--- base_model: vinai/phobert-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: vlsp-comom results: [] --- # vlsp-comom This model is a fine-tuned version of [vinai/phobert-base](https://huggingface.co/vinai/phobert-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8117 - Precision: 0.2668 - Recall: 0.2994 - F1: 0.2821 - Accuracy: 0.7347 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 78 | 0.9170 | 0.1953 | 0.1690 | 0.1812 | 0.7105 | | No log | 2.0 | 156 | 0.8117 | 0.2668 | 0.2994 | 0.2821 | 0.7347 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1