :param factor: low-res factor (needs to be <1) :return: low res size """ if (factor is None) or (factor >= 1): print('WARNING: Could not compute low_res_size as factor was ' + str(factor)) return np.array(sz) else: low_res_sz = np.array(sz) low_res_sz[2::] = (np.ceil((np.array(sz[2::]) * factor))).astype('int16') return low_res_sz def _compute_low_res_image(I, spacing, low_res_size, spline_order): import mermaid.image_sampling as IS sampler = IS.ResampleImage() low_res_image, _ = sampler.downsample_image_to_size(I, spacing, low_res_size[2::],spline_order) return low_res_image def individual_parameters_to_model_parameters(ind_pars): model_pars = dict() if type(ind_pars) == type(dict()): # should already be in the right format model_pars = ind_pars else: # if ind_pars is not a dictionary assume that they come from the optimizer # (i.e., list and each list element has a dictionary with keys 'name' and 'model_params' for par in ind_pars: model_pars[par['name']] = par['model_params'] return model_pars def compute_vector_momentum_from_scalar_momentum_multiNC(lam, I, sz, spacing): """Computes the vector momentum from the scalar momentum: :math:`m=\\lambda\\nabla I`. :param lam: scalar momentum, BxCxXxYxZ :param I: image, BxCxXxYxZ :param sz: size of image :param spacing: spacing of image :return: returns the vector momentum """ nrOfI = sz[0] # number of images m = create_ND_vector_field_variable_multiN(sz[2::], nrOfI) # attention that the second dimension here is image dim, not nrOfC nrOfC = sz[1] for c in range(nrOfC): # loop over all the channels and add the results m = m + compute_vector_momentum_from_scalar_momentum_multiN(lam[:, c, ...], I[:, c, ...], nrOfI, sz[2::], spacing) return m def compute_vector_momentum_from_scalar_momentum_multiN(lam, I, nrOfI, sz, spacing): """Computes the vector momentum from the scalar momentum: :math:`m=\\lambda\\nabla I`. :param lam: scalar momentum, batchxXxYxZ :param I: image, batchXxYxZ :param sz: size of image :param spacing: spacing of image :return: returns the vector momentum """ fdt = fd.FD_torch(spacing) dim = len(sz) m = create_ND_vector_field_variable_multiN(sz, nrOfI) if dim == 1: m[:, 0, :] = fdt.dXc(I)*lam elif dim == 2: m[:, 0, :, :] = fdt.dXc(I)*lam m[:, 1, :, :] = fdt.dYc(I)*lam elif dim == 3: m[:, 0, :, :, :] = fdt.dXc(I)*lam m[:, 1, :, :, :] = fdt.dYc(I)*lam m[:, 2, :, :, :] = fdt.dZc(I)*lam else: raise ValueError('Can only convert scalar to vector momentum in dimensions 1-3') return m def create_ND_vector_field_variable_multiN(sz, nr_of_images=1): """ Create vector field torch Variable of given size :param sz: just the spatial sizes (e.g., [5] in 1D, [5,10] in 2D, [5,10,10] in 3D) :param nrOfI: number of images :return: returns vector field of size nrOfIxdimxXxYxZ """ dim = len(sz) csz = np.array(sz) # just to make sure it is a numpy array csz = np.array([nr_of_images, dim]+list(csz)) return MyTensor(*(csz.tolist())).normal_(0., 1e-7) def create_ND_vector_field_variable(sz): """Create vector field torch Variable of given size. :param sz: just the spatial sizes (e.g., [5] in 1D, [5,10] in 2D, [5,10,10] in 3D) :return: returns vector field of size dimxXxYxZ """ dim = len(sz) csz = np.array(sz) # just to make sure it is a numpy array csz = np.array([dim]+list(csz)) return MyTensor(*(csz.tolist())).normal_(0.,1e-7) def create_vector_parameter(nr_of_elements): """Creates a vector parameters with a specified number of elements. :param nr_of_elements: number of vector elements :return: returns the parameter vector """ return Parameter(MyTensor(nr_of_elements).normal_(0., 1e-7)) def create_ND_vector_field_parameter_multiN(sz, nrOfI=1,get_field_from_external_network=False): """Create vector field torch Parameter of given size. :param sz: just the spatial sizes (e.g., [5] in 1D, [5,10] in 2D, [5,10,10] in 3D) :param nrOfI: number of images :return: returns vector field of size nrOfIxdimxXxYxZ """ dim = len(sz) csz = np.array(sz) # just to make sure it is a numpy array csz = np.array([nrOfI, dim]+list(csz)) if get_field_from_external_network: tmp = MyTensor(*(csz.tolist())).normal_(0.,1e-7) tmp.requires_grad = True else: tmp = Parameter(MyTensor(*(csz.tolist())).normal_(0.,1e-7)) return tmp def create_local_filter_weights_parameter_multiN(sz,gaussian_std_weights, nrOfI=1,sched='w_K_w',get_preweight_from_network=False): """ Create vector field torch Parameter of given size :param sz: just the spatial sizes (e.g., [5] in 1D, [5,10] in 2D, [5,10,10] in 3D) :param nrOfI: number of images :return: returns vector field of size nrOfIxdimxXxYxZ """ nr_of_mg_weights = len(gaussian_std_weights) csz = np.array(sz) # just to make sure it is a numpy array csz = np.array([nrOfI,nr_of_mg_weights]+list(csz)) weights = torch.empty(*csz) # set the default if sched =='w_K_w': gaussian_std_weights = [torch.sqrt(std_w) for std_w in gaussian_std_weights] for g in range(nr_of_mg_weights): weights[:, g, ...] = gaussian_std_weights[g] tmp = AdaptVal(weights) if get_preweight_from_network: tmp.requires_grad = True else: tmp = Parameter(tmp) return tmp def create_ND_scalar_field_parameter_multiNC(sz, nrOfI=1, nrOfC=1): """ Create vector field torch Parameter of given size :param sz: just the spatial sizes (e.g., [5] in 1D, [5,10] in 2D, [5,10,10] in 3D) :param nrOfI: number of images :param nrOfC: number of channels :return: returns vector field of size nrOfIxnrOfCxXxYxZ """ csz = np.array(sz) # just to make sure it is a numpy array csz = np.array([nrOfI,nrOfC]+list(csz)) return Parameter(MyTensor(*(csz.tolist())).normal_(0.,1e-7)) def centered_identity_map_multiN(sz, spacing, dtype='float32'): """ Create a centered identity map (shifted so it is centered around 0) :param sz: size of an image in BxCxXxYxZ format :param spacing: list with spacing information [sx,sy,sz] :param dtype: numpy data-type ('float32', 'float64', ...) :return: returns the identity map """ dim = len(sz) - 2 nrOfI = sz[0] if dim == 1: id = np.zeros([nrOfI, 1, sz[2]], dtype=dtype) elif dim == 2: id = np.zeros([nrOfI, 2, sz[2], sz[3]], dtype=dtype) elif dim == 3: id = np.zeros([nrOfI, 3, sz[2], sz[3], sz[4]], dtype=dtype) else: raise ValueError('Only dimensions 1-3 are currently supported for the identity map') for n in range(nrOfI): id[n, ...] = centered_identity_map(sz[2::], spacing,dtype=dtype) return id def identity_map_multiN(sz,spacing,dtype='float32'): """ Create an identity map :param sz: size of an image in BxCxXxYxZ format :param spacing: list with spacing information [sx,sy,sz] :param dtype: numpy data-type ('float32', 'float64', ...) :return: returns the identity map """ dim = len(sz)-2 nrOfI = int(sz[0]) if dim == 1: id = np.zeros([nrOfI,1,sz[2]],dtype=dtype) elif dim == 2: id = np.zeros([nrOfI,2,sz[2],sz[3]],dtype=dtype) elif dim == 3: id = np.zeros([nrOfI,3,sz[2],sz[3],sz[4]],dtype=dtype) else: raise ValueError('Only dimensions 1-3 are currently supported for the identity map') for n in range(nrOfI): id[n,...] = identity_map(sz[2::],spacing,dtype=dtype) return id def centered_identity_map(sz, spacing, dtype='float32'): """ Returns a centered identity map (with 0 in the middle) if the sz is odd Otherwise shifts everything by 0.5*spacing :param sz: just the spatial dimensions, i.e., XxYxZ :param spacing: list with spacing information [sx,sy,sz] :param dtype: numpy data-type ('float32', 'float64', ...) :return: returns the identity map of dimension dimxXxYxZ """ dim = len(sz) if dim == 1: id = np.mgrid[0:sz[0]] elif dim == 2: id = np.mgrid[0:sz[0], 0:sz[1]] elif dim == 3: id = np.mgrid[0:sz[0], 0:sz[1], 0:sz[2]] else: raise ValueError('Only dimensions 1-3 are currently supported for the identity map') # now get it into range [0,(sz-1)*spacing]^d id = np.array(id.astype(dtype)) if dim == 1: id = id.reshape(1, sz[0]) # add a dummy first index for d in range(dim): id[d] *= spacing[d] if sz[d]%2==0: #even id[d] -= spacing[d]*(sz[d]//2) else: #odd id[d] -= spacing[d]*((sz[d]+1)//2) # and now store it in a dim+1 array if dim == 1: idnp = np.zeros([1, sz[0]], dtype=dtype) idnp[0, :] = id[0] elif dim == 2: idnp = np.zeros([2, sz[0], sz[1]], dtype=dtype) idnp[0, :, :] = id[0] idnp[1, :, :] = id[1] elif dim == 3: idnp = np.zeros([3, sz[0], sz[1], sz[2]], dtype=dtype) idnp[0, :, :, :] = id[0] idnp[1, :, :, :] = id[1] idnp[2, :, :, :] = id[2] else: raise ValueError('Only dimensions 1-3 are currently supported for the centered identity map') return idnp # # def centered_min_normalized_identity_map(sz, spacing, dtype='float32'): # """ # Returns a centered identity map (with 0 in the middle) if the sz is odd # Otherwise shifts everything by 0.5*spacing # # :param sz: just the spatial dimensions, i.e., XxYxZ # :param spacing: list with spacing information [sx,sy,sz] # :param dtype: numpy data-type ('float32', 'float64', ...) # :return: returns the identity map of dimension dimxXxYxZ # """ # dim = len(sz) # if dim == 1: # id = np.mgrid[0:sz[0]] # elif dim == 2: # id = np.mgrid[0:sz[0], 0:sz[1]] # elif dim == 3: # id = np.mgrid[0:sz[0], 0:sz[1], 0:sz[2]] # else: # raise ValueError('Only dimensions 1-3 are currently supported for the identity map') # # min_spacing = np.min(spacing) # spacing_ratio = spacing/min_spacing # # # # now get it into range [0,(sz-1)*spacing]^d # id = np.array(id.astype(dtype)) # if dim == 1: # id = id.reshape(1, sz[0]) # add a dummy first index # # for d in range(dim): # id[d] *= spacing[d] # if sz[d]%2==0: # #even # id[d] -= spacing[d]*(sz[d]//2) # else: # #odd # id[d] -= spacing[d]*((sz[d]+1)//2) # # # and now store it in a dim+1 array and rescale by the ratio # if dim == 1: # idnp = np.zeros([1, sz[0]], dtype=dtype) # idnp[0, :] = id[0] * spacing_ratio[0] # elif dim == 2: # idnp = np.zeros([2, sz[0], sz[1]], dtype=dtype) # idnp[0, :, :] = id[0] * spacing_ratio[0] # idnp[1, :, :] = id[1] * spacing_ratio[1] # elif dim == 3: # idnp = np.zeros([3, sz[0], sz[1], sz[2]], dtype=dtype) # idnp[0, :, :, :] = id[0] * spacing_ratio[0] # idnp[1, :, :, :] = id[1] * spacing_ratio[1] # idnp[2, :, :, :] = id[2] * spacing_ratio[2] # else: # raise ValueError('Only dimensions 1-3 are currently supported for the centered identity map') # # return idnp # # def tranfrom_var_list_into_min_normalized_space(var_list,spacing,do_transform=True): # if do_transform: # min_spacing = np.min(spacing) # spacing_ratio =min_spacing/spacing # dim = spacing.size # spacing_ratio_t = AdaptVal(torch.Tensor(spacing_ratio)) # sp_sz = [1]+[dim] +[1]*dim # spacing_ratio_t = spacing_ratio_t.view(*sp_sz) # new_var_list = [var*spacing_ratio_t if var is not None else None for var in var_list] # else: # new_var_list = var_list # return new_var_list # def recover_var_list_from_min_normalized_space(var_list,spacing,do_transform=True): # if do_transform: # min_spacing = np.min(spacing) # spacing_ratio =spacing/min_spacing # dim = spacing.size # spacing_ratio_t = AdaptVal(torch.Tensor(spacing_ratio)) # sp_sz = [1]+[dim] +[1]*dim # spacing_ratio_t = spacing_ratio_t.view(*sp_sz) # new_var_list = [var*spacing_ratio_t if var is not None else None for var in var_list] # else: # new_var_list = var_list # return new_var_list # def identity_map(sz,spacing,dtype='float32'): """ Returns an identity map. :param sz: just the spatial dimensions, i.e., XxYxZ :param spacing: list with spacing information [sx,sy,sz] :param dtype: numpy data-type ('float32', 'float64', ...) :return: returns the identity map of dimension dimxXxYxZ """ dim = len(sz) if dim==1: id = np.mgrid[0:sz[0]] elif dim==2: id = np.mgrid[0:sz[0],0:sz[1]] elif dim==3: id = np.mgrid[0:sz[0],0:sz[1],0:sz[2]] else: raise ValueError('Only dimensions 1-3 are currently supported for the identity map') # now get it into range [0,(sz-1)*spacing]^d id = np.array( id.astype(dtype) ) if dim==1: id = id.reshape(1,sz[0]) # add a dummy first index for d in range(dim): id[d]*=spacing[d] #id[d]*=2./(sz[d]-1) #id[d]-=1. # and now store it in a dim+1 array if dim==1: idnp = np.zeros([1, sz[0]], dtype=dtype) idnp[0,:] = id[0] elif dim==2: idnp = np.zeros([2, sz[0], sz[1]], dtype=dtype) idnp[0,:, :] = id[0] idnp[1,:, :] = id[1] elif dim==3: idnp = np.zeros([3,sz[0], sz[1], sz[2]], dtype=dtype) idnp[0,:, :, :] = id[0] idnp[1,:, :, :] = id[1] idnp[2,:, :, :] = id[2] else: raise ValueError('Only dimensions 1-3 are currently supported for the identity map') return idnp def omt_boundary_weight_mask(img_sz,spacing,mask_range=5,mask_value=5,smoother_std =0.05): """generate a smooth weight mask for the omt """ dim = len(img_sz) mask_sz = [1,1]+ list(img_sz) mask = AdaptVal(torch.ones(*mask_sz))*mask_value if dim ==2: mask[:,:,mask_range:-mask_range,mask_range:-mask_range]=1 elif dim==3: mask[:,:,mask_range:-mask_range,mask_range:-mask_range,mask_range:-mask_range ]=1 sm = get_single_gaussian_smoother(smoother_std,img_sz,spacing) mask = sm.smooth(mask) return mask.detach() def momentum_boundary_weight_mask(img_sz,spacing,mask_range=5,smoother_std =0.05,pow=2): """generate a smooth weight mask for the omt """ dim = len(img_sz) mask_sz = [1,1]+ list(img_sz) mask = AdaptVal(torch.zeros(*mask_sz)) if dim ==2: mask[:,:,mask_range:-mask_range,mask_range:-mask_range]=1 elif dim==3: mask[:,:,mask_range:-mask_range,mask_range:-mask_range,mask_range:-mask_range ]=1 sm = get_single_gaussian_smoother(smoother_std,img_sz,spacing) mask = sm.smooth(mask) if pow ==2: mask = mask**2 if pow ==3: mask = mask*mask*mask return mask # def compute_omt_const(stds,param,dim): # omt_power = param['forward_model']['smoother']['omt_power'] # omt_weight_penalty = param['forward_model']['smoother']['omt_weight_penalty'] # min_std = torch.min(stds) # max_std = torch.max(stds) # omt_const = torch.abs(torch.log(max_std/stds))**omt_power # omt_const = omt_const/(torch.abs(torch.log(max_std / min_std)) ** omt_power) # omt_const = omt_const*omt_weight_penalty/(EV.reg_factor_in_mermaid*2) # sz = [1]+ [len(stds)] +[1]*(dim+1) # return omt_const.view(*sz) def get_single_gaussian_smoother(gaussian_std,sz,spacing): s_m_params = pars.ParameterDict() s_m_params['smoother']['type'] = 'gaussian' s_m_params['smoother']['gaussian_std'] = gaussian_std s_m = sf.SmootherFactory(sz, spacing).create_smoother(s_m_params) return s_m def get_warped_label_map(label_map, phi, spacing, sched='nn'): if sched == 'nn': warped_label_map = compute_warped_image_multiNC(label_map, phi, spacing,spline_order=0,zero_boundary=True) # check if here should be add assert assert abs(torch.sum(warped_label_map.data -warped_label_map.data.round()))< 0.1, "nn interpolation is not precise" else: raise ValueError(" the label warping method is not implemented") return warped_label_map def t2np(v): """ Takes a torch array and returns it as a numpy array on the cpu :param v: torch array :return: numpy array """ return (v.detach()).cpu().numpy() def cxyz_to_xyzc( v ): """ Takes a torch array and returns it as a numpy array on the cpu :param v: torch array :return: numpy array """ dim = len(v.shape)-2 if dim ==2: v = v.permute(0,2,3,1) if dim ==3: v = v.permute(0,2,3,4,1) return v def get_scalar(v): if isinstance(v, float): return v elif isinstance(v, np.ndarray) and v.size == 1: return float(v) def checkNan(x): """" input should be list of Variable """ return [len(np.argwhere(np.isnan(elem.detach().cpu().numpy()))) for elem in x] def noramlized_spacing_to_smallest(spacing): min_sp = np.min(spacing) spacing[spacing>min_sp]=min_sp return spacing def time_warped_function(f): def __time_warped_function(input=None): start = torch.cuda.Event(enable_timing=True) end = torch.cuda.Event(enable_timing=True) start.record() output = f(input) end.record() # Waits for everything to finish running torch.cuda.synchronize() print(start.elapsed_time(end)) return output return __time_warped_function def interoplate_boundary_right(tensor): dim = len(tensor.shape)-2 if dim==1: tensor[:,:,-1]= tensor[:,:-2]+ tensor[:,:-2]-tensor[:,:-3] if dim==2: tensor[:, :, -1,:] = tensor[:, :,-2,:] + tensor[:, :,-2,:] - tensor[:, :,-3,:] tensor[:, :, :,-1] = tensor[:, :, :,-2] + tensor[:, :, :,-2] - tensor[:, :, :,-3] if dim==3: tensor[:, :,:, -1,:, :] = tensor[:, :, -2, :] + tensor[:, :, -2, :] - tensor[:, :, -3, :] tensor[:, :,:, :, -1, :] = tensor[:, :, :, -2] + tensor[:, :, :, -2] - tensor[:, :, :, -3] tensor[:, :,:, :, :, -1] = tensor[:, :, :, -2] + tensor[:, :, :, -2] - tensor[:, :, :, -3] def get_resampled_image(I, spacing, desiredSize, spline_order=1, zero_boundary=False, identity_map=None): """ :param I: B C X Y Z :param spacing: spx spy spz :param desiredSize: B C X Y Z :param spline_order: :param zero_boundary: :param identity_map: :return: """ if spacing is None: img_sz = I.shape[2:] spacing = 1. / (np.array(img_sz) - 1) if identity_map is not None: # todo will remove, currently fix for symmetric training if I.shape[0] != identity_map.shape[0]: n_batch = I.shape[0] desiredSize = desiredSize.copy() desiredSize[0] = n_batch identity_map = identity_map[:n_batch] resampled, new_spacing = resample_image(I, spacing, desiredSize, spline_order=spline_order, zero_boundary=zero_boundary, identity_map=identity_map) return resampled def resample_image(I, spacing, desiredSize, spline_order=1, zero_boundary=False, identity_map=None): """ Resample an image to a given desired size :param I: Input image (expected to be of BxCxXxYxZ format) :param spacing: array describing the spatial spacing :param desiredSize: array for the desired size (excluding B and C, i.e, 1 entry for 1D, 2 for 2D, and 3 for 3D) :return: returns a tuple: the downsampled image, the new spacing after downsampling """ desiredSize = desiredSize[2:] is_numpy = False if not isinstance(I, torch.Tensor): I = torch.Tensor(I) is_numpy = True sz = np.array(list(I.size())) # check that the batch size and the number of channels is the same nrOfI = sz[0] nrOfC = sz[1] desiredSizeNC = np.array([nrOfI, nrOfC] + list(desiredSize)) newspacing = spacing * ((sz[2::].astype('float') - 1.) / ( desiredSizeNC[2::].astype('float') - 1.)) ########################################### if identity_map is not None: idDes = identity_map else: idDes = AdaptVal(torch.from_numpy(identity_map_multiN(desiredSizeNC, newspacing))) # now use this map for resampling ID = compute_warped_image_multiNC(I, idDes, newspacing, spline_order, zero_boundary) return ID if not is_numpy else ID.numpy(), newspacing def get_res_size_from_size(sz, factor): """ Returns the corresponding low-res size from a (high-res) sz :param sz: size (high-res) :param factor: low-res factor (needs to be <1) :return: low res size """ if (factor is None): print('WARNING: Could not compute low_res_size as factor was ' + str(factor)) return sz else: lowResSize = np.array(sz) if not isinstance(factor, list): lowResSize[2::] = (np.ceil((np.array(sz[2:]) * factor))).astype('int16') else: lowResSize[2::] = (np.ceil((np.array(sz[2:]) * np.array(factor)))).astype('int16') if lowResSize[-1] % 2 != 0: lowResSize[-1] -= 1 print( '\n\nWARNING: forcing last dimension to be even: fix properly in the Fourier transform later!\n\n') return lowResSize def get_res_spacing_from_spacing(spacing, sz, lowResSize): """ Computes spacing for the low-res parameterization from image spacing :param spacing: image spacing :param sz: size of image :param lowResSize: size of low re parameterization :return: returns spacing of low res parameterization """ # todo: check that this is the correct way of doing it return spacing * (np.array(sz[2::]) - 1) / (np.array(lowResSize[2::]) - 1) ########################################## Adaptive Net ###################################################3 def space_normal(tensors, std=0.1): """ space normalize for the net kernel :param tensor: :param mean: :param std: :return: """ if isinstance(tensors, Variable): space_normal(tensors.data, std=std) return tensors for n in range(tensors.size()[0]): for c in range(tensors.size()[1]): dim = tensors[n][c].dim() sz = tensors[n][c].size() mus = np.zeros(dim) stds = std * np.ones(dim) print('WARNING: What should the spacing be here? Needed for new identity map code') raise ValueError('Double check the spacing here before running this code') spacing = np.ones(dim) centered_id = centered_identity_map(sz,spacing) g = compute_normalized_gaussian(centered_id, mus, stds) tensors[n,c] = torch.from_numpy(g) def weights_init_uniform(m): classname = m.__class__.__name__ # print(classname) if classname.find('Conv') != -1: init.uniform(m.weight.data, 0.038, 0.042) elif classname.find('Linear') != -1: init.uniform(m.weight.data, 0.0, 0.02) elif classname.find('BatchNorm2d') != -1: init.uniform(m.weight.data, 1.0, 0.02) init.constant(m.bias.data, 0.0) def weights_init_normal(m): classname = m.__class__.__name__ # print(classname) if classname.find('Conv') != -1: space_normal(m.weight.data) elif classname.find('Linear') != -1: space_normal(m.weight.data) elif classname.find('BatchNorm2d') != -1: init.uniform(m.weight.data, 1.0, 0.02) init.constant(m.bias.data, 0.0) def weights_init_rd_normal(m): classname = m.__class__.__name__ # print(classname) if classname.find('Conv') != -1: init.normal(m.weight.data) elif classname.find('Linear') != -1: init.normal(m.weight.data) elif classname.find('BatchNorm2d') != -1: init.uniform(m.weight.data, 1.0, 0.02) init.constant(m.bias.data, 0.0) def weights_init_xavier(m): classname = m.__class__.__name__ # print(classname) if classname.find('Conv') != -1: init.xavier_normal(m.weight.data, gain=1) elif classname.find('Linear') != -1: init.xavier_normal(m.weight.data, gain=1) elif classname.find('BatchNorm2d') != -1: init.uniform(m.weight.data, 1.0, 0.02) init.constant(m.bias.data, 0.0) def weights_init_kaiming(m): classname = m.__class__.__name__ # print(classname) if classname.find('Conv') != -1: init.kaiming_normal(m.weight.data, a=0, mode='fan_in') elif classname.find('Linear') != -1: init.kaiming_normal(m.weight.data, a=0, mode='fan_in') elif classname.find('BatchNorm2d') != -1: init.uniform(m.weight.data, 1.0, 0.02) init.constant(m.bias.data, 0.0) def weights_init_orthogonal(m): classname = m.__class__.__name__ print(classname) if classname.find('Conv') != -1: init.orthogonal(m.weight.data, gain=1) elif classname.find('Linear') != -1: init.orthogonal(m.weight.data, gain=1) elif classname.find('BatchNorm2d') != -1: init.uniform(m.weight.data, 1.0, 0.02) init.constant(m.bias.data, 0.0) def init_weights(net, init_type='normal'): print('initialization method [%s]' % init_type) if init_type == 'rd_normal': net.apply(weights_init_rd_normal) elif init_type == 'normal': net.apply(weights_init_normal) elif init_type == 'uniform': net.apply(weights_init_uniform) elif init_type == 'xavier': net.apply(weights_init_xavier) elif init_type == 'kaiming': net.apply(weights_init_kaiming) elif init_type == 'orthogonal': net.apply(weights_init_orthogonal) else: raise NotImplementedError('initialization method [%s] is not implemented' % init_type) def organize_data(moving, target, sched='depth_concat'): if sched == 'depth_concat': input = torch.cat([moving, target], dim=1) elif sched == 'width_concat': input = torch.cat((moving, target), dim=3) elif sched == 'list_concat': input = torch.cat((moving.unsqueeze(0),target.unsqueeze(0)),dim=0) elif sched == 'difference': input = moving-target return input def bh(m,gi,go): print("Grad Input") print((torch.sum(gi[0].data), torch.sum(gi[1].data))) print("Grad Output") print(torch.sum(go[0].data)) return gi[0], gi[1], gi[2] class ConvBnRel(nn.Module): # conv + bn (optional) + relu def __init__(self, in_channels, out_channels, kernel_size, stride=1, active_unit='relu', same_padding=False, bn=False, reverse=False, bias=False): super(ConvBnRel, self).__init__() padding = int((kernel_size - 1) // 2) if same_padding else 0 if not reverse: self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding=padding, bias=bias) else: self.conv = nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride, padding=padding,bias=bias) #y = \frac{x - mean[x]}{ \sqrt{Var[x] + \epsilon}} * gamma + beta #When affine=False the output of BatchNorm is equivalent to considering gamma=1 and beta=0 as constants. self.bn = nn.BatchNorm2d(out_channels, eps=0.0001, momentum=0, affine=True) if bn else None if active_unit == 'relu': self.active_unit = nn.ReLU(inplace=True) elif active_unit == 'elu': self.active_unit = nn.ELU(inplace=True) else: self.active_unit = None def forward(self, x): x = self.conv(x) if self.bn is not None: x = self.bn(x) if self.active_unit is not None: x = self.active_unit(x) return x class FcRel(nn.Module): # fc+ relu(option) def __init__(self, in_features, out_features, active_unit='relu'): super(FcRel, self).__init__() self.fc = nn.Linear(in_features, out_features) if active_unit == 'relu': self.active_unit = nn.ReLU(inplace=True) elif active_unit == 'elu': self.active_unit = nn.ELU(inplace=True) else: self.active_unit = None def forward(self, x): x = self.fc(x) if self.active_unit is not None: x = self.active_unit(x) return x class AdpSmoother(nn.Module): """ a simple conv. implementation, generate displacement field """ def __init__(self, inputs, dim, net_sched=None): # settings should include [using_bias, using bn, using elu] # inputs should be a dictionary could contain ['s'],['t'] super(AdpSmoother, self).__init__() self.dim = dim self.net_sched = 'm_only' self.s = inputs['s'].detach() self.t = inputs['t'].detach() self.mask = Parameter(torch.cat([torch.ones(inputs['s'].size())]*dim, 1), requires_grad = True) self.get_net_sched() #self.net.register_backward_hook(bh) def get_net_sched(self, debugging=True, using_bn=True, active_unit='relu', using_sigmoid=False , kernel_size=5): # return the self.net and self.net_input padding_size = (kernel_size-1)//2 if self.net_sched == 'm_only': if debugging: self.net = nn.Conv2d(2, 2, kernel_size, 1, padding=padding_size, bias=False,groups=2) else: net = \ [ConvBnRel(self.dim, 20, 5, active_unit=active_unit, same_padding=True, bn=using_bn), ConvBnRel(20,self.dim, 5, active_unit=active_unit, same_padding=True, bn=using_bn)] if using_sigmoid: net += [nn.Sigmoid()] self.net = nn.Sequential(*net) elif self.net_sched =='m_f_s': if debugging: self.net = nn.Conv2d(self.dim+1, self.dim, kernel_size, 1, padding=padding_size, bias=False) else: net = \ [ConvBnRel(self.dim +1, 20, 5, active_unit=active_unit, same_padding=True, bn=using_bn), ConvBnRel(20, self.dim, 5, active_unit=active_unit, same_padding=True, bn=using_bn)] if using_sigmoid: net += [nn.Sigmoid()] self.net = nn.Sequential(*net) elif self.net_sched == 'm_d_s': if debugging: self.net = nn.Conv2d(self.dim+1, self.dim, kernel_size, 1, padding=padding_size, bias=False) else: net = \ [ConvBnRel(self.dim + 1, 20, 5, active_unit=active_unit, same_padding=True, bn=using_bn), ConvBnRel(20, self.dim, 5, active_unit=active_unit, same_padding=True, bn=using_bn)] if using_sigmoid: net += [nn.Sigmoid()] self.net = nn.Sequential(*net) elif self.net_sched == 'm_f_s_t': if debugging: self.net = nn.Conv2d(self.dim+2, self.dim, kernel_size, 1, padding=padding_size, bias=False) else: net = \ [ConvBnRel(self.dim + 2, 20, 5, active_unit=active_unit, same_padding=True, bn=using_bn), ConvBnRel(20, self.dim, 5, active_unit=active_unit, same_padding=True, bn=using_bn)] if using_sigmoid: net += [nn.Sigmoid()] self.net = nn.Sequential(*net) elif self.net_sched == 'm_d_s_f_t': if debugging: self.net = nn.Conv2d(self.dim + 2, self.dim, kernel_size, 1, padding=padding_size, bias=False) else: net = \ [ConvBnRel(self.dim + 2, 20, 5, active_unit=active_unit, same_padding=True, bn=using_bn), ConvBnRel(20, self.dim, 5, active_unit=active_unit, same_padding=True, bn=using_bn)] if using_sigmoid: net += [nn.Sigmoid()] self.net = nn.Sequential(*net) def prepare_data(self, m, new_s): input=None if self.net_sched == 'm_only': input = m elif self.net_sched == 'm_f_s': input = organize_data(m,self.s,sched='depth_concat') elif self.net_sched == 'm_d_s': input = organize_data(m, new_s, sched='depth_concat') elif self.net_sched == 'm_f_s_t': input = organize_data(m, self.s, sched='depth_concat') input = organize_data(input, self.t, sched='depth_concat') elif self.net_sched == 'm_f_s_t': input = organize_data(m, self.s, sched='depth_concat') input = organize_data(input, self.t, sched='depth_concat') elif self.net_sched == 'm_d_s_f_t': input = organize_data(m, new_s, sched='depth_concat') input = organize_data(input, self.t, sched='depth_concat') return input def forward(self, m,new_s=None): m = m * self.mask input = self.prepare_data(m,new_s) x= input x = self.net(x) return x
test/Fortran/fixture/myfortran_flags.py
moroten/scons
1,403
3697
<reponame>moroten/scons<gh_stars>1000+ import getopt import sys comment = ('#' + sys.argv[1]).encode() opts, args = getopt.getopt(sys.argv[2:], 'cf:o:xy') optstring = '' length = len(comment) for opt, arg in opts: if opt == '-o': out = arg elif opt not in ('-f', '-K'): optstring = optstring + ' ' + opt infile = open(args[0], 'rb') outfile = open(out, 'wb') outfile.write((optstring + "\n").encode()) for l in infile.readlines(): if l[:length] != comment: outfile.write(l) sys.exit(0)
loss_fn/classification_loss_fns/binary_cross_entropy.py
apple/ml-cvnets
209
3710
<filename>loss_fn/classification_loss_fns/binary_cross_entropy.py # # For licensing see accompanying LICENSE file. # Copyright (C) 2022 Apple Inc. All Rights Reserved. # from torch.nn import functional as F from torch import Tensor import argparse from . import register_classification_loss_fn from .. import BaseCriteria @register_classification_loss_fn(name="binary_cross_entropy") class ClsBinaryCrossEntropy(BaseCriteria): """Binary CE for classification tasks""" def __init__(self, opts, *args, **kwargs) -> None: super().__init__() def forward( self, input_sample: Tensor, prediction: Tensor, target: Tensor, *args, **kwargs ) -> Tensor: if target.dim() != prediction.dim(): target = F.one_hot(target, num_classes=prediction.shape[-1]) return F.binary_cross_entropy_with_logits( input=prediction, target=target.to(prediction.dtype), weight=None, reduction="sum", ) def __repr__(self) -> str: return "{}()".format(self.__class__.__name__)
dnnlib/submission/submit.py
gperdrizet/gansformer
1,172
3717
<reponame>gperdrizet/gansformer # Submit a function to be run either locally or in a computing cluster. # Compared to original StyleGAN implementation, we extend the support for automatic training resumption, # and network recompilation. import copy import inspect import os import pathlib import pickle import platform import pprint import re import shutil import sys import time import traceback from enum import Enum from .. import util from ..util import EasyDict from . import internal class SubmitTarget(Enum): # The target where the function should be run # LOCAL: Run it locally LOCAL = 1 class PathType(Enum): # Determines in which format should a path be formatted # WINDOWS: Format with Windows style # LINUX: Format with Linux/Posix style # AUTO: Use current OS type to select either WINDOWS or LINUX WINDOWS = 1 LINUX = 2 AUTO = 3 class PlatformExtras: # A mixed bag of values used by dnnlib heuristics # Attributes: # data_reader_buffer_size: Used by DataReader to size internal shared memory buffers # data_reader_process_count: Number of worker processes to spawn (zero for single # thread operation) def __init__(self): self.data_reader_buffer_size = 1<<30 # 1 GB self.data_reader_process_count = 0 # single threaded default _user_name_override = None class SubmitConfig(util.EasyDict): # Strongly typed config dict needed to submit runs # Attributes: # run_dir_root: Path to the run dir root. Can be optionally templated with tags # Needs to always be run through get_path_from_template # run_desc: Description of the run. Will be used in the run dir and task name # run_dir_ignore: List of file patterns used to ignore files when copying files to the run dir # run_dir_extra_files: List of (abs_path, rel_path) tuples of file paths. rel_path root will # be the src directory inside the run dir # submit_target: Submit target enum value. Used to select where the run is actually launched # num_gpus: Number of GPUs used/requested for the run # print_info: Whether to print debug information when submitting # local.do_not_copy_source_files: Do not copy source files from the working directory to the # run dir. # run_id: Automatically populated value during submit # run_name: Automatically populated value during submit # run_dir: Automatically populated value during submit # run_func_name: Automatically populated value during submit # run_func_kwargs: Automatically populated value during submit # user_name: Automatically populated value during submit. Can be set by the user which will then # override the automatic value # task_name: Automatically populated value during submit # host_name: Automatically populated value during submit # platform_extras: Automatically populated values during submit. Used by various dnnlib libraries # such as the DataReader class def __init__(self): super().__init__() # run (set these) self.run_dir_root = "" # should always be passed through get_path_from_template self.run_desc = "" self.run_dir_ignore = ["__pycache__", "*.pyproj", "*.sln", "*.suo", ".cache", ".idea", ".vs", ".vscode", "_cudacache"] self.run_dir_extra_files = [] # submit (set these) self.submit_target = SubmitTarget.LOCAL self.num_gpus = 1 self.print_info = False self.nvprof = False self.local = internal.local.TargetOptions() self.datasets = [] # (automatically populated) self.run_id = None self.run_name = None self.run_dir = None self.run_func_name = None self.run_func_kwargs = None self.user_name = None self.task_name = None self.host_name = "localhost" self.platform_extras = PlatformExtras() def get_path_from_template(path_template: str, path_type: PathType = PathType.AUTO) -> str: # Replace tags in the given path template and return either Windows or Linux formatted path # automatically select path type depending on running OS if path_type == PathType.AUTO: if platform.system() == "Windows": path_type = PathType.WINDOWS elif platform.system() == "Linux": path_type = PathType.LINUX else: raise RuntimeError("Unknown platform") path_template = path_template.replace("<USERNAME>", get_user_name()) # return correctly formatted path if path_type == PathType.WINDOWS: return str(pathlib.PureWindowsPath(path_template)) elif path_type == PathType.LINUX: return str(pathlib.PurePosixPath(path_template)) else: raise RuntimeError("Unknown platform") def get_template_from_path(path: str) -> str: # Convert a normal path back to its template representation path = path.replace("\\", "/") return path def convert_path(path: str, path_type: PathType = PathType.AUTO) -> str: # Convert a normal path to template and the convert it back to a normal path with given path type path_template = get_template_from_path(path) path = get_path_from_template(path_template, path_type) return path def set_user_name_override(name: str) -> None: # Set the global username override value global _user_name_override _user_name_override = name def get_user_name(): # Get the current user name if _user_name_override is not None: return _user_name_override elif platform.system() == "Windows": return os.getlogin() elif platform.system() == "Linux": try: import pwd return pwd.getpwuid(os.geteuid()).pw_name except: return "unknown" else: raise RuntimeError("Unknown platform") def make_run_dir_path(*paths): # Make a path/filename that resides under the current submit run_dir # Args: # *paths: Path components to be passed to os.path.join # Returns: # A file/dirname rooted at submit_config.run_dir. If there's no # submit_config or run_dir, the base directory is the current # working directory. # E.g., `os.path.join(dnnlib.submit_config.run_dir, "output.txt"))` import dnnlib if (dnnlib.submit_config is None) or (dnnlib.submit_config.run_dir is None): return os.path.join(os.getcwd(), *paths) return os.path.join(dnnlib.submit_config.run_dir, *paths) def _create_run_dir_local(submit_config: SubmitConfig, resume: bool, create_new: str) -> str: # Create a new run dir with increasing ID number at the start run_dir_root = get_path_from_template(submit_config.run_dir_root, PathType.AUTO) if not os.path.exists(run_dir_root): os.makedirs(run_dir_root) run_dir = os.path.join(run_dir_root, submit_config.run_name) if not resume: if os.path.exists(run_dir) and create_new: raise RuntimeError("The run dir already exists! ({0})".format(run_dir)) if not os.path.exists(run_dir): os.makedirs(run_dir) return run_dir def _get_next_run_id_local(run_dir_root: str) -> int: # Reads all directory names in a given directory (non-recursive) and returns the next (increasing) run id # Assumes IDs are numbers at the start of the directory names dir_names = [d for d in os.listdir(run_dir_root) if os.path.isdir(os.path.join(run_dir_root, d))] r = re.compile("^\\d+") # match one or more digits at the start of the string run_id = 0 for dir_name in dir_names: m = r.match(dir_name) if m is not None: i = int(m.group()) run_id = max(run_id, i + 1) return run_id def _populate_run_dir(submit_config: SubmitConfig, run_dir: str) -> None: # Copy all necessary files into the run dir. Assumes that the dir exists, is local, and is writable pickle.dump(submit_config, open(os.path.join(run_dir, "submit_config.pkl"), "wb")) with open(os.path.join(run_dir, "submit_config.txt"), "w") as f: pprint.pprint(submit_config, stream = f, indent = 4, width = 200, compact = False) if (submit_config.submit_target == SubmitTarget.LOCAL) and submit_config.local.do_not_copy_source_files: return files = [] run_func_module_dir_path = util.get_module_dir_by_obj_name(submit_config.run_func_name) assert "." in submit_config.run_func_name for _idx in range(submit_config.run_func_name.count(".") - 1): run_func_module_dir_path = os.path.dirname(run_func_module_dir_path) files += util.list_dir_recursively_with_ignore(run_func_module_dir_path, ignores = submit_config.run_dir_ignore, add_base_to_relative = False) dnnlib_module_dir_path = util.get_module_dir_by_obj_name("dnnlib") files += util.list_dir_recursively_with_ignore(dnnlib_module_dir_path, ignores = submit_config.run_dir_ignore, add_base_to_relative = True) files += submit_config.run_dir_extra_files files = [(f[0], os.path.join(run_dir, "src", f[1])) for f in files] files += [(os.path.join(dnnlib_module_dir_path, "submission", "internal", "run.py"), os.path.join(run_dir, "run.py"))] util.copy_files_and_create_dirs(files) def run_wrapper(submit_config: SubmitConfig) -> None: # Wrap the actual run function call for handling logging, exceptions, typing, etc is_local = submit_config.submit_target == SubmitTarget.LOCAL # when running locally, redirect stderr to stdout, log stdout to a file, and force flushing if is_local: logger = util.Logger(file_name = os.path.join(submit_config.run_dir, "log.txt"), file_mode="a", should_flush = True) else: # when running in a cluster, redirect stderr to stdout, and just force flushing (log writing is handled by run.sh) logger = util.Logger(file_name = None, should_flush = True) import dnnlib dnnlib.submit_config = submit_config exit_with_errcode = False try: print("dnnlib: Running {0}() on {1}...".format(submit_config.run_func_name, submit_config.host_name)) start_time = time.time() run_func_obj = util.get_obj_by_name(submit_config.run_func_name) assert callable(run_func_obj) sig = inspect.signature(run_func_obj) if "submit_config" in sig.parameters: run_func_obj(submit_config = submit_config, **submit_config.run_func_kwargs) else: run_func_obj(**submit_config.run_func_kwargs) print("dnnlib: Finished {0}() in {1}.".format(submit_config.run_func_name, util.format_time(time.time() - start_time))) except: if is_local: raise else: traceback.print_exc() log_src = os.path.join(submit_config.run_dir, "log.txt") log_dst = os.path.join(get_path_from_template(submit_config.run_dir_root), "{0}-error.txt".format(submit_config.run_name)) shutil.copyfile(log_src, log_dst) # Defer sys.exit(1) to happen after we close the logs and create a _finished.txt exit_with_errcode = True finally: open(os.path.join(submit_config.run_dir, "_finished.txt"), "w").close() dnnlib.RunContext.get().close() dnnlib.submit_config = None logger.close() # If we hit an error, get out of the script now and signal the error # to whatever process that started this script. if exit_with_errcode: sys.exit(1) return submit_config def open_file_or_url(file_or_url): if util.is_url(file_or_url): return util.open_url(file_or_url, cache_dir = ".stylegan2-cache") return open(file_or_url, "rb") def load_pkl(file_or_url): with open_file_or_url(file_or_url) as file: return pickle.load(file, encoding = "latin1") def submit_run(submit_config: SubmitConfig, run_func_name: str, create_newdir: bool = False, resume: bool = False, load_config: bool = False, **run_func_kwargs) -> None: # Create a run dir, gather files related to the run, copy files to the run dir, and launch the run in appropriate place. # create_newdir: enforces the creation of a new run directory # resume: resumes a prior experiment using its existing run directory # load_config: in case resume = True, load prior experiment config instead of using the current command-line parameters submit_config = copy.deepcopy(submit_config) submit_target = submit_config.submit_target farm = None if submit_target == SubmitTarget.LOCAL: farm = internal.local.Target() assert farm is not None # unknown target # Disallow submitting jobs with zero num_gpus if (submit_config.num_gpus is None) or (submit_config.num_gpus == 0): raise RuntimeError("submit_config.num_gpus must be set to a non-zero value") if submit_config.user_name is None: submit_config.user_name = get_user_name() submit_config.run_func_name = run_func_name submit_config.run_func_kwargs = run_func_kwargs #-------------------------------------------------------------------- # Prepare submission by populating the run dir #-------------------------------------------------------------------- host_run_dir = _create_run_dir_local(submit_config, resume, create_new = create_newdir) submit_config.task_name = "{}-{:05d}-{}".format(submit_config.user_name, submit_config.run_id, submit_config.run_desc) docker_valid_name_regex = "^[a-zA-Z0-9][a-zA-Z0-9_.-]+$" if not re.match(docker_valid_name_regex, submit_config.task_name): raise RuntimeError("Invalid task name. Probable reason: unacceptable characters in your submit_config.run_desc. Task name must be accepted by the following regex: " + docker_valid_name_regex + ", got " + submit_config.task_name) # Farm specific preparations for a submit farm.finalize_submit_config(submit_config, host_run_dir) # In case of resumption, load_config = True to load the prior submit_config file from the directory # (so to maintain the original configuration of the experiment rather than the newly provided # command-line arguments. if load_config: config_file = os.path.join(host_run_dir, "submit_config.pkl") if os.path.exists(config_file): old_submit_config = submit_config submit_config = load_pkl(config_file) submit_config["run_id"] = old_submit_config["run_id"] submit_config["run_name"] = old_submit_config["run_name"] if "resume_pkl" in old_submit_config["run_func_kwargs"]: submit_config["run_func_kwargs"]["resume_pkl"] = old_submit_config["run_func_kwargs"]["resume_pkl"] submit_config["run_func_kwargs"]["resume_kimg"] = old_submit_config["run_func_kwargs"]["resume_kimg"] _populate_run_dir(submit_config, host_run_dir) return farm.submit(submit_config, host_run_dir)
h2o-docs/src/booklets/v2_2015/source/Python_Vignette_code_examples/python_combine_frames_append_one_as_columns.py
ahmedengu/h2o-3
6,098
3763
<filename>h2o-docs/src/booklets/v2_2015/source/Python_Vignette_code_examples/python_combine_frames_append_one_as_columns.py df8.cbind(df9) # A B C D A0 B0 C0 D0 # ----- ------ ------ ------ ------ ----- ----- ----- # -0.09 0.944 0.160 0.271 -0.351 1.66 -2.32 -0.86 # -0.95 0.669 0.664 1.535 -0.633 -1.78 0.32 1.27 # 0.17 0.657 0.970 -0.419 -1.413 -0.51 0.64 -1.25 # 0.58 -0.516 -1.598 -1.346 0.711 1.09 0.05 0.63 # 1.04 -0.281 -0.411 0.959 -0.009 -0.47 0.41 -0.52 # 0.49 0.170 0.124 -0.170 -0.722 -0.79 -0.91 -2.09 # 1.42 -0.409 -0.525 2.155 -0.841 -0.19 0.13 0.63 # 0.94 1.192 -1.075 0.017 0.167 0.54 0.52 1.42 # -0.53 0.777 -1.090 -2.237 -0.693 0.24 -0.56 1.45 # 0.34 -0.456 -1.220 -0.456 -0.315 1.10 1.38 -0.05 # # [100 rows x 8 columns]
hatsploit/core/db/db.py
EntySec/HatSploit
139
3842
#!/usr/bin/env python3 # # MIT License # # Copyright (c) 2020-2022 EntySec # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # import json import os from hatsploit.core.cli.badges import Badges from hatsploit.lib.config import Config from hatsploit.lib.storage import LocalStorage class DB: badges = Badges() config = Config() local_storage = LocalStorage() def disconnect_payload_database(self, name): if self.local_storage.get("connected_payload_databases"): if name in self.local_storage.get("connected_payload_databases"): self.local_storage.delete_element("connected_payload_databases", name) self.local_storage.delete_element("payloads", name) return self.badges.print_error("No such payload database connected!") def disconnect_module_database(self, name): if self.local_storage.get("connected_module_databases"): if name in self.local_storage.get("connected_module_databases"): self.local_storage.delete_element("connected_module_databases", name) self.local_storage.delete_element("modules", name) return self.badges.print_error("No such module database connected!") def disconnect_plugin_database(self, name): if self.local_storage.get("connected_plugin_databases"): if name in self.local_storage.get("connected_plugin_databases"): self.local_storage.delete_element("connected_plugin_databases", name) self.local_storage.delete_element("plugins", name) return self.badges.print_error("No such plugin database connected!") def connect_payload_database(self, name, path): if self.local_storage.get("connected_payload_databases"): if name in self.local_storage.get("connected_payload_databases"): self.badges.print_error("Payload database already connected!") return if not os.path.exists(path) or not str.endswith(path, "json"): self.badges.print_error("Not a payload database!") return try: database = json.load(open(path)) except Exception: self.badges.print_error("Failed to connect payload database!") return if '__database__' not in database: self.badges.print_error("No __database__ section found!") return if database['__database__']['type'] != "payloads": self.badges.print_error("Not a payload database!") return del database['__database__'] payloads = { name: database } data = { name: { 'path': path } } if not self.local_storage.get("connected_payload_databases"): self.local_storage.set("connected_payload_databases", {}) self.local_storage.update("connected_payload_databases", data) if self.local_storage.get("payloads"): self.local_storage.update("payloads", payloads) else: self.local_storage.set("payloads", payloads) def connect_module_database(self, name, path): if self.local_storage.get("connected_module_databases"): if name in self.local_storage.get("connected_module_databases"): self.badges.print_error("Module database already connected!") return if not os.path.exists(path) or not str.endswith(path, "json"): self.badges.print_error("Not a module database!") return try: database = json.load(open(path)) except Exception: self.badges.print_error("Failed to connect module database!") return if '__database__' not in database: self.badges.print_error("No __database__ section found!") return if database['__database__']['type'] != "modules": self.badges.print_error("Not a module database!") return del database['__database__'] modules = { name: database } data = { name: { 'path': path } } if not self.local_storage.get("connected_module_databases"): self.local_storage.set("connected_module_databases", {}) self.local_storage.update("connected_module_databases", data) if self.local_storage.get("modules"): self.local_storage.update("modules", modules) else: self.local_storage.set("modules", modules) def connect_plugin_database(self, name, path): if self.local_storage.get("connected_plugin_databases"): if name in self.local_storage.get("connected_plugin_databases"): self.badges.print_error("Plugin database already connected!") return if not os.path.exists(path) or not str.endswith(path, "json"): self.badges.print_error("Not a database!") return try: database = json.load(open(path)) except Exception: self.badges.print_error("Failed to connect plugin database!") return if '__database__' not in database: self.badges.print_error("No __database__ section found!") return if database['__database__']['type'] != "plugins": self.badges.print_error("Not a plugin database!") return del database['__database__'] plugins = { name: database } data = { name: { 'path': path } } if not self.local_storage.get("connected_plugin_databases"): self.local_storage.set("connected_plugin_databases", {}) self.local_storage.update("connected_plugin_databases", data) if self.local_storage.get("plugins"): self.local_storage.update("plugins", plugins) else: self.local_storage.set("plugins", plugins)
etl/parsers/etw/Microsoft_Windows_IPxlatCfg.py
IMULMUL/etl-parser
104
3847
# -*- coding: utf-8 -*- """ Microsoft-Windows-IPxlatCfg GUID : 3e5ac668-af52-4c15-b99b-a3e7a6616ebd """ from construct import Int8sl, Int8ul, Int16ul, Int16sl, Int32sl, Int32ul, Int64sl, Int64ul, Bytes, Double, Float32l, Struct from etl.utils import WString, CString, SystemTime, Guid from etl.dtyp import Sid from etl.parsers.etw.core import Etw, declare, guid @declare(guid=guid("3e5ac668-af52-4c15-b99b-a3e7a6616ebd"), event_id=1001, version=0) class Microsoft_Windows_IPxlatCfg_1001_0(Etw): pattern = Struct( "ErrorString" / CString, "ErrorCode" / Int32ul ) @declare(guid=guid("3e5ac668-af52-4c15-b99b-a3e7a6616ebd"), event_id=1002, version=0) class Microsoft_Windows_IPxlatCfg_1002_0(Etw): pattern = Struct( "ErrorString" / CString, "ErrorCode" / Int32ul, "InterfaceLuid" / Int64ul ) @declare(guid=guid("3e5ac668-af52-4c15-b99b-a3e7a6616ebd"), event_id=1003, version=0) class Microsoft_Windows_IPxlatCfg_1003_0(Etw): pattern = Struct( "InfoString" / CString ) @declare(guid=guid("3e5ac668-af52-4c15-b99b-a3e7a6616ebd"), event_id=1005, version=0) class Microsoft_Windows_IPxlatCfg_1005_0(Etw): pattern = Struct( "IPv4Address" / Int32ul, "IPv4Prefix" / Int32ul ) @declare(guid=guid("3e5ac668-af52-4c15-b99b-a3e7a6616ebd"), event_id=1006, version=0) class Microsoft_Windows_IPxlatCfg_1006_0(Etw): pattern = Struct( "InfoString" / CString, "InterfaceLuid" / Int64ul ) @declare(guid=guid("3e5ac668-af52-4c15-b99b-a3e7a6616ebd"), event_id=1007, version=0) class Microsoft_Windows_IPxlatCfg_1007_0(Etw): pattern = Struct( "InterfaceLuid" / Int64ul, "PrefixLength" / Int32ul ) @declare(guid=guid("3e5ac668-af52-4c15-b99b-a3e7a6616ebd"), event_id=1008, version=0) class Microsoft_Windows_IPxlatCfg_1008_0(Etw): pattern = Struct( "InterfaceLuid" / Int64ul, "IPv4Address" / Int32ul ) @declare(guid=guid("3e5ac668-af52-4c15-b99b-a3e7a6616ebd"), event_id=1009, version=0) class Microsoft_Windows_IPxlatCfg_1009_0(Etw): pattern = Struct( "InterfaceLuid" / Int64ul ) @declare(guid=guid("3e5ac668-af52-4c15-b99b-a3e7a6616ebd"), event_id=1010, version=0) class Microsoft_Windows_IPxlatCfg_1010_0(Etw): pattern = Struct( "InterfaceLuid" / Int64ul ) @declare(guid=guid("3e5ac668-af52-4c15-b99b-a3e7a6616ebd"), event_id=1011, version=0) class Microsoft_Windows_IPxlatCfg_1011_0(Etw): pattern = Struct( "InfoString" / CString, "MTU" / Int32ul ) @declare(guid=guid("3e5ac668-af52-4c15-b99b-a3e7a6616ebd"), event_id=1101, version=0) class Microsoft_Windows_IPxlatCfg_1101_0(Etw): pattern = Struct( "InterfaceLuid" / Int64ul, "Metric" / Int32ul, "RemotePrefixLength" / Int32ul, "LocalPrefixLength" / Int32ul ) @declare(guid=guid("3e5ac668-af52-4c15-b99b-a3e7a6616ebd"), event_id=1102, version=0) class Microsoft_Windows_IPxlatCfg_1102_0(Etw): pattern = Struct( "InterfaceLuid" / Int64ul, "Metric" / Int32ul, "RemotePrefixLength" / Int32ul, "LocalPrefixLength" / Int32ul ) @declare(guid=guid("3e5ac668-af52-4c15-b99b-a3e7a6616ebd"), event_id=1103, version=0) class Microsoft_Windows_IPxlatCfg_1103_0(Etw): pattern = Struct( "InterfaceLuid" / Int64ul, "PrefixLength" / Int32ul )
semantic-python/test/fixtures/4-01-lambda-literals.py
Temurson/semantic
8,844
3849
<reponame>Temurson/semantic<gh_stars>1000+ # CHECK-TREE: { const <- \x -> \y -> x; y <- const #true #true; z <- const #false #false; #record { const: const, y : y, z: z, }} const = lambda x, y: x y = const(True, True) z = const(False, False)
driver/python/setup.py
wbaweto/QConf
2,056
3857
<filename>driver/python/setup.py from distutils.core import setup, Extension setup(name = 'qconf_py', version = '1.2.2', ext_modules = [Extension('qconf_py', ['lib/python_qconf.cc'], include_dirs=['/usr/local/include/qconf'], extra_objects=['/usr/local/qconf/lib/libqconf.a'] )])
demos/python/sdk_wireless_camera_control/open_gopro/demos/log_battery.py
Natureshadow/OpenGoPro
210
3859
<filename>demos/python/sdk_wireless_camera_control/open_gopro/demos/log_battery.py<gh_stars>100-1000 # log_battery.py/Open GoPro, Version 2.0 (C) Copyright 2021 GoPro, Inc. (http://gopro.com/OpenGoPro). # This copyright was auto-generated on Wed, Sep 1, 2021 5:05:45 PM """Example to continuously read the battery (with no Wifi connection)""" import csv import time import logging import argparse import threading from pathlib import Path from datetime import datetime from dataclasses import dataclass from typing import Optional, Tuple, Literal, List from rich.console import Console from open_gopro import GoPro from open_gopro.constants import StatusId from open_gopro.util import setup_logging, set_logging_level logger = logging.getLogger(__name__) console = Console() # rich consoler printer BarsType = Literal[0, 1, 2, 3] @dataclass class Sample: """Simple class to store battery samples""" index: int percentage: int bars: BarsType def __post_init__(self) -> None: self.time = datetime.now() def __str__(self) -> str: # pylint: disable=missing-return-doc return f"Index {self.index} @ time {self.time.strftime('%H:%M:%S')} --> bars: {self.bars}, percentage: {self.percentage}" SAMPLE_INDEX = 0 SAMPLES: List[Sample] = [] def dump_results_as_csv(location: Path) -> None: """Write all of the samples to a csv file Args: location (Path): File to write to """ console.print(f"Dumping results as CSV to {location}") with open(location, mode="w") as f: w = csv.writer(f, delimiter=",", quotechar='"', quoting=csv.QUOTE_MINIMAL) w.writerow(["index", "time", "percentage", "bars"]) initial_time = SAMPLES[0].time for s in SAMPLES: w.writerow([s.index, (s.time - initial_time).seconds, s.percentage, s.bars]) def process_battery_notifications(gopro: GoPro, initial_bars: BarsType, initial_percentage: int) -> None: """Separate thread to continuously check for and store battery notifications. If the CLI parameter was set to poll, this isn't used. Args: gopro (GoPro): instance to get updates from initial_bars (BarsType): Initial bars level when notifications were enabled initial_percentage (int): Initial percentage when notifications were enabled """ last_percentage = initial_percentage last_bars = initial_bars while True: # Block until we receive an update notification = gopro.get_update() # Update data points if they have changed last_percentage = ( notification.data[StatusId.INT_BATT_PER] if StatusId.INT_BATT_PER in notification.data else last_percentage ) last_bars = ( notification.data[StatusId.BATT_LEVEL] if StatusId.BATT_LEVEL in notification.data else last_bars ) # Append and print sample global SAMPLE_INDEX SAMPLES.append(Sample(index=SAMPLE_INDEX, percentage=last_percentage, bars=last_bars)) console.print(str(SAMPLES[-1])) SAMPLE_INDEX += 1 def main() -> int: """Main program functionality Returns: int: program return code """ identifier, log_location, poll = parse_arguments() global logger logger = setup_logging(logger, log_location) global SAMPLE_INDEX gopro: Optional[GoPro] = None return_code = 0 try: with GoPro(identifier, enable_wifi=False) as gopro: set_logging_level(logger, logging.ERROR) # # Setup notifications if we are not polling if poll is None: console.print("Configuring battery notifications...") # Enable notifications of the relevant battery statuses. Also store initial values. bars = gopro.ble_status.batt_level.register_value_update().flatten percentage = gopro.ble_status.int_batt_per.register_value_update().flatten # Start a thread to handle asynchronous battery level notifications threading.Thread( target=process_battery_notifications, args=(gopro, bars, percentage), daemon=True ).start() with console.status("[bold green]Receiving battery notifications until it dies..."): # Sleep forever, allowing notification handler thread to deal with battery level notifications while True: time.sleep(1) # Otherwise, poll else: with console.status("[bold green]Polling the battery until it dies..."): while True: SAMPLES.append( Sample( index=SAMPLE_INDEX, percentage=gopro.ble_status.int_batt_per.get_value().flatten, bars=gopro.ble_status.batt_level.get_value().flatten, ) ) console.print(str(SAMPLES[-1])) SAMPLE_INDEX += 1 time.sleep(poll) except Exception as e: # pylint: disable=broad-except logger.error(repr(e)) return_code = 1 except KeyboardInterrupt: logger.warning("Received keyboard interrupt. Shutting down...") finally: if len(SAMPLES) > 0: csv_location = Path(log_location.parent) / "battery_results.csv" dump_results_as_csv(csv_location) if gopro is not None: gopro.close() console.print("Exiting...") return return_code # pylint: disable=lost-exception def parse_arguments() -> Tuple[str, Path, Optional[int]]: """Parse command line arguments Returns: Tuple[str, Path, Path]: (identifier, path to save log, path to VLC) """ parser = argparse.ArgumentParser( description="Connect to the GoPro via BLE only and continuously read the battery (either by polling or notifications)." ) parser.add_argument( "-i", "--identifier", type=str, help="Last 4 digits of GoPro serial number, which is the last 4 digits of the default camera SSID. \ If not used, first discovered GoPro will be connected to", default=None, ) parser.add_argument( "-l", "--log", type=Path, help="Location to store detailed log", default="log_battery.log", ) parser.add_argument( "-p", "--poll", type=int, help="Set to poll the battery at a given interval. If not set, battery level will be notified instead. Defaults to notifications.", default=None, ) args = parser.parse_args() return args.identifier, args.log, args.poll if __name__ == "__main__": main()
neo/io/exampleio.py
Mario-Kart-Felix/python-neo
199
3866
<gh_stars>100-1000 """ neo.io have been split in 2 level API: * neo.io: this API give neo object * neo.rawio: this API give raw data as they are in files. Developper are encourage to use neo.rawio. When this is done the neo.io is done automagically with this king of following code. Author: sgarcia """ from neo.io.basefromrawio import BaseFromRaw from neo.rawio.examplerawio import ExampleRawIO class ExampleIO(ExampleRawIO, BaseFromRaw): name = 'example IO' description = "Fake IO" # This is an inportant choice when there are several channels. # 'split-all' : 1 AnalogSignal each 1 channel # 'group-by-same-units' : one 2D AnalogSignal for each group of channel with same units _prefered_signal_group_mode = 'group-by-same-units' def __init__(self, filename=''): ExampleRawIO.__init__(self, filename=filename) BaseFromRaw.__init__(self, filename)
scrapyproject/migrations/0003_auto_20170209_1025.py
sap9433/Distributed-Multi-User-Scrapy-System-with-a-Web-UI
108
3867
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('scrapyproject', '0002_auto_20170208_1738'), ] operations = [ migrations.AlterField( model_name='project', name='link_generator', field=models.TextField(blank=True), ), migrations.AlterField( model_name='project', name='scraper_function', field=models.TextField(blank=True), ), migrations.AlterField( model_name='project', name='settings', field=models.TextField(blank=True), ), ]
covfefe/covfefe.py
fixator10/Trusty-cogs
148
3872
import re import discord from redbot.core import commands class Covfefe(commands.Cog): """ Convert almost any word into covfefe """ def __init__(self, bot): self.bot = bot async def covfefe(self, x, k="aeiouy])"): """ https://codegolf.stackexchange.com/a/123697 """ try: b, c, v = re.findall(f"(.*?[{k}([^{k}.*?([{k}", x)[0] return b + c + (("bcdfgkpstvz" + c)["pgtvkgbzdfs".find(c)] + v) * 2 except IndexError: return None async def red_delete_data_for_user(self, **kwargs): """ Nothing to delete """ return @commands.command() async def covefy(self, ctx, msg): """Convert almost any word into covfefe""" newword = await self.covfefe(msg) if newword is not None: await ctx.send(newword) else: await ctx.send("I cannot covfefeify that word")
metaworld/envs/mujoco/sawyer_xyz/v2/sawyer_dial_turn_v2.py
yiwc/robotics-world
681
3886
<gh_stars>100-1000 import numpy as np from gym.spaces import Box from metaworld.envs import reward_utils from metaworld.envs.asset_path_utils import full_v2_path_for from metaworld.envs.mujoco.sawyer_xyz.sawyer_xyz_env import SawyerXYZEnv, _assert_task_is_set class SawyerDialTurnEnvV2(SawyerXYZEnv): TARGET_RADIUS = 0.07 def __init__(self): hand_low = (-0.5, 0.40, 0.05) hand_high = (0.5, 1, 0.5) obj_low = (-0.1, 0.7, 0.0) obj_high = (0.1, 0.8, 0.0) goal_low = (-0.1, 0.73, 0.0299) goal_high = (0.1, 0.83, 0.0301) super().__init__( self.model_name, hand_low=hand_low, hand_high=hand_high, ) self.init_config = { 'obj_init_pos': np.array([0, 0.7, 0.0]), 'hand_init_pos': np.array([0, 0.6, 0.2], dtype=np.float32), } self.goal = np.array([0., 0.73, 0.08]) self.obj_init_pos = self.init_config['obj_init_pos'] self.hand_init_pos = self.init_config['hand_init_pos'] self._random_reset_space = Box( np.array(obj_low), np.array(obj_high), ) self.goal_space = Box(np.array(goal_low), np.array(goal_high)) @property def model_name(self): return full_v2_path_for('sawyer_xyz/sawyer_dial.xml') @_assert_task_is_set def evaluate_state(self, obs, action): (reward, tcp_to_obj, _, target_to_obj, object_grasped, in_place) = self.compute_reward(action, obs) info = { 'success': float(target_to_obj <= self.TARGET_RADIUS), 'near_object': float(tcp_to_obj <= 0.01), 'grasp_success': 1., 'grasp_reward': object_grasped, 'in_place_reward': in_place, 'obj_to_target': target_to_obj, 'unscaled_reward': reward, } return reward, info def _get_pos_objects(self): dial_center = self.get_body_com('dial').copy() dial_angle_rad = self.data.get_joint_qpos('knob_Joint_1') offset = np.array([ np.sin(dial_angle_rad), -np.cos(dial_angle_rad), 0 ]) dial_radius = 0.05 offset *= dial_radius return dial_center + offset def _get_quat_objects(self): return self.sim.data.get_body_xquat('dial') def reset_model(self): self._reset_hand() self._target_pos = self.goal.copy() self.obj_init_pos = self.init_config['obj_init_pos'] self.prev_obs = self._get_curr_obs_combined_no_goal() if self.random_init: goal_pos = self._get_state_rand_vec() self.obj_init_pos = goal_pos[:3] final_pos = goal_pos.copy() + np.array([0, 0.03, 0.03]) self._target_pos = final_pos self.sim.model.body_pos[self.model.body_name2id('dial')] = self.obj_init_pos self.dial_push_position = self._get_pos_objects() + np.array([0.05, 0.02, 0.09]) return self._get_obs() def compute_reward(self, action, obs): obj = self._get_pos_objects() dial_push_position = self._get_pos_objects() + np.array([0.05, 0.02, 0.09]) tcp = self.tcp_center target = self._target_pos.copy() target_to_obj = (obj - target) target_to_obj = np.linalg.norm(target_to_obj) target_to_obj_init = (self.dial_push_position - target) target_to_obj_init = np.linalg.norm(target_to_obj_init) in_place = reward_utils.tolerance( target_to_obj, bounds=(0, self.TARGET_RADIUS), margin=abs(target_to_obj_init - self.TARGET_RADIUS), sigmoid='long_tail', ) dial_reach_radius = 0.005 tcp_to_obj = np.linalg.norm(dial_push_position - tcp) tcp_to_obj_init = np.linalg.norm(self.dial_push_position - self.init_tcp) reach = reward_utils.tolerance( tcp_to_obj, bounds=(0, dial_reach_radius), margin=abs(tcp_to_obj_init-dial_reach_radius), sigmoid='gaussian', ) gripper_closed = min(max(0, action[-1]), 1) reach = reward_utils.hamacher_product(reach, gripper_closed) tcp_opened = 0 object_grasped = reach reward = 10 * reward_utils.hamacher_product(reach, in_place) return (reward, tcp_to_obj, tcp_opened, target_to_obj, object_grasped, in_place)
tools/mo/openvino/tools/mo/ops/detection_output_onnx.py
ryanloney/openvino-1
1,127
3930
# Copyright (C) 2018-2022 Intel Corporation # SPDX-License-Identifier: Apache-2.0 import numpy as np from openvino.tools.mo.front.common.partial_infer.utils import dynamic_dimension_value, shape_array, set_input_shapes from openvino.tools.mo.ops.op import Op class ExperimentalDetectronDetectionOutput(Op): op = 'ExperimentalDetectronDetectionOutput' enabled = True def __init__(self, graph, attrs): mandatory_props = dict( type=self.op, op=self.op, version='opset6', infer=self.infer, reverse_infer=self.reverse_infer, type_infer=self.type_infer, in_ports_count=4, out_ports_count=3, ) super().__init__(graph, mandatory_props, attrs) def backend_attrs(self): return [ ('class_agnostic_box_regression', lambda node: str(bool(node['class_agnostic_box_regression'])).lower()), 'max_detections_per_image', 'nms_threshold', 'num_classes', 'post_nms_count', 'score_threshold', 'max_delta_log_wh', ('deltas_weights', lambda node: ','.join(map(str, node['deltas_weights'])))] @staticmethod def infer(node): rois_num = node.max_detections_per_image # boxes node.out_port(0).data.set_shape([rois_num, 4]) # classes, scores, batch indices # We use range(1, 1 + max(node.out_ports().keys())) instead of range(1, 3), because there are incorrectly # generated models where ExperimentalDetectronDetectionOutput has 4 outputs. for port_ind in range(1, 1 + max(node.out_ports().keys())): if not node.out_port(port_ind).disconnected(): node.out_port(port_ind).data.set_shape([rois_num]) @staticmethod def type_infer(node): in_data_type = node.in_port(0).get_data_type() node.out_port(0).set_data_type(in_data_type) node.out_port(1).set_data_type(np.int32) # the second output contains class indices node.out_port(2).set_data_type(in_data_type) if node.is_out_port_connected(3): node.out_port(3).set_data_type(np.int32) # the fourth output contains batch indices @staticmethod def reverse_infer(node): set_input_shapes(node, shape_array([dynamic_dimension_value, 4]), shape_array([dynamic_dimension_value, node['num_classes'] * 4]), shape_array([dynamic_dimension_value, node['num_classes']]), shape_array([1, 3]))
volksdep/converters/__init__.py
repoww/volksdep
271
3943
from .torch2onnx import torch2onnx from .onnx2trt import onnx2trt from .torch2trt import torch2trt from .base import load, save
MuonAnalysis/MomentumScaleCalibration/test/LikelihoodPdfDBReader_cfg.py
ckamtsikis/cmssw
852
3969
import FWCore.ParameterSet.Config as cms process = cms.Process("LIKELIHOODPDFDBREADER") # process.load("MuonAnalysis.MomentumScaleCalibration.local_CSA08_Y_cff") process.source = cms.Source("EmptySource", numberEventsInRun = cms.untracked.uint32(1), firstRun = cms.untracked.uint32(1) ) process.load("Configuration.StandardSequences.MagneticField_cff") process.load("Geometry.CMSCommonData.cmsIdealGeometryXML_cfi") process.load("Geometry.CommonTopologies.globalTrackingGeometry_cfi") process.load("RecoMuon.DetLayers.muonDetLayerGeometry_cfi") process.load("Geometry.MuonNumbering.muonNumberingInitialization_cfi") process.load("RecoMuon.TrackingTools.MuonServiceProxy_cff") # process.source = cms.Source("PoolSource", # fileNames = cms.untracked.vstring() # ) process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(1) ) process.poolDBESSource = cms.ESSource("PoolDBESSource", BlobStreamerName = cms.untracked.string('TBufferBlobStreamingService'), DBParameters = cms.PSet( messageLevel = cms.untracked.int32(2), authenticationPath = cms.untracked.string('/afs/cern.ch/cms/DB/conddb') ), timetype = cms.untracked.string('runnumber'), connect = cms.string('sqlite_file:dummy2.db'), toGet = cms.VPSet(cms.PSet( record = cms.string('MuScleFitLikelihoodPdfRcd'), tag = cms.string('MuScleFitLikelihoodPdf_2_1_12') )) ) process.LikelihoodPdfDBReaderModule = cms.EDAnalyzer( "LikelihoodPdfDBReader" ) process.p1 = cms.Path(process.LikelihoodPdfDBReaderModule)
dataloader/viperlist_train.py
urasakikeisuke/rigidmask
138
3976
<reponame>urasakikeisuke/rigidmask<gh_stars>100-1000 import torch.utils.data as data from PIL import Image import os import os.path import numpy as np import pdb import glob IMG_EXTENSIONS = [ '.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP', ] def is_image_file(filename): return any(filename.endswith(extension) for extension in IMG_EXTENSIONS) def dataloader(filepath): left_fold = 'image_2/' train = glob.glob(filepath+left_fold+'/0*.jpg') train = sorted(train) l0_train = [] l1_train = [] flow_train = [] for img in train: img1 = ('%s_%s.jpg'%(img.rsplit('_',1)[0],'%05d'%(1+int(img.split('.')[0].split('_')[-1])) )) flowp = img.replace('.jpg', '.png').replace('image_2','flow_occ') if (img1 in train and len(glob.glob(flowp))>0 and ('01000' not in img)): l0_train.append(img) l1_train.append(img1) flow_train.append(flowp) return l0_train, l1_train, flow_train
bpython/curtsiesfrontend/parse.py
dtrodrigues/bpython
2,168
4001
import re from curtsies.formatstring import fmtstr, FmtStr from curtsies.termformatconstants import ( FG_COLORS, BG_COLORS, colors as CURTSIES_COLORS, ) from functools import partial from ..lazyre import LazyReCompile COLORS = CURTSIES_COLORS + ("default",) CNAMES = dict(zip("krgybmcwd", COLORS)) # hack for finding the "inverse" INVERSE_COLORS = { CURTSIES_COLORS[idx]: CURTSIES_COLORS[ (idx + (len(CURTSIES_COLORS) // 2)) % len(CURTSIES_COLORS) ] for idx in range(len(CURTSIES_COLORS)) } INVERSE_COLORS["default"] = INVERSE_COLORS[CURTSIES_COLORS[0]] def func_for_letter(letter_color_code: str, default: str = "k"): """Returns FmtStr constructor for a bpython-style color code""" if letter_color_code == "d": letter_color_code = default elif letter_color_code == "D": letter_color_code = default.upper() return partial( fmtstr, fg=CNAMES[letter_color_code.lower()], bold=letter_color_code.isupper(), ) def color_for_letter(letter_color_code: str, default: str = "k"): if letter_color_code == "d": letter_color_code = default return CNAMES[letter_color_code.lower()] def parse(s): """Returns a FmtStr object from a bpython-formatted colored string""" rest = s stuff = [] while True: if not rest: break start, rest = peel_off_string(rest) stuff.append(start) return ( sum((fs_from_match(d) for d in stuff[1:]), fs_from_match(stuff[0])) if len(stuff) > 0 else FmtStr() ) def fs_from_match(d): atts = {} if d["fg"]: # this isn't according to spec as I understand it if d["fg"].isupper(): d["bold"] = True # TODO figure out why boldness isn't based on presence of \x02 color = CNAMES[d["fg"].lower()] if color != "default": atts["fg"] = FG_COLORS[color] if d["bg"]: if d["bg"] == "I": # hack for finding the "inverse" color = INVERSE_COLORS[color] else: color = CNAMES[d["bg"].lower()] if color != "default": atts["bg"] = BG_COLORS[color] if d["bold"]: atts["bold"] = True return fmtstr(d["string"], **atts) peel_off_string_re = LazyReCompile( r"""(?P<colormarker>\x01 (?P<fg>[krgybmcwdKRGYBMCWD]?) (?P<bg>[krgybmcwdKRGYBMCWDI]?)?) (?P<bold>\x02?) \x03 (?P<string>[^\x04]*) \x04 (?P<rest>.*) """, re.VERBOSE | re.DOTALL, ) def peel_off_string(s): m = peel_off_string_re.match(s) assert m, repr(s) d = m.groupdict() rest = d["rest"] del d["rest"] return d, rest
ktrain/graph/learner.py
husmen/ktrain
1,013
4003
from ..imports import * from .. import utils as U from ..core import GenLearner class NodeClassLearner(GenLearner): """ ``` Main class used to tune and train Keras models for node classification Main parameters are: model (Model): A compiled instance of keras.engine.training.Model train_data (Iterator): a Iterator instance for training set val_data (Iterator): A Iterator instance for validation set ``` """ def __init__(self, model, train_data=None, val_data=None, batch_size=U.DEFAULT_BS, eval_batch_size=U.DEFAULT_BS, workers=1, use_multiprocessing=False): super().__init__(model, train_data=train_data, val_data=val_data, batch_size=batch_size, eval_batch_size=eval_batch_size, workers=workers, use_multiprocessing=use_multiprocessing) return def view_top_losses(self, n=4, preproc=None, val_data=None): """ ``` Views observations with top losses in validation set. Typically over-ridden by Learner subclasses. Args: n(int or tuple): a range to select in form of int or tuple e.g., n=8 is treated as n=(0,8) preproc (Preprocessor): A TextPreprocessor or ImagePreprocessor. For some data like text data, a preprocessor is required to undo the pre-processing to correctly view raw data. val_data: optional val_data to use instead of self.val_data Returns: list of n tuples where first element is either filepath or id of validation example and second element is loss. ``` """ val = self._check_val(val_data) # get top losses and associated data tups = self.top_losses(n=n, val_data=val, preproc=preproc) # get multilabel status and class names classes = preproc.get_classes() if preproc is not None else None # iterate through losses for tup in tups: # get data idx = tup[0] loss = tup[1] truth = tup[2] pred = tup[3] print('----------') print("id:%s | loss:%s | true:%s | pred:%s)\n" % (idx, round(loss,2), truth, pred)) #print(obs) return def layer_output(self, layer_id, example_id=0, batch_id=0, use_val=False): """ ``` Prints output of layer with index <layer_id> to help debug models. Uses first example (example_id=0) from training set, by default. ``` """ raise Exception('currently_unsupported: layer_output method is not yet supported for ' + 'graph neural networks in ktrain') class LinkPredLearner(GenLearner): """ ``` Main class used to tune and train Keras models for link prediction Main parameters are: model (Model): A compiled instance of keras.engine.training.Model train_data (Iterator): a Iterator instance for training set val_data (Iterator): A Iterator instance for validation set ``` """ def __init__(self, model, train_data=None, val_data=None, batch_size=U.DEFAULT_BS, eval_batch_size=U.DEFAULT_BS, workers=1, use_multiprocessing=False): super().__init__(model, train_data=train_data, val_data=val_data, batch_size=batch_size, eval_batch_size=eval_batch_size, workers=workers, use_multiprocessing=use_multiprocessing) return def view_top_losses(self, n=4, preproc=None, val_data=None): """ ``` Views observations with top losses in validation set. Typically over-ridden by Learner subclasses. Args: n(int or tuple): a range to select in form of int or tuple e.g., n=8 is treated as n=(0,8) preproc (Preprocessor): A TextPreprocessor or ImagePreprocessor. For some data like text data, a preprocessor is required to undo the pre-processing to correctly view raw data. val_data: optional val_data to use instead of self.val_data Returns: list of n tuples where first element is either filepath or id of validation example and second element is loss. ``` """ val = self._check_val(val_data) # get top losses and associated data tups = self.top_losses(n=n, val_data=val, preproc=preproc) # get multilabel status and class names classes = preproc.get_classes() if preproc is not None else None # iterate through losses for tup in tups: # get data idx = tup[0] loss = tup[1] truth = tup[2] pred = tup[3] print('----------') print("id:%s | loss:%s | true:%s | pred:%s)\n" % (idx, round(loss,2), truth, pred)) #print(obs) return def layer_output(self, layer_id, example_id=0, batch_id=0, use_val=False): """ ``` Prints output of layer with index <layer_id> to help debug models. Uses first example (example_id=0) from training set, by default. ``` """ raise Exception('currently_unsupported: layer_output method is not yet supported for ' + 'graph neural networks in ktrain')
ichnaea/data/export.py
rajreet/ichnaea
348
4038
from collections import defaultdict import json import re import time from urllib.parse import urlparse import uuid import boto3 import boto3.exceptions import botocore.exceptions import markus import redis.exceptions import requests import requests.exceptions from sqlalchemy import select import sqlalchemy.exc from ichnaea.data import _map_content_enabled from ichnaea.models import ( ApiKey, BlueObservation, BlueReport, BlueShard, CellObservation, CellReport, CellShard, DataMap, ExportConfig, Report, WifiObservation, WifiReport, WifiShard, ) from ichnaea.models.content import encode_datamap_grid from ichnaea import util WHITESPACE = re.compile(r"\s", flags=re.UNICODE) METRICS = markus.get_metrics() class IncomingQueue(object): """ The incoming queue contains the data collected in the web application. It is the single entrypoint from which all other data pipelines get their data. It distributes the data into the configured export queues, checks those queues and if they contain enough or old enough data schedules an async export task to process the data in each queue. """ def __init__(self, task): self.task = task def __call__(self, export_task): redis_client = self.task.redis_client data_queue = self.task.app.data_queues["update_incoming"] data = data_queue.dequeue() grouped = defaultdict(list) for item in data: grouped[(item["api_key"], item.get("source", "gnss"))].append( {"api_key": item["api_key"], "report": item["report"]} ) with self.task.db_session(commit=False) as session: export_configs = ExportConfig.all(session) with self.task.redis_pipeline() as pipe: for (api_key, source), items in grouped.items(): for config in export_configs: if config.allowed(api_key, source): queue_key = config.queue_key(api_key, source) queue = config.queue(queue_key, redis_client) queue.enqueue(items, pipe=pipe) for config in export_configs: # Check all queues if they now contain enough data or # old enough data to be ready for processing. for queue_key in config.partitions(redis_client): queue = config.queue(queue_key, redis_client) if queue.ready(): export_task.delay(config.name, queue_key) if data_queue.ready(): self.task.apply_countdown() class ReportExporter(object): _retriable = (IOError,) _retries = 3 _retry_wait = 1.0 def __init__(self, task, config, queue_key): self.task = task self.config = config self.queue_key = queue_key self.queue = config.queue(queue_key, task.redis_client) self.stats_tags = ["key:" + self.config.name] @staticmethod def export(task, name, queue_key): with task.db_session(commit=False) as session: config = ExportConfig.get(session, name) exporter_types = { "dummy": DummyExporter, "geosubmit": GeosubmitExporter, "internal": InternalExporter, "s3": S3Exporter, } exporter_type = exporter_types.get(config.schema) if exporter_type is not None: exporter_type(task, config, queue_key)() def __call__(self): queue_items = self.queue.dequeue() if not queue_items: return success = False for i in range(self._retries): try: with METRICS.timer("data.export.upload.timing", tags=self.stats_tags): self.send(queue_items) success = True except self._retriable: success = False time.sleep(self._retry_wait * (i ** 2 + 1)) if success: METRICS.incr("data.export.batch", tags=self.stats_tags) break if success and self.queue.ready(): self.task.apply_countdown(args=[self.config.name, self.queue_key]) def send(self, queue_items): raise NotImplementedError() class DummyExporter(ReportExporter): def send(self, queue_items): pass class GeosubmitExporter(ReportExporter): _retriable = (IOError, requests.exceptions.RequestException) def send(self, queue_items): # ignore metadata reports = [item["report"] for item in queue_items] headers = { "Content-Encoding": "gzip", "Content-Type": "application/json", "User-Agent": "ichnaea", } response = requests.post( self.config.url, data=util.encode_gzip( json.dumps({"items": reports}).encode(), compresslevel=5 ), headers=headers, timeout=60.0, ) # log upload_status and trigger exception for bad responses # this causes the task to be re-tried METRICS.incr( "data.export.upload", tags=self.stats_tags + ["status:%s" % response.status_code], ) response.raise_for_status() class S3Exporter(ReportExporter): _retriable = ( IOError, boto3.exceptions.Boto3Error, botocore.exceptions.BotoCoreError, ) def send(self, queue_items): # ignore metadata reports = [item["report"] for item in queue_items] _, bucketname, path = urlparse(self.config.url)[:3] # s3 key names start without a leading slash path = path.lstrip("/") if not path.endswith("/"): path += "/" year, month, day = util.utcnow().timetuple()[:3] # strip away queue prefix again parts = self.queue_key.split(":") source = parts[1] api_key = parts[2] obj_name = path.format( source=source, api_key=api_key, year=year, month=month, day=day ) obj_name += uuid.uuid1().hex + ".json.gz" try: data = util.encode_gzip( json.dumps({"items": reports}).encode(), compresslevel=7 ) s3 = boto3.resource("s3") bucket = s3.Bucket(bucketname) obj = bucket.Object(obj_name) obj.put(Body=data, ContentEncoding="gzip", ContentType="application/json") METRICS.incr( "data.export.upload", tags=self.stats_tags + ["status:success"] ) except Exception: METRICS.incr( "data.export.upload", tags=self.stats_tags + ["status:failure"] ) raise class InternalTransform(object): """ This maps the geosubmit v2 schema used in view code and external transfers (backup, forward to partners) to the internal submit v1 schema used in our own database models. """ # *_id maps a source section id to a target section id # *_map maps fields inside the section from source to target id # if the names are equal, a simple string can be specified instead # of a two-tuple position_id = ("position", None) position_map = [ ("latitude", "lat"), ("longitude", "lon"), "accuracy", "altitude", ("altitudeAccuracy", "altitude_accuracy"), "heading", "pressure", "speed", "source", ] blue_id = ("bluetoothBeacons", "blue") blue_map = [("macAddress", "mac"), "age", ("signalStrength", "signal")] cell_id = ("cellTowers", "cell") cell_map = [ ("radioType", "radio"), ("mobileCountryCode", "mcc"), ("mobileNetworkCode", "mnc"), ("locationAreaCode", "lac"), ("cellId", "cid"), "age", "asu", ("primaryScramblingCode", "psc"), "serving", ("signalStrength", "signal"), ("timingAdvance", "ta"), ] wifi_id = ("wifiAccessPoints", "wifi") wifi_map = [ ("macAddress", "mac"), "age", "channel", "frequency", ("radioType", "radio"), ("signalToNoiseRatio", "snr"), ("signalStrength", "signal"), ] def _map_dict(self, item_source, field_map): value = {} for spec in field_map: if isinstance(spec, tuple): source, target = spec else: source = spec target = spec source_value = item_source.get(source) if source_value is not None: value[target] = source_value return value def _parse_dict(self, item, report, key_map, field_map): value = {} item_source = item.get(key_map[0]) if item_source: value = self._map_dict(item_source, field_map) if value: if key_map[1] is None: report.update(value) else: report[key_map[1]] = value return value def _parse_list(self, item, report, key_map, field_map): values = [] for value_item in item.get(key_map[0], ()): value = self._map_dict(value_item, field_map) if value: values.append(value) if values: report[key_map[1]] = values return values def __call__(self, item): report = {} self._parse_dict(item, report, self.position_id, self.position_map) blues = self._parse_list(item, report, self.blue_id, self.blue_map) cells = self._parse_list(item, report, self.cell_id, self.cell_map) wifis = self._parse_list(item, report, self.wifi_id, self.wifi_map) position = item.get("position") or {} gps_age = position.get("age", 0) timestamp = item.get("timestamp") if timestamp: # turn timestamp into GPS timestamp report["timestamp"] = timestamp - gps_age if gps_age: # Normalize age fields to be relative to GPS time for type_ in ("blue", "cell", "wifi"): for record in report.get(type_, ()): record["age"] = record.get("age", 0) - gps_age if blues or cells or wifis: return report return {} class InternalExporter(ReportExporter): _retriable = (IOError, redis.exceptions.RedisError, sqlalchemy.exc.InternalError) transform = InternalTransform() def send(self, queue_items): api_keys = set() api_keys_known = set() metrics = {} items = [] for item in queue_items: # preprocess items and extract set of API keys item["report"] = self.transform(item["report"]) if item["report"]: items.append(item) api_keys.add(item["api_key"]) for api_key in api_keys: metrics[api_key] = {} for type_ in ("report", "blue", "cell", "wifi"): for action in ("drop", "upload"): metrics[api_key]["%s_%s" % (type_, action)] = 0 with self.task.db_session(commit=False) as session: # limit database session to get API keys keys = [key for key in api_keys if key] if keys: columns = ApiKey.__table__.c rows = session.execute( select([columns.valid_key]).where(columns.valid_key.in_(keys)) ).fetchall() for row in rows: api_keys_known.add(row.valid_key) positions = [] observations = {"blue": [], "cell": [], "wifi": []} for item in items: api_key = item["api_key"] report = item["report"] obs, malformed_obs = self.process_report(report) any_data = False for name in ("blue", "cell", "wifi"): if obs.get(name): observations[name].extend(obs[name]) metrics[api_key][name + "_upload"] += len(obs[name]) any_data = True metrics[api_key][name + "_drop"] += malformed_obs.get(name, 0) metrics[api_key]["report_upload"] += 1 if any_data: positions.append((report["lat"], report["lon"])) else: metrics[api_key]["report_drop"] += 1 with self.task.redis_pipeline() as pipe: self.queue_observations(pipe, observations) if _map_content_enabled and positions: self.process_datamap(pipe, positions) self.emit_metrics(api_keys_known, metrics) def queue_observations(self, pipe, observations): for datatype, shard_model, shard_key, queue_prefix in ( ("blue", BlueShard, "mac", "update_blue_"), ("cell", CellShard, "cellid", "update_cell_"), ("wifi", WifiShard, "mac", "update_wifi_"), ): queued_obs = defaultdict(list) for obs in observations[datatype]: # group by sharded queue shard_id = shard_model.shard_id(getattr(obs, shard_key)) queue_id = queue_prefix + shard_id queued_obs[queue_id].append(obs.to_json()) for queue_id, values in queued_obs.items(): # enqueue values for each queue queue = self.task.app.data_queues[queue_id] queue.enqueue(values, pipe=pipe) def emit_metrics(self, api_keys_known, metrics): for api_key, key_metrics in metrics.items(): api_tag = [] if api_key and api_key in api_keys_known: api_tag = ["key:%s" % api_key] for name, count in key_metrics.items(): if not count: continue type_, action = name.split("_") if type_ == "report": suffix = "report" tags = api_tag else: suffix = "observation" tags = ["type:%s" % type_] + api_tag METRICS.incr("data.%s.%s" % (suffix, action), count, tags=tags) def process_report(self, data): report = Report.create(**data) if report is None: return ({}, {}) malformed = {} observations = {} for name, report_cls, obs_cls in ( ("blue", BlueReport, BlueObservation), ("cell", CellReport, CellObservation), ("wifi", WifiReport, WifiObservation), ): malformed[name] = 0 observations[name] = {} if data.get(name): for item in data[name]: # validate the blue/cell/wifi specific fields item_report = report_cls.create(**item) if item_report is None: malformed[name] += 1 continue # combine general and specific report data into one item_obs = obs_cls.combine(report, item_report) item_key = item_obs.unique_key # if we have better data for the same key, ignore existing = observations[name].get(item_key) if existing is not None and existing.better(item_obs): continue observations[name][item_key] = item_obs obs = { "blue": observations["blue"].values(), "cell": observations["cell"].values(), "wifi": observations["wifi"].values(), } return (obs, malformed) def process_datamap(self, pipe, positions): grids = set() for lat, lon in positions: if lat is not None and lon is not None: grids.add(DataMap.scale(lat, lon)) shards = defaultdict(set) for lat, lon in grids: shards[DataMap.shard_id(lat, lon)].add(encode_datamap_grid(lat, lon)) for shard_id, values in shards.items(): queue = self.task.app.data_queues["update_datamap_" + shard_id] queue.enqueue(list(values), pipe=pipe)