davanstrien HF staff commited on
Commit
d223cae
·
1 Parent(s): a1cfb63

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +84 -0
README.md ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: deberta-v3-base_fine_tuned_food_ner
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # deberta-v3-base_fine_tuned_food_ner
19
+
20
+ This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.4164
23
+ - Precision: 0.9268
24
+ - Recall: 0.9446
25
+ - F1: 0.9356
26
+ - Accuracy: 0.9197
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 2e-05
46
+ - train_batch_size: 16
47
+ - eval_batch_size: 16
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 20
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | No log | 1.0 | 40 | 0.8425 | 0.8323 | 0.8323 | 0.8323 | 0.8073 |
58
+ | No log | 2.0 | 80 | 0.5533 | 0.8703 | 0.8941 | 0.8820 | 0.8731 |
59
+ | No log | 3.0 | 120 | 0.4855 | 0.8771 | 0.9109 | 0.8937 | 0.8797 |
60
+ | No log | 4.0 | 160 | 0.4238 | 0.8949 | 0.9222 | 0.9083 | 0.8964 |
61
+ | No log | 5.0 | 200 | 0.4176 | 0.9048 | 0.9302 | 0.9173 | 0.9008 |
62
+ | No log | 6.0 | 240 | 0.4127 | 0.9065 | 0.9342 | 0.9202 | 0.9004 |
63
+ | No log | 7.0 | 280 | 0.4409 | 0.9294 | 0.9302 | 0.9298 | 0.9043 |
64
+ | No log | 8.0 | 320 | 0.3971 | 0.9129 | 0.9334 | 0.9230 | 0.9061 |
65
+ | No log | 9.0 | 360 | 0.3941 | 0.9112 | 0.9390 | 0.9249 | 0.9061 |
66
+ | No log | 10.0 | 400 | 0.4069 | 0.9233 | 0.9366 | 0.9299 | 0.9148 |
67
+ | No log | 11.0 | 440 | 0.4039 | 0.9213 | 0.9390 | 0.9300 | 0.9162 |
68
+ | No log | 12.0 | 480 | 0.4000 | 0.9126 | 0.9470 | 0.9295 | 0.9113 |
69
+ | 0.3799 | 13.0 | 520 | 0.4126 | 0.9323 | 0.9390 | 0.9356 | 0.9179 |
70
+ | 0.3799 | 14.0 | 560 | 0.4076 | 0.9272 | 0.9398 | 0.9334 | 0.9140 |
71
+ | 0.3799 | 15.0 | 600 | 0.4129 | 0.9317 | 0.9414 | 0.9365 | 0.9188 |
72
+ | 0.3799 | 16.0 | 640 | 0.4000 | 0.9239 | 0.9446 | 0.9341 | 0.9162 |
73
+ | 0.3799 | 17.0 | 680 | 0.4098 | 0.9267 | 0.9438 | 0.9352 | 0.9179 |
74
+ | 0.3799 | 18.0 | 720 | 0.4110 | 0.9232 | 0.9454 | 0.9342 | 0.9188 |
75
+ | 0.3799 | 19.0 | 760 | 0.4202 | 0.9275 | 0.9446 | 0.9360 | 0.9183 |
76
+ | 0.3799 | 20.0 | 800 | 0.4164 | 0.9268 | 0.9446 | 0.9356 | 0.9197 |
77
+
78
+
79
+ ### Framework versions
80
+
81
+ - Transformers 4.21.0
82
+ - Pytorch 1.12.0+cu113
83
+ - Datasets 2.4.0
84
+ - Tokenizers 0.12.1