--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - EdwardLin2023/AESDD metrics: - accuracy model-index: - name: distilhubert-finetuned-AESDD results: - task: name: Audio Classification type: audio-classification dataset: name: aesdd type: aesdd config: AESDD split: train args: AESDD metrics: - name: Accuracy type: accuracy value: 0.9016393442622951 --- # distilhubert-finetuned-AESDD This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the aesdd dataset. It achieves the following results on the evaluation set: - Loss: 0.4389 - Accuracy: 0.9016 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1249 | 1.0 | 68 | 1.1905 | 0.5082 | | 0.7441 | 2.0 | 136 | 0.8850 | 0.6721 | | 0.5941 | 3.0 | 204 | 0.6579 | 0.8361 | | 0.4349 | 4.0 | 272 | 0.9638 | 0.6721 | | 0.2612 | 5.0 | 340 | 0.5081 | 0.8689 | | 0.1883 | 6.0 | 408 | 0.6223 | 0.8197 | | 0.0978 | 7.0 | 476 | 0.4671 | 0.8689 | | 0.0425 | 8.0 | 544 | 0.4338 | 0.8852 | | 0.0264 | 9.0 | 612 | 0.4488 | 0.8525 | | 0.0219 | 10.0 | 680 | 0.4389 | 0.9016 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.2 - Tokenizers 0.13.3