import json import pandas as pd from operator import itemgetter from datetime import timezone import math from datetime import datetime import os def add_unix_time_to_data(prs_metric_data): new_data = [] for data in prs_metric_data: if data['time'] == None: data['time'] = '00:00' data['timestamp'] = int(datetime.strptime('{} {}'.format(data['date'], data['time']), '%d/%m/%Y %H:%M').timestamp()) new_data.append(data) new_data = sorted(new_data, key=itemgetter('timestamp')) return new_data def metric_data_to_df(prs_metric_data): """ @gagan: TODO this function takes a list of dicts (each dict is the output of getMetricData from pms) and converts it into a df to be used in the above ml functions """ data_value_list = [] prs_metric_data = sorted(prs_metric_data, key=itemgetter('timestamp')) for metric_data in prs_metric_data: for kpi in metric_data['kpiValues']: if metric_data['kpiValues'][kpi]!=None and not(math.isnan(metric_data['kpiValues'][kpi])): data_value_list.append({ 'value': metric_data['kpiValues'][kpi], 'timestamp': metric_data['timestamp'] }) prs_metric_df = pd.DataFrame(data_value_list) return prs_metric_df #%% from glob import glob files = glob('./json/*.json') content = [] for file in files: with open(file, 'r') as f: content = json.load(f) content = add_unix_time_to_data(content) df = metric_data_to_df(content) df.to_csv('./json_to_csv/'+file.split('/')[-1].split('.')[0]+'.csv', index=False)