File size: 50,028 Bytes
0940725
 
 
 
 
 
5f91f59
0940725
5f91f59
0940725
 
 
 
 
 
 
 
c0ebb27
0940725
c0ebb27
8c29bf3
0940725
2e10d76
 
c911f00
 
 
 
 
 
 
 
 
 
 
f600e74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c911f00
 
 
 
09f331d
 
 
c911f00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09f331d
 
 
c911f00
 
 
 
 
0940725
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c29bf3
0940725
8c29bf3
0940725
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
---
annotations_creators:
- crowdsourced
- expert-generated
language_creators:
- found
language:
- en
license:
- bsd-3-clause
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- extended|ade20k
task_categories:
- image-segmentation
task_ids:
- instance-segmentation
paperswithcode_id: ade20k
pretty_name: MIT Scene Parsing Benchmark
tags:
- scene-parsing
dataset_info:
- config_name: scene_parsing
  features:
  - name: image
    dtype: image
  - name: annotation
    dtype: image
  - name: scene_category
    dtype:
      class_label:
        names:
          '0': airport_terminal
          '1': art_gallery
          '2': badlands
          '3': ball_pit
          '4': bathroom
          '5': beach
          '6': bedroom
          '7': booth_indoor
          '8': botanical_garden
          '9': bridge
          '10': bullring
          '11': bus_interior
          '12': butte
          '13': canyon
          '14': casino_outdoor
          '15': castle
          '16': church_outdoor
          '17': closet
          '18': coast
          '19': conference_room
          '20': construction_site
          '21': corral
          '22': corridor
          '23': crosswalk
          '24': day_care_center
          '25': sand
          '26': elevator_interior
          '27': escalator_indoor
          '28': forest_road
          '29': gangplank
          '30': gas_station
          '31': golf_course
          '32': gymnasium_indoor
          '33': harbor
          '34': hayfield
          '35': heath
          '36': hoodoo
          '37': house
          '38': hunting_lodge_outdoor
          '39': ice_shelf
          '40': joss_house
          '41': kiosk_indoor
          '42': kitchen
          '43': landfill
          '44': library_indoor
          '45': lido_deck_outdoor
          '46': living_room
          '47': locker_room
          '48': market_outdoor
          '49': mountain_snowy
          '50': office
          '51': orchard
          '52': arbor
          '53': bookshelf
          '54': mews
          '55': nook
          '56': preserve
          '57': traffic_island
          '58': palace
          '59': palace_hall
          '60': pantry
          '61': patio
          '62': phone_booth
          '63': establishment
          '64': poolroom_home
          '65': quonset_hut_outdoor
          '66': rice_paddy
          '67': sandbox
          '68': shopfront
          '69': skyscraper
          '70': stone_circle
          '71': subway_interior
          '72': platform
          '73': supermarket
          '74': swimming_pool_outdoor
          '75': television_studio
          '76': indoor_procenium
          '77': train_railway
          '78': coral_reef
          '79': viaduct
          '80': wave
          '81': wind_farm
          '82': bottle_storage
          '83': abbey
          '84': access_road
          '85': air_base
          '86': airfield
          '87': airlock
          '88': airplane_cabin
          '89': airport
          '90': entrance
          '91': airport_ticket_counter
          '92': alcove
          '93': alley
          '94': amphitheater
          '95': amusement_arcade
          '96': amusement_park
          '97': anechoic_chamber
          '98': apartment_building_outdoor
          '99': apse_indoor
          '100': apse_outdoor
          '101': aquarium
          '102': aquatic_theater
          '103': aqueduct
          '104': arcade
          '105': arch
          '106': archaelogical_excavation
          '107': archive
          '108': basketball
          '109': football
          '110': hockey
          '111': performance
          '112': rodeo
          '113': soccer
          '114': armory
          '115': army_base
          '116': arrival_gate_indoor
          '117': arrival_gate_outdoor
          '118': art_school
          '119': art_studio
          '120': artists_loft
          '121': assembly_line
          '122': athletic_field_indoor
          '123': athletic_field_outdoor
          '124': atrium_home
          '125': atrium_public
          '126': attic
          '127': auditorium
          '128': auto_factory
          '129': auto_mechanics_indoor
          '130': auto_mechanics_outdoor
          '131': auto_racing_paddock
          '132': auto_showroom
          '133': backstage
          '134': backstairs
          '135': badminton_court_indoor
          '136': badminton_court_outdoor
          '137': baggage_claim
          '138': shop
          '139': exterior
          '140': balcony_interior
          '141': ballroom
          '142': bamboo_forest
          '143': bank_indoor
          '144': bank_outdoor
          '145': bank_vault
          '146': banquet_hall
          '147': baptistry_indoor
          '148': baptistry_outdoor
          '149': bar
          '150': barbershop
          '151': barn
          '152': barndoor
          '153': barnyard
          '154': barrack
          '155': baseball_field
          '156': basement
          '157': basilica
          '158': basketball_court_indoor
          '159': basketball_court_outdoor
          '160': bathhouse
          '161': batters_box
          '162': batting_cage_indoor
          '163': batting_cage_outdoor
          '164': battlement
          '165': bayou
          '166': bazaar_indoor
          '167': bazaar_outdoor
          '168': beach_house
          '169': beauty_salon
          '170': bedchamber
          '171': beer_garden
          '172': beer_hall
          '173': belfry
          '174': bell_foundry
          '175': berth
          '176': berth_deck
          '177': betting_shop
          '178': bicycle_racks
          '179': bindery
          '180': biology_laboratory
          '181': bistro_indoor
          '182': bistro_outdoor
          '183': bleachers_indoor
          '184': bleachers_outdoor
          '185': boardwalk
          '186': boat_deck
          '187': boathouse
          '188': bog
          '189': bomb_shelter_indoor
          '190': bookbindery
          '191': bookstore
          '192': bow_window_indoor
          '193': bow_window_outdoor
          '194': bowling_alley
          '195': box_seat
          '196': boxing_ring
          '197': breakroom
          '198': brewery_indoor
          '199': brewery_outdoor
          '200': brickyard_indoor
          '201': brickyard_outdoor
          '202': building_complex
          '203': building_facade
          '204': bullpen
          '205': burial_chamber
          '206': bus_depot_indoor
          '207': bus_depot_outdoor
          '208': bus_shelter
          '209': bus_station_indoor
          '210': bus_station_outdoor
          '211': butchers_shop
          '212': cabana
          '213': cabin_indoor
          '214': cabin_outdoor
          '215': cafeteria
          '216': call_center
          '217': campsite
          '218': campus
          '219': natural
          '220': urban
          '221': candy_store
          '222': canteen
          '223': car_dealership
          '224': backseat
          '225': frontseat
          '226': caravansary
          '227': cardroom
          '228': cargo_container_interior
          '229': airplane
          '230': boat
          '231': freestanding
          '232': carport_indoor
          '233': carport_outdoor
          '234': carrousel
          '235': casino_indoor
          '236': catacomb
          '237': cathedral_indoor
          '238': cathedral_outdoor
          '239': catwalk
          '240': cavern_indoor
          '241': cavern_outdoor
          '242': cemetery
          '243': chalet
          '244': chaparral
          '245': chapel
          '246': checkout_counter
          '247': cheese_factory
          '248': chemical_plant
          '249': chemistry_lab
          '250': chicken_coop_indoor
          '251': chicken_coop_outdoor
          '252': chicken_farm_indoor
          '253': chicken_farm_outdoor
          '254': childs_room
          '255': choir_loft_interior
          '256': church_indoor
          '257': circus_tent_indoor
          '258': circus_tent_outdoor
          '259': city
          '260': classroom
          '261': clean_room
          '262': cliff
          '263': booth
          '264': room
          '265': clock_tower_indoor
          '266': cloister_indoor
          '267': cloister_outdoor
          '268': clothing_store
          '269': coast_road
          '270': cockpit
          '271': coffee_shop
          '272': computer_room
          '273': conference_center
          '274': conference_hall
          '275': confessional
          '276': control_room
          '277': control_tower_indoor
          '278': control_tower_outdoor
          '279': convenience_store_indoor
          '280': convenience_store_outdoor
          '281': corn_field
          '282': cottage
          '283': cottage_garden
          '284': courthouse
          '285': courtroom
          '286': courtyard
          '287': covered_bridge_interior
          '288': crawl_space
          '289': creek
          '290': crevasse
          '291': library
          '292': cybercafe
          '293': dacha
          '294': dairy_indoor
          '295': dairy_outdoor
          '296': dam
          '297': dance_school
          '298': darkroom
          '299': delicatessen
          '300': dentists_office
          '301': department_store
          '302': departure_lounge
          '303': vegetation
          '304': desert_road
          '305': diner_indoor
          '306': diner_outdoor
          '307': dinette_home
          '308': vehicle
          '309': dining_car
          '310': dining_hall
          '311': dining_room
          '312': dirt_track
          '313': discotheque
          '314': distillery
          '315': ditch
          '316': dock
          '317': dolmen
          '318': donjon
          '319': doorway_indoor
          '320': doorway_outdoor
          '321': dorm_room
          '322': downtown
          '323': drainage_ditch
          '324': dress_shop
          '325': dressing_room
          '326': drill_rig
          '327': driveway
          '328': driving_range_indoor
          '329': driving_range_outdoor
          '330': drugstore
          '331': dry_dock
          '332': dugout
          '333': earth_fissure
          '334': editing_room
          '335': electrical_substation
          '336': elevated_catwalk
          '337': door
          '338': freight_elevator
          '339': elevator_lobby
          '340': elevator_shaft
          '341': embankment
          '342': embassy
          '343': engine_room
          '344': entrance_hall
          '345': escalator_outdoor
          '346': escarpment
          '347': estuary
          '348': excavation
          '349': exhibition_hall
          '350': fabric_store
          '351': factory_indoor
          '352': factory_outdoor
          '353': fairway
          '354': farm
          '355': fastfood_restaurant
          '356': fence
          '357': cargo_deck
          '358': ferryboat_indoor
          '359': passenger_deck
          '360': cultivated
          '361': wild
          '362': field_road
          '363': fire_escape
          '364': fire_station
          '365': firing_range_indoor
          '366': firing_range_outdoor
          '367': fish_farm
          '368': fishmarket
          '369': fishpond
          '370': fitting_room_interior
          '371': fjord
          '372': flea_market_indoor
          '373': flea_market_outdoor
          '374': floating_dry_dock
          '375': flood
          '376': florist_shop_indoor
          '377': florist_shop_outdoor
          '378': fly_bridge
          '379': food_court
          '380': football_field
          '381': broadleaf
          '382': needleleaf
          '383': forest_fire
          '384': forest_path
          '385': formal_garden
          '386': fort
          '387': fortress
          '388': foundry_indoor
          '389': foundry_outdoor
          '390': fountain
          '391': freeway
          '392': funeral_chapel
          '393': funeral_home
          '394': furnace_room
          '395': galley
          '396': game_room
          '397': garage_indoor
          '398': garage_outdoor
          '399': garbage_dump
          '400': gasworks
          '401': gate
          '402': gatehouse
          '403': gazebo_interior
          '404': general_store_indoor
          '405': general_store_outdoor
          '406': geodesic_dome_indoor
          '407': geodesic_dome_outdoor
          '408': ghost_town
          '409': gift_shop
          '410': glacier
          '411': glade
          '412': gorge
          '413': granary
          '414': great_hall
          '415': greengrocery
          '416': greenhouse_indoor
          '417': greenhouse_outdoor
          '418': grotto
          '419': guardhouse
          '420': gulch
          '421': gun_deck_indoor
          '422': gun_deck_outdoor
          '423': gun_store
          '424': hacienda
          '425': hallway
          '426': handball_court
          '427': hangar_indoor
          '428': hangar_outdoor
          '429': hardware_store
          '430': hat_shop
          '431': hatchery
          '432': hayloft
          '433': hearth
          '434': hedge_maze
          '435': hedgerow
          '436': heliport
          '437': herb_garden
          '438': highway
          '439': hill
          '440': home_office
          '441': home_theater
          '442': hospital
          '443': hospital_room
          '444': hot_spring
          '445': hot_tub_indoor
          '446': hot_tub_outdoor
          '447': hotel_outdoor
          '448': hotel_breakfast_area
          '449': hotel_room
          '450': hunting_lodge_indoor
          '451': hut
          '452': ice_cream_parlor
          '453': ice_floe
          '454': ice_skating_rink_indoor
          '455': ice_skating_rink_outdoor
          '456': iceberg
          '457': igloo
          '458': imaret
          '459': incinerator_indoor
          '460': incinerator_outdoor
          '461': industrial_area
          '462': industrial_park
          '463': inn_indoor
          '464': inn_outdoor
          '465': irrigation_ditch
          '466': islet
          '467': jacuzzi_indoor
          '468': jacuzzi_outdoor
          '469': jail_indoor
          '470': jail_outdoor
          '471': jail_cell
          '472': japanese_garden
          '473': jetty
          '474': jewelry_shop
          '475': junk_pile
          '476': junkyard
          '477': jury_box
          '478': kasbah
          '479': kennel_indoor
          '480': kennel_outdoor
          '481': kindergarden_classroom
          '482': kiosk_outdoor
          '483': kitchenette
          '484': lab_classroom
          '485': labyrinth_indoor
          '486': labyrinth_outdoor
          '487': lagoon
          '488': artificial
          '489': landing
          '490': landing_deck
          '491': laundromat
          '492': lava_flow
          '493': lavatory
          '494': lawn
          '495': lean-to
          '496': lecture_room
          '497': legislative_chamber
          '498': levee
          '499': library_outdoor
          '500': lido_deck_indoor
          '501': lift_bridge
          '502': lighthouse
          '503': limousine_interior
          '504': liquor_store_indoor
          '505': liquor_store_outdoor
          '506': loading_dock
          '507': lobby
          '508': lock_chamber
          '509': loft
          '510': lookout_station_indoor
          '511': lookout_station_outdoor
          '512': lumberyard_indoor
          '513': lumberyard_outdoor
          '514': machine_shop
          '515': manhole
          '516': mansion
          '517': manufactured_home
          '518': market_indoor
          '519': marsh
          '520': martial_arts_gym
          '521': mastaba
          '522': maternity_ward
          '523': mausoleum
          '524': medina
          '525': menhir
          '526': mesa
          '527': mess_hall
          '528': mezzanine
          '529': military_hospital
          '530': military_hut
          '531': military_tent
          '532': mine
          '533': mineshaft
          '534': mini_golf_course_indoor
          '535': mini_golf_course_outdoor
          '536': mission
          '537': dry
          '538': water
          '539': mobile_home
          '540': monastery_indoor
          '541': monastery_outdoor
          '542': moon_bounce
          '543': moor
          '544': morgue
          '545': mosque_indoor
          '546': mosque_outdoor
          '547': motel
          '548': mountain
          '549': mountain_path
          '550': mountain_road
          '551': movie_theater_indoor
          '552': movie_theater_outdoor
          '553': mudflat
          '554': museum_indoor
          '555': museum_outdoor
          '556': music_store
          '557': music_studio
          '558': misc
          '559': natural_history_museum
          '560': naval_base
          '561': newsroom
          '562': newsstand_indoor
          '563': newsstand_outdoor
          '564': nightclub
          '565': nuclear_power_plant_indoor
          '566': nuclear_power_plant_outdoor
          '567': nunnery
          '568': nursery
          '569': nursing_home
          '570': oasis
          '571': oast_house
          '572': observatory_indoor
          '573': observatory_outdoor
          '574': observatory_post
          '575': ocean
          '576': office_building
          '577': office_cubicles
          '578': oil_refinery_indoor
          '579': oil_refinery_outdoor
          '580': oilrig
          '581': operating_room
          '582': optician
          '583': organ_loft_interior
          '584': orlop_deck
          '585': ossuary
          '586': outcropping
          '587': outhouse_indoor
          '588': outhouse_outdoor
          '589': overpass
          '590': oyster_bar
          '591': oyster_farm
          '592': acropolis
          '593': aircraft_carrier_object
          '594': amphitheater_indoor
          '595': archipelago
          '596': questionable
          '597': assembly_hall
          '598': assembly_plant
          '599': awning_deck
          '600': back_porch
          '601': backdrop
          '602': backroom
          '603': backstage_outdoor
          '604': backstairs_indoor
          '605': backwoods
          '606': ballet
          '607': balustrade
          '608': barbeque
          '609': basin_outdoor
          '610': bath_indoor
          '611': bath_outdoor
          '612': bathhouse_outdoor
          '613': battlefield
          '614': bay
          '615': booth_outdoor
          '616': bottomland
          '617': breakfast_table
          '618': bric-a-brac
          '619': brooklet
          '620': bubble_chamber
          '621': buffet
          '622': bulkhead
          '623': bunk_bed
          '624': bypass
          '625': byroad
          '626': cabin_cruiser
          '627': cargo_helicopter
          '628': cellar
          '629': chair_lift
          '630': cocktail_lounge
          '631': corner
          '632': country_house
          '633': country_road
          '634': customhouse
          '635': dance_floor
          '636': deck-house_boat_deck_house
          '637': deck-house_deck_house
          '638': dining_area
          '639': diving_board
          '640': embrasure
          '641': entranceway_indoor
          '642': entranceway_outdoor
          '643': entryway_outdoor
          '644': estaminet
          '645': farm_building
          '646': farmhouse
          '647': feed_bunk
          '648': field_house
          '649': field_tent_indoor
          '650': field_tent_outdoor
          '651': fire_trench
          '652': fireplace
          '653': flashflood
          '654': flatlet
          '655': floating_dock
          '656': flood_plain
          '657': flowerbed
          '658': flume_indoor
          '659': flying_buttress
          '660': foothill
          '661': forecourt
          '662': foreshore
          '663': front_porch
          '664': garden
          '665': gas_well
          '666': glen
          '667': grape_arbor
          '668': grove
          '669': guardroom
          '670': guesthouse
          '671': gymnasium_outdoor
          '672': head_shop
          '673': hen_yard
          '674': hillock
          '675': housing_estate
          '676': housing_project
          '677': howdah
          '678': inlet
          '679': insane_asylum
          '680': outside
          '681': juke_joint
          '682': jungle
          '683': kraal
          '684': laboratorywet
          '685': landing_strip
          '686': layby
          '687': lean-to_tent
          '688': loge
          '689': loggia_outdoor
          '690': lower_deck
          '691': luggage_van
          '692': mansard
          '693': meadow
          '694': meat_house
          '695': megalith
          '696': mens_store_outdoor
          '697': mental_institution_indoor
          '698': mental_institution_outdoor
          '699': military_headquarters
          '700': millpond
          '701': millrace
          '702': natural_spring
          '703': nursing_home_outdoor
          '704': observation_station
          '705': open-hearth_furnace
          '706': operating_table
          '707': outbuilding
          '708': palestra
          '709': parkway
          '710': patio_indoor
          '711': pavement
          '712': pawnshop_outdoor
          '713': pinetum
          '714': piste_road
          '715': pizzeria_outdoor
          '716': powder_room
          '717': pumping_station
          '718': reception_room
          '719': rest_stop
          '720': retaining_wall
          '721': rift_valley
          '722': road
          '723': rock_garden
          '724': rotisserie
          '725': safari_park
          '726': salon
          '727': saloon
          '728': sanatorium
          '729': science_laboratory
          '730': scrubland
          '731': scullery
          '732': seaside
          '733': semidesert
          '734': shelter
          '735': shelter_deck
          '736': shelter_tent
          '737': shore
          '738': shrubbery
          '739': sidewalk
          '740': snack_bar
          '741': snowbank
          '742': stage_set
          '743': stall
          '744': stateroom
          '745': store
          '746': streetcar_track
          '747': student_center
          '748': study_hall
          '749': sugar_refinery
          '750': sunroom
          '751': supply_chamber
          '752': t-bar_lift
          '753': tannery
          '754': teahouse
          '755': threshing_floor
          '756': ticket_window_indoor
          '757': tidal_basin
          '758': tidal_river
          '759': tiltyard
          '760': tollgate
          '761': tomb
          '762': tract_housing
          '763': trellis
          '764': truck_stop
          '765': upper_balcony
          '766': vestibule
          '767': vinery
          '768': walkway
          '769': war_room
          '770': washroom
          '771': water_fountain
          '772': water_gate
          '773': waterscape
          '774': waterway
          '775': wetland
          '776': widows_walk_indoor
          '777': windstorm
          '778': packaging_plant
          '779': pagoda
          '780': paper_mill
          '781': park
          '782': parking_garage_indoor
          '783': parking_garage_outdoor
          '784': parking_lot
          '785': parlor
          '786': particle_accelerator
          '787': party_tent_indoor
          '788': party_tent_outdoor
          '789': pasture
          '790': pavilion
          '791': pawnshop
          '792': pedestrian_overpass_indoor
          '793': penalty_box
          '794': pet_shop
          '795': pharmacy
          '796': physics_laboratory
          '797': piano_store
          '798': picnic_area
          '799': pier
          '800': pig_farm
          '801': pilothouse_indoor
          '802': pilothouse_outdoor
          '803': pitchers_mound
          '804': pizzeria
          '805': planetarium_indoor
          '806': planetarium_outdoor
          '807': plantation_house
          '808': playground
          '809': playroom
          '810': plaza
          '811': podium_indoor
          '812': podium_outdoor
          '813': police_station
          '814': pond
          '815': pontoon_bridge
          '816': poop_deck
          '817': porch
          '818': portico
          '819': portrait_studio
          '820': postern
          '821': power_plant_outdoor
          '822': print_shop
          '823': priory
          '824': promenade
          '825': promenade_deck
          '826': pub_indoor
          '827': pub_outdoor
          '828': pulpit
          '829': putting_green
          '830': quadrangle
          '831': quicksand
          '832': quonset_hut_indoor
          '833': racecourse
          '834': raceway
          '835': raft
          '836': railroad_track
          '837': railway_yard
          '838': rainforest
          '839': ramp
          '840': ranch
          '841': ranch_house
          '842': reading_room
          '843': reception
          '844': recreation_room
          '845': rectory
          '846': recycling_plant_indoor
          '847': refectory
          '848': repair_shop
          '849': residential_neighborhood
          '850': resort
          '851': rest_area
          '852': restaurant
          '853': restaurant_kitchen
          '854': restaurant_patio
          '855': restroom_indoor
          '856': restroom_outdoor
          '857': revolving_door
          '858': riding_arena
          '859': river
          '860': road_cut
          '861': rock_arch
          '862': roller_skating_rink_indoor
          '863': roller_skating_rink_outdoor
          '864': rolling_mill
          '865': roof
          '866': roof_garden
          '867': root_cellar
          '868': rope_bridge
          '869': roundabout
          '870': roundhouse
          '871': rubble
          '872': ruin
          '873': runway
          '874': sacristy
          '875': salt_plain
          '876': sand_trap
          '877': sandbar
          '878': sauna
          '879': savanna
          '880': sawmill
          '881': schoolhouse
          '882': schoolyard
          '883': science_museum
          '884': scriptorium
          '885': sea_cliff
          '886': seawall
          '887': security_check_point
          '888': server_room
          '889': sewer
          '890': sewing_room
          '891': shed
          '892': shipping_room
          '893': shipyard_outdoor
          '894': shoe_shop
          '895': shopping_mall_indoor
          '896': shopping_mall_outdoor
          '897': shower
          '898': shower_room
          '899': shrine
          '900': signal_box
          '901': sinkhole
          '902': ski_jump
          '903': ski_lodge
          '904': ski_resort
          '905': ski_slope
          '906': sky
          '907': skywalk_indoor
          '908': skywalk_outdoor
          '909': slum
          '910': snowfield
          '911': massage_room
          '912': mineral_bath
          '913': spillway
          '914': sporting_goods_store
          '915': squash_court
          '916': stable
          '917': baseball
          '918': stadium_outdoor
          '919': stage_indoor
          '920': stage_outdoor
          '921': staircase
          '922': starting_gate
          '923': steam_plant_outdoor
          '924': steel_mill_indoor
          '925': storage_room
          '926': storm_cellar
          '927': street
          '928': strip_mall
          '929': strip_mine
          '930': student_residence
          '931': submarine_interior
          '932': sun_deck
          '933': sushi_bar
          '934': swamp
          '935': swimming_hole
          '936': swimming_pool_indoor
          '937': synagogue_indoor
          '938': synagogue_outdoor
          '939': taxistand
          '940': taxiway
          '941': tea_garden
          '942': tearoom
          '943': teashop
          '944': television_room
          '945': east_asia
          '946': mesoamerican
          '947': south_asia
          '948': western
          '949': tennis_court_indoor
          '950': tennis_court_outdoor
          '951': tent_outdoor
          '952': terrace_farm
          '953': indoor_round
          '954': indoor_seats
          '955': theater_outdoor
          '956': thriftshop
          '957': throne_room
          '958': ticket_booth
          '959': tobacco_shop_indoor
          '960': toll_plaza
          '961': tollbooth
          '962': topiary_garden
          '963': tower
          '964': town_house
          '965': toyshop
          '966': track_outdoor
          '967': trading_floor
          '968': trailer_park
          '969': train_interior
          '970': train_station_outdoor
          '971': station
          '972': tree_farm
          '973': tree_house
          '974': trench
          '975': trestle_bridge
          '976': tundra
          '977': rail_indoor
          '978': rail_outdoor
          '979': road_indoor
          '980': road_outdoor
          '981': turkish_bath
          '982': ocean_deep
          '983': ocean_shallow
          '984': utility_room
          '985': valley
          '986': van_interior
          '987': vegetable_garden
          '988': velodrome_indoor
          '989': velodrome_outdoor
          '990': ventilation_shaft
          '991': veranda
          '992': vestry
          '993': veterinarians_office
          '994': videostore
          '995': village
          '996': vineyard
          '997': volcano
          '998': volleyball_court_indoor
          '999': volleyball_court_outdoor
          '1000': voting_booth
          '1001': waiting_room
          '1002': walk_in_freezer
          '1003': warehouse_indoor
          '1004': warehouse_outdoor
          '1005': washhouse_indoor
          '1006': washhouse_outdoor
          '1007': watchtower
          '1008': water_mill
          '1009': water_park
          '1010': water_tower
          '1011': water_treatment_plant_indoor
          '1012': water_treatment_plant_outdoor
          '1013': block
          '1014': cascade
          '1015': cataract
          '1016': fan
          '1017': plunge
          '1018': watering_hole
          '1019': weighbridge
          '1020': wet_bar
          '1021': wharf
          '1022': wheat_field
          '1023': whispering_gallery
          '1024': widows_walk_interior
          '1025': windmill
          '1026': window_seat
          '1027': barrel_storage
          '1028': winery
          '1029': witness_stand
          '1030': woodland
          '1031': workroom
          '1032': workshop
          '1033': wrestling_ring_indoor
          '1034': wrestling_ring_outdoor
          '1035': yard
          '1036': youth_hostel
          '1037': zen_garden
          '1038': ziggurat
          '1039': zoo
          '1040': forklift
          '1041': hollow
          '1042': hutment
          '1043': pueblo
          '1044': vat
          '1045': perfume_shop
          '1046': steel_mill_outdoor
          '1047': orchestra_pit
          '1048': bridle_path
          '1049': lyceum
          '1050': one-way_street
          '1051': parade_ground
          '1052': pump_room
          '1053': recycling_plant_outdoor
          '1054': chuck_wagon
  splits:
  - name: train
    num_bytes: 8468086
    num_examples: 20210
  - name: test
    num_bytes: 744607
    num_examples: 3352
  - name: validation
    num_bytes: 838032
    num_examples: 2000
  download_size: 1179202534
  dataset_size: 10050725
- config_name: instance_segmentation
  features:
  - name: image
    dtype: image
  - name: annotation
    dtype: image
  splits:
  - name: train
    num_bytes: 862611544
    num_examples: 20210
  - name: test
    num_bytes: 212493928
    num_examples: 3352
  - name: validation
    num_bytes: 87502294
    num_examples: 2000
  download_size: 1197393920
  dataset_size: 1162607766
---

# Dataset Card for MIT Scene Parsing Benchmark

## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [MIT Scene Parsing Benchmark homepage](http://sceneparsing.csail.mit.edu/)
- **Repository:** [Scene Parsing repository (Caffe/Torch7)](https://github.com/CSAILVision/sceneparsing),[Scene Parsing repository (PyTorch)](https://github.com/CSAILVision/semantic-segmentation-pytorch) and [Instance Segmentation repository](https://github.com/CSAILVision/placeschallenge/tree/master/instancesegmentation)
- **Paper:** [Scene Parsing through ADE20K Dataset](http://people.csail.mit.edu/bzhou/publication/scene-parse-camera-ready.pdf) and [Semantic Understanding of Scenes through ADE20K Dataset](https://arxiv.org/abs/1608.05442)
- **Leaderboard:** [MIT Scene Parsing Benchmark leaderboard](http://sceneparsing.csail.mit.edu/#:~:text=twice%20per%20week.-,leaderboard,-Organizers)
- **Point of Contact:** [Bolei Zhou](mailto:bzhou@ie.cuhk.edu.hk)

### Dataset Summary

Scene parsing is the task of segmenting and parsing an image into different image regions associated with semantic categories, such as sky, road, person, and bed. MIT Scene Parsing Benchmark (SceneParse150) provides a standard training and evaluation platform for the algorithms of scene parsing. The data for this benchmark comes from ADE20K Dataset which contains more than 20K scene-centric images exhaustively annotated with objects and object parts. Specifically, the benchmark is divided into 20K images for training, 2K images for validation, and another batch of held-out images for testing. There are in total 150 semantic categories included for evaluation, which include e.g. sky, road, grass, and discrete objects like person, car, bed. Note that there are non-uniform distribution of objects occuring in the images, mimicking a more natural object occurrence in daily scene.

The goal of this benchmark is to segment and parse an image into different image regions associated with semantic categories, such as sky, road, person, and bedThis benchamark is similar to semantic segmentation tasks in COCO and Pascal Dataset, but the data is more scene-centric and with a diverse range of object categories. The data for this benchmark comes from ADE20K Dataset which contains more than 20K scene-centric images exhaustively annotated with objects and object parts.

### Supported Tasks and Leaderboards

- `scene-parsing`: The goal of this task is to segment the whole image densely into semantic classes (image regions), where each pixel is assigned a class label such as the region of *tree* and the region of *building*.
[The leaderboard](http://sceneparsing.csail.mit.edu/#:~:text=twice%20per%20week.-,leaderboard,-Organizers) for this task ranks the models by considering the mean of the pixel-wise accuracy and class-wise IoU as the final score. Pixel-wise accuracy indicates the ratio of pixels which are correctly predicted, while class-wise IoU indicates the Intersection of Union of pixels averaged over all the 150 semantic categories. Refer to the [Development Kit](https://github.com/CSAILVision/sceneparsing) for the detail.

- `instance-segmentation`: The goal of this task is to detect the object instances inside an image and further generate the precise segmentation masks of the objects. Its difference compared to the task of scene parsing is that in scene parsing there is no instance concept for the segmented regions, instead in instance segmentation if there are three persons in the scene, the network is required to segment each one of the person regions. This task doesn't have an active leaderboard. The performance of the instance segmentation algorithms is evaluated by Average Precision (AP, or mAP), following COCO evaluation metrics. For each image, at most 255 top-scoring instance masks are taken across all categories. Each instance mask prediction is only considered if its IoU with ground truth is above a certain threshold. There are 10 IoU thresholds of 0.50:0.05:0.95 for evaluation. The final AP is averaged across 10 IoU thresholds and 100 categories. You can refer to COCO evaluation page for more explanation: http://mscoco.org/dataset/#detections-eval

### Languages

English.

## Dataset Structure

### Data Instances

A data point comprises an image and its annotation mask, which is `None` in the testing set. The `scene_parsing` configuration has an additional `scene_category` field.

#### `scene_parsing`

```
{
  'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=683x512 at 0x1FF32A3EDA0>,
  'annotation': <PIL.PngImagePlugin.PngImageFile image mode=L size=683x512 at 0x1FF32E5B978>,
  'scene_category': 0
}
```

#### `instance_segmentation`

```
{
  'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=256x256 at 0x20B51B5C400>,
  'annotation': <PIL.PngImagePlugin.PngImageFile image mode=RGB size=256x256 at 0x20B57051B38>
}
```

### Data Fields

#### `scene_parsing`

- `image`: A `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`.
- `annotation`: A `PIL.Image.Image` object containing the annotation mask.
- `scene_category`: A scene category for the image (e.g. `airport_terminal`, `canyon`, `mobile_home`).

> **Note**: annotation masks contain labels ranging from 0 to 150, where 0 refers to "other objects". Those pixels are not considered in the official evaluation. Refer to [this file](https://github.com/CSAILVision/sceneparsing/blob/master/objectInfo150.csv) for the information about the labels of the 150 semantic categories, including indices, pixel ratios and names.

#### `instance_segmentation`

- `image`: A `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`.
- `annotation`: A `PIL.Image.Image` object containing the annotation mask.

> **Note**: in the instance annotation masks, the R(ed) channel encodes category ID, and the G(reen) channel encodes instance ID. Each object instance has a unique instance ID regardless of its category ID. In the dataset, all images have <256 object instances. Refer to [this file (train split)](https://github.com/CSAILVision/placeschallenge/blob/master/instancesegmentation/instanceInfo100_train.txt) and to [this file (validation split)](https://github.com/CSAILVision/placeschallenge/blob/master/instancesegmentation/instanceInfo100_val.txt) for the information about the labels of the 100 semantic categories. To find the mapping between the semantic categories for `instance_segmentation` and `scene_parsing`, refer to [this file](https://github.com/CSAILVision/placeschallenge/blob/master/instancesegmentation/categoryMapping.txt).

### Data Splits

The data is split into training, test and validation set. The training data contains 20210 images, the testing data contains 3352 images and the validation data contains 2000 images.

## Dataset Creation

### Curation Rationale

The rationale from the paper for the ADE20K dataset from which this benchmark originates:

> Semantic understanding of visual scenes is one of the holy grails of computer vision. Despite efforts of the community in data collection, there are still few image datasets covering a wide range of scenes and object categories with pixel-wise annotations for scene understanding. In this work, we present a densely annotated dataset ADE20K, which spans diverse annotations of scenes, objects, parts of objects, and
in some cases even parts of parts.

> The motivation of this work is to collect a dataset that has densely annotated images (every pixel has a semantic label) with a large and an unrestricted open vocabulary. The
images in our dataset are manually segmented in great detail, covering a diverse set of scenes, object and object part categories. The challenge for collecting such annotations is finding reliable annotators, as well as the fact that labeling is difficult if the class list is not defined in advance. On the other hand, open vocabulary naming also suffers from naming inconsistencies across different annotators. In contrast,
our dataset was annotated by a single expert annotator, providing extremely detailed and exhaustive image annotations. On average, our annotator labeled 29 annotation segments per image, compared to the 16 segments per image labeled by external annotators (like workers from Amazon Mechanical Turk). Furthermore, the data consistency and quality are much higher than that of external annotators.

### Source Data

#### Initial Data Collection and Normalization

Images come from the LabelMe, SUN datasets, and Places and were selected to cover the 900 scene categories defined in the SUN database.

This benchmark was built by selecting the top 150 objects ranked by their total pixel ratios from the ADE20K dataset. As the original images in the ADE20K dataset have various sizes, for simplicity those large-sized images were rescaled to make their minimum heights or widths as 512. Among the 150 objects, there are 35 stuff classes (i.e., wall, sky, road) and 115 discrete objects (i.e., car, person, table). The annotated pixels of the 150 objects occupy 92.75% of all the pixels in the dataset, where the stuff classes occupy 60.92%, and discrete objects occupy 31.83%.

#### Who are the source language producers?

The same as in the LabelMe, SUN datasets, and Places datasets.

### Annotations

#### Annotation process

Annotation process for the ADE20K dataset:

> **Image Annotation.** For our dataset, we are interested in having a diverse set of scenes with dense annotations of all the objects present. Images come from the LabelMe, SUN datasets, and Places and were selected to cover the 900 scene categories defined in the SUN database. Images were annotated by a single expert worker using the LabelMe interface. Fig. 2 shows a snapshot of the annotation interface and one fully segmented image. The worker provided three types of annotations: object segments with names, object parts, and attributes. All object instances are segmented independently so that the dataset could be used to train and evaluate detection or segmentation algorithms. Datasets such as COCO, Pascal or Cityscape start by defining a set of object categories of interest. However, when labeling all the objects in a scene, working with a predefined list of objects is not possible as new categories
appear frequently (see fig. 5.d). Here, the annotator created a dictionary of visual concepts where new classes were added constantly to ensure consistency in object naming. Object parts are associated with object instances. Note that parts can have parts too, and we label these associations as well. For example, the ‘rim’ is a part of a ‘wheel’, which in turn is part of a ‘car’. A ‘knob’ is a part of a ‘door’
that can be part of a ‘cabinet’. The total part hierarchy has a depth of 3. The object and part hierarchy is in the supplementary materials.

> **Annotation Consistency.** Defining a labeling protocol is relatively easy when the labeling task is restricted to a fixed list of object classes, however it becomes challenging when the class list is openended. As the goal is to label all the objects within each image, the list of classes grows unbounded. >Many object classes appear only a few times across the entire collection of images. However, those rare >object classes cannot be ignored as they might be important elements for the interpretation of the scene. >Labeling in these conditions becomes difficult because we need to keep a growing list of all the object >classes in order to have a consistent naming across the entire dataset. Despite the annotator’s best effort, >the process is not free of noise. To analyze the annotation consistency we took a subset of 61 randomly >chosen images from the validation set, then asked our annotator to annotate them again (there is a time difference of six months). One expects that there are some differences between the two annotations. A few examples are shown in Fig 3. On average, 82.4% of the pixels got the same label. The remaining 17.6% of pixels had some errors for which we grouped into three error types as follows:
>
>    • Segmentation quality: Variations in the quality of segmentation and outlining of the object boundary.  One typical source of error arises when segmenting complex objects such as buildings and trees, which can be segmented with different degrees of precision. 5.7% of the pixels had this type of error.
>
>    • Object naming: Differences in object naming (due to ambiguity or similarity between concepts, for instance calling a big car a ‘car’ in one segmentation and a ‘truck’ in the another one, or a ‘palm tree’ a‘tree’. 6.0% of the pixels had naming issues. These errors can be reduced by defining a very precise terminology, but this becomes much harder with a large growing vocabulary.
>
>    • Segmentation quantity: Missing objects in one of the two segmentations. There is a very large number of objects in each image and some images might be annotated more thoroughly than others. For example, in the third column of Fig 3 the annotator missed some small objects in different annotations. 5.9% of the pixels are due to missing labels. A similar issue existed in segmentation datasets such as the Berkeley Image segmentation dataset.
>
> The median error values for the three error types are: 4.8%, 0.3% and 2.6% showing that the mean value is dominated by a few images, and that the most common type of error is segmentation quality.
To further compare the annotation done by our single expert annotator and the AMT-like annotators, 20 images
from the validation set are annotated by two invited external annotators, both with prior experience in image labeling. The first external annotator had 58.5% of inconsistent pixels compared to the segmentation provided by our annotator, and the second external annotator had 75% of the inconsistent pixels. Many of these inconsistencies are due to the poor quality of the segmentations provided by external annotators (as it has been observed with AMT which requires multiple verification steps for quality control). For the
best external annotator (the first one), 7.9% of pixels have inconsistent segmentations (just slightly worse than our annotator), 14.9% have inconsistent object naming and 35.8% of the pixels correspond to missing objects, which is due to the much smaller number of objects annotated by the external annotator in comparison with the ones annotated by our expert annotator. The external annotators labeled on average 16 segments per image while our annotator provided 29 segments per image.

#### Who are the annotators?

Three expert annotators and the AMT-like annotators.

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

Refer to the `Annotation Consistency` subsection of `Annotation Process`.

## Additional Information

### Dataset Curators

Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso and Antonio Torralba.

### Licensing Information

The MIT Scene Parsing Benchmark dataset is licensed under a [BSD 3-Clause License](https://github.com/CSAILVision/sceneparsing/blob/master/LICENSE).

### Citation Information

```bibtex
@inproceedings{zhou2017scene,
    title={Scene Parsing through ADE20K Dataset},
    author={Zhou, Bolei and Zhao, Hang and Puig, Xavier and Fidler, Sanja and Barriuso, Adela and Torralba, Antonio},
    booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
    year={2017}
}

@article{zhou2016semantic,
  title={Semantic understanding of scenes through the ade20k dataset},
  author={Zhou, Bolei and Zhao, Hang and Puig, Xavier and Fidler, Sanja and Barriuso, Adela and Torralba, Antonio},
  journal={arXiv preprint arXiv:1608.05442},
  year={2016}
}
```

### Contributions

Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.