--- tags: - autotrain - token-classification - medical language: - fr widget: - text: Prendré 2 compris par jour, pendant 1 mois. - text: DOLIPRANETABS 1000 MG CPR PELL PLQ/8 (Paracétamol 1.000mg comprimé) datasets: - Posos/MedNERF co2_eq_emissions: emissions: 0.11647938304211661 license: mit metrics: - f1 - accuracy - precision - recall --- # Model Trained Using AutoTrain - Problem type: Entity Extraction - Model ID: 69856137957 - CO2 Emissions (in grams): 0.1165 ## Validation Metrics - Loss: 1.510 - Accuracy: 0.706 - Precision: 0.648 - Recall: 0.679 - F1: 0.663 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/davanstrien/autotrain-french-ner-blank-model-69856137957 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("davanstrien/autotrain-french-ner-blank-model-69856137957", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("davanstrien/autotrain-french-ner-blank-model-69856137957", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```